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Number Theory / Théorie des nombres 

 

Characterisation of random series by the Delta-2 method.  

 
 

Hubert Schaetzel 
 

Abstract  The purpose of this article is to describe a new method of characterizing the random or non-random nature 

of a strictly increasing sequence of real numbers. This discovery is a mere coincidence. Not being at all a 

specialist in probabilities and statistics, the aim here will not be to provide a theoretical justification for the 

process : we start from a definition and verify the agreement with this definition on standard examples. 

The proposed test is based on the Delta-2 algorithm. 

 

 Caractérisation de suites aléatoires par la méthode du Delta-2 

 

Résumé  L’objet de cet article est de donner la description d’une méthode nouvelle de caractérisation de la nature 

aléatoire, ou non, d’une suite de nombres réels. Cette découverte est un simple fruit du hasard. N’étant pas 

du tout spécialiste de probabilités et de statistiques, le but ne sera pas ici de fournir une justification 

théorique du procédé : nous partons d’une définition et vérifions la concordance à cette définition sur des 

exemples types. Le test proposé repose sur l’algorithme Delta-2. 
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1. Preamble. 
 

The statistic of random samples obeys different laws of probability, Gauss-Laplace normal law, Bernoulli law, binomial 

law, Pascal law, Student law, hypergeometric law, Zipf law, Poisson law, Pareto law, continuous uniform law, Fischer-

Snedecor law, χ² law, …, where this list can be extended almost to infinity [1]. 

 

Many procedures ensure that a particular sample obeys such a law, tests of normality, Jarque-Bera test, Kuiper test, 

Shapiro-Wilk test, Anderson-Darling test, Cramer-Von Mises test, χ
2 

test… These methods of comparison are 

nevertheless less numerous than the previous ones. The spectral test on the other hand allows evaluating the quality of a 

generator of pseudo-random numbers of linear congruential type.  

 

The test proposed here is closer to this second category. We are interested here in whether a list derived from a given 

function is random or not. 

 

Our tool being the Delta-2 algorithm, we define this character by adding "randomness under Delta-2 testing". 

 

Delta-2 is a process of accelerating the convergence of series in numerical analysis attributed to Seki Kōwa, Japanese 

mathematician (late 17th century) and popularized by the mathematician Alexander Aitken in 1926 [2]. This algorithm is 

distinguished by its simplicity and efficiency (see & Test implementation.) 

 

This algorithm is not used here for the usual purpose of determining the value to which the studied sequence converges, 

but to recognize the randomness or not of a series of numbers.    

 

These numbers may be positive or negative numbers in any order, but must be sorted according to a monotonous 

(strictly) growing series before testing. 

 

The study below focuses on the random nature of a sequence by a binary response : yes or no. We will see the 

disadvantages of the method to get for a finer ranking. 

 

2. Test implementation. 
 

Let us have (x1, x2, …, xn) a series of strictly positive numbers whose random or not nature we wish to characterize. 

 

Let us have : 

T1(xn) = xn-(Δxn)
2
/Δ

2
xn                                          (1) 

where 

Δxn = xn+1-xn et Δ
2
xn = xn+2-2xn+1+xn                 (2) 

 

This writes also 

T1(xn) = (xn+2.xn-xn+1
2
)/(xn+2-2xn+1+xn)                  (3) 

 

This algorithm is applied in the Delta-2 method recursively. Successive results are given in a table that follows : 

 

1 x1 T1(x1) T2(x1) … Tm(x1) 

… … … … …  

n-4 xn-4 T1(xn-4) T2(xn-4) …  

n-3 xn-3 T1(xn-3) T2(xn-3)   

n-2 xn-2 T1(xn-2) T2(xn-2)   

n-1 xn-1 T1(xn-1)    

n xn T1(xn)    

n+1 xn+1     

n+2 xn+2     

 

Usually, for a converging sequence (x1, x2, …, xn), there is an acceleration of convergence of the series (T(x1), T2(x1), 

…, Tm(x1)). It is even possible by this method to find converging sequences derived from divergent series.  

 

The exploitation of the table is done here by comparing the series (x1, x2, …, xn) to the series (T(x1), T2(x1), …, Tm(x1)). 
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1 x1 T1(x1) 

2 x2 T2(x1) 

… … … 

m xm Tm(x1) 

… …  

n = 2m+1 xn  

 

As the table shows, the algorithm provides m values for the n = 2m+1initial values. The cardinal of the initial series is 

double of the final sequence. The comparison is therefore made on the first half of the initial series.   

 

The series (x1, x2, …, xi, …, xm) and (T(x1), T2(x1), …, Ti(x1), …, Tm(x1)) define two trajectories written as Traj(i, xi) and 

Traj(i, Ti(x1)). Subsequently, we will simplify the writing of a trajectory Traj(i, wi) by simply writing it Traj(wi). 

 

Definition 1.  

 

The list or series (yi) is random under Delta-2 test if only if the Traj(xi) and Traj(Ti(x1)) trajectories are nearly adjacent 

for most of the definition domain, (xi) being the ordered increasing series of (yi). 

 

Remark. 

 

The author understands the vagueness of the notion of neighbourhood here. The reader will refer to the examples to 

remove this ambiguity.   

 

In these examples, we represented the initial Traj(xi) trajectory in red and the final trajectory Traj(Ti(x1)) in blue. The 

abscissa axis is coordinated by i. 

 

3. Discussion.  
 

3.1. The integers.  

 

Let us have (0, 1, 2, 3, …), the sequence of integers. 

Clearly this sequence is not a random series.  If we submit it to the Delta-2 algorithm, we get T1(xn) = (xn+2.xn-

xn+1
2
)/(xn+2-2xn+1+xn) = ((n+2).n-(n+1)

2
)/(n+2-2(n+1)+n) = -1/0. Thus the trajectory of the result of the algorithm does 

not at all then overlap with the initial trajectory, since not defined.   

Hence the series of the integers is indeed a non-random sequence under Delta-2 testing. 

 

However, our answer is a little premature precisely because the image trajectory is not defined. So let us rather consider 

(0
2
, 1

2
, 2

2
, 3

2
, …) the series of squares of the integers. If the series of integers is not random, this second sequences 

should not be neither. Graph 1 gives a comparison of the initial and final trajectories in this case. The final trajectory 

consists of two branches, one overlapping and the other being symmetrical to the abscissa axis. 

 

However, according to our definition for the classification of a list (definition 1), the final data must in general nearly 

overlap the initial trajectory in order to identify it with a random sequence, which is clearly not observed here half of the 

time. 

 

Graph 1 

 

None-

random 

series 

ni
2
 

n1 = 0 to n400 = 399 
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For the fussy reader, we move on to the series (0
3
, 1

3
, 2

3
, 3

3
, …) where the ambiguity is definitively discarded (see graph 

2). 

 

Graph 2 

 

Non-

random 

series 

ni
3
 

n1 = 0 to n400 = 399 

 
 

3.2. The prime numbers.  

 

Let us have now (p1, p2, …, pn) the series of n
th

 first numbers prime numbers.  

Is this sequence random ?   

If we submit it to the Delta-2 algorithm, we get T1(pi) = (pi+2.pi-pi+1
2
)/(pi+2-2pi+1+pi). Here, the outcome pi+2-2pi+1+pi = 0 

occurs for a very large number of pi values. (for examples 3, 47, 151, 167, 199, 251, 257, 367, 557, 587, 601, ...). We are 

facing with the same problem of ambiguity as with the series of natural integers. We treat this point in the same way as 

before by squaring terms. The initial and final trajectories are given by graph 3. The ambiguity is removed in the same 

way as before and the conclusion this time is that the series of the prime numbers is random under Delta-2 testing. 

 

Graph 3 

 

Random 

series 

pi
2
 

p1 = 2 to p400 = 2741 
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Graph 4 

 

Random 

series 

pi
2
 

p1 = 2 to p400 = 2741 

 

Zoom on zone  

 i = 1 to 80 

 
 

The reader will have noticed, however, an area of disturbances at i = 54 (p54 = 251, p55 = 257, p56 = 263, p57 = 269). The 

same phenomenon is repeated, for example, at i = 271 (p271 = 1741, p272 = 1747, p273 = 1753, p274 = 1759) , i = 464 (p464 

= 3301, p465 = 3307, p466 = 3313, p467 = 3317), i = 682 (p682 = 5101, p683 = 510, p684 = 5113, p685 = 5119) and i = 709 

(p709 = 5381, p710 = 5387, p711 = 5393, p712 = 5399). 

 

This is the outcome of pi+2-2pi+1+pi = 0 repeated at i and i+1. The origin is the presence of constellations (p, p+6, p+12, 

p+18). Constellations of this type are also present at i = 3 (5, 11, 17, 23), i = 5 (11, 17, 23, 29), i = 13 (41, 47, 53, 59) 

and i = 18 (61, 67, 73, 79), but in these cases there are one or more additional prime numbers within each constellation 

(that is (7, 13, 19), (13, 19), 43 and 71) which avoids the phenomenon. 

 

Recovery to the vicinity of the initial trajectory is more or less rapid depending on the case. 

 

Graph 5 

 

Random 

series 

pi
2
 

p1 = 2 to p1450 = 12109 

 
 

3.3. The polynomial function.  

 

Monomials, integer-degrees polynomials and real-degree polynomials transmit the nature of the series of integers (see 

graphs 6 and 8) and prime numbers (see graphs 7 and 9). 

 

This seems a general result in the sense that initially taking in a function f to be tested ni or P (ni) is equivalent (same 

conclusion for f(ni) and f(P(ni))) and similarly for pi or P(pi), the only difference is sometimes the ambiguity resulting 

from the use f(ni) which does not appear with f(P(ni)).   

 

The "polynomial" function therefore has a significant practical aspect. 
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Example 1 

 

Graph 6 

 

None-

random 

series 

√ni 

n1 = 2 

 
 

Graph 7 

 

Random 

series 

√pi 

p1 = 2 

 
 

Example 2 

 

Graph 8 

 

None-

random 

series 

ni
7/3

-6.ni
3/2

+7.ni
1/4

 

n1 = 0 to n450 = 450 
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Graph 9 

 

Random 

series 

pi
7/3

-6.pi
3/2

+7.pi
1/4

 

p1 = 2 to p400 = 2741 

 
 

3.4. Pseudo-random number generators.  

 

Here we chose an example based on a Fibonacci series. Number yn is obtained by adding yn-1 and yn-2 modulo 19, with 

the initial y1 and y2 values being close to exp(1) and  π. We produce from there, the series yi up to y500. The list includes 

y3 = 5,859874482, y4 = 9,001467136, y5 = 14,86134162, y6 = 4,862808753, y7 = 0,724150371, and so on. 

The list is then sorted by increasing numbers x1 = 0,004659205, x2 = 0,039129397, x3 = 0,068068362, x4 = 0,103515556, 

x5 = 0,350805214, x6 = 0,381762519, …, x500 = 18,93342327. 

 

The test is applied to the series (xi) in order to evaluate the (yi).  

The trajectories overlap approximately, which means that the sequence is random under Delta-2 testing. 

 

Graph 10 

 

Random 

series 

yn = mod(yn-1+yn-2, 19), 

y1 = e, y2 = π,  

ymax = y500, 

and 

Sorting of yn 

 
 

Again, we observe local "abnormal" fluctuations. The origin of the phenomenon is very close to the reason given above, 

namely this time it comes either from the incidence xn+2-2xn+1+xn ≈ 0, or more generally from T Ti(xn+2)-2Ti(xn+1)+Ti(xn) 

≈ 0, since the effect can manifest itself at any stage of the evaluation. 

 

3.5. The logarithmic and exponential functions.  

 

The observation of graph 11 shows that Ln(n), n = 1, 2, 3, 4... is not a random sequence under Delta-2 testing. The 

function has the same behaviour as monomials, integer or real degrees polynomials have on the series of integers (see 

graph 8). 

We expect in this case that this function will keep the random series property applied to the prime numbers, which is 

indeed the case. (see graph 12). 
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Graph 11 

 

None-

random 

series 

Ln(ni) 

n0 = 1 

 
 

Graph 12 

 

Random 

series 

Ln(pi) 

p0 = 2 

 
 

Note that the effect of constellations (such as p54 = 251, p55 = 257, p56 = 263, p57 = 269 at i = 54) remains quite obvious 

here. Thus, it crosses the exponential function, reciprocal function of the logarithm, in the same way as we show 

underneath.   

 

The application to the exponential function of ni
a
 with a = 1 (degree 1) raises the same disadvantages and disturbances as 

those already expressed. This is solved by taking a ≠ 1 (here a = 1/4). 

 

Graph 13 

 

None-

random 

series 

Exp(ni
1/4

) 

n1 = 0 to n1000 = 999 
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Graph 14 

 

Random 

series 

Exp(pi
1/4

) 

p1 = 2 to p1000 = 7919 

 
 

3.6. The trigonometric functions.  

 

The choice of using a periodic function to obtain random numbers is not, a priori, a very wise decision. If this approach 

is retained, however, it is obvious that some choices have trivial non-random results. For example, the list sin(n.π), with 

n integers, is not systematically zero. Similarly, sin(n.π/100) becomes a very bad choice for a number of increments 

greater than 100. Even when the value of π is taken very coarsely, the incidence of xn+2-2xn+1+xn ≈ 0 soon manifests 

itself, creating large ambiguities here and there. 

 

Below are some results for the Sine function. By applying it to integers, we get an initial random series behaviour (graph 

15), then the list becomes non-random (graphs 16 and 17), then becomes random again (graph 18). With the choice of 

prime numbers, the "random series" message is much more consistent (general aspect of graph 19 with more or less 

deviations or anomalies). 

 

Graph 15 

 

Random 

series 

Sin(ni) 

n1 = 0 à n100 = 99 

et 

Tri croissant des 

Sin(ni) 

 
 



p 10/14                                                    

Graph 16 

 

None-

random 

series 

Sin(ni) 

n1 = 0 to n170 = 169 

and 

Sorting of Sin(ni) 

 
 

Graph 17 

 

None-

random 

series 

Sin(ni) 

n1 = 0 to n200 = 199 

and 

Sorting of Sin(ni) 

 
 

Graph 18 

 

Random 

series 

Sin(ni) 

n1 = 0 to n400 = 399 

and 

Sorting of Sin(ni) 
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Graph 19 

 

Random 

series 

Sin(pi) 

p1 = 2 to p400 = 2741 

and 

Sorting of Sin(ni) 

 
 

The r < ni < s areas where the Cosine(ni) function behaves like a random series are very different from the Sine function 

areas. For example, the series is grossly non-random up to s = 500, then random in the range r = 500 to s = 1000, then 

becomes non-random again (at least up to s = 1500). 

 

Graph 20 

 

Random 

series 

Cos(ni) 

n1 = 0 to n1000 = 999 

and 

Sorting of Cos(ni) 

 
 

The Tangent function applied to integers combine the Sine and Cosine shortcomings.   

 

This discussion is therefore a warning against the value of using these functions as a generator of pseudo-random 

numbers.   

 

The reciprocal functions of periodic trigonometric functions (Arcsine, Arccosine, Inverse Tangent) behave 

unambiguously, reproducing the state of the series to which they are applied. Assuming that the nature of reciprocal 

functions is the same as that of the initial functions, since it is in fact only a permutation of the x and y axis, we obtain a 

definitive answer to the actual nature of the Sine, Cosine and Tangent functions. 

 



p 12/14                                                    

Graph 21 

 

None-

random 

series 

Arcsin(ni/1000) 

n1 = 0 to n1000 = 999 

 
 

Graph 22 

 

Random 

series 

Arcsin(pi/7919) 

p1 = 2 to p1000 = 7919 

 
 

3.7. The zeroes of the Riemann Zeta function.  

 

The Riemann Zeta function zeroes are indeed random numbers under Delta-2 testing. 

 

Graph 23 

 

Random 

series 

ξ(xi) = 0 

x1 = 14,134725142  

to 

x1000 = 

1419,422480946 

 

[4] 
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4. Disadvantage of the method.  
 

The main drawback described repeatedly in the examples, namely the repeated outcome xn+2-2xn+1+xn ≈ 0, is not really a 

drawback to answering the question " yes or no the list is random? ". But, in order to compare the degree of random 

behaviour between two lists, using for example the values obtained by the standard deviation of the two trajectories of 

the first list and then of the second list, these outcomes are indeed very detrimental. Should they be taken into account or 

excluded from the calculation ? The question is open. 
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5. Appendix 1. 

 

Examples of programming with  :  

 

Example 1 : 

Fibonacci series  : an = Modulo(an-1+an-2, 19), a1 = e, a2 = π 

 

{default(realprecision, 30); \\ to choose 

nb = 500; \\ to choose 

nb = 2*(nb/2\1); 

x = vector(nb,i,0); y = vector(nb/2,i,0); a = vector(nb,i,0); b = vector(nb,i,0); 

x[1] = exp(1); x[2] = Pi;  

for(n = 3, nb, x[n] = (x[n-1]+x[n-2])%19); 

a = vecsort(x);  

print("Initial list"); 

for(i = 1, nb, print(a[i])); 

for(c = 1, nb/2-1,  

for(r = 1, nb-2*c,  

den = a[r+2]-2*a[r+1]+a[r];  

num = a[r+2]*a[r]-a[r+1]*a[r+1]; 

if(den == 0, b[r] = 0.0, b[r] = num/den));  

y[c+1] = b[1]; 

a = b); 

print("Final list"); 

for(i = 1, nb/2, print(y[i]))} 

 

 

Example 2 : 

Sine function applied to a prime numbers list. 

 

{nb = 1000; \\ to choose 

nb = 2*(nb/2\1); 

x = vector(nb,i,0); y = vector(nb/2,i,0); a = vector(nb,i,0); b = vector(nb,i,0); 

for(n = 1, nb, x[n] = sin(primes(nb)[n])); 

a = vecsort(x);  

print("Initial list"); 

for(i = 1, nb, print(a[i])); 

for(c = 1, nb/2-1,  

for(r = 1, nb-2*c,  

den = a[r+2]-2*a[r+1]+a[r];  

num = a[r+2]*a[r]-a[r+1]*a[r+1]; 

if(den == 0, b[r] =0, b[r] = num/den));  

y[c+1] = b[1]; 

a = b); 

print("Final list"); 

for(i = 1, nb/2, print(y[i]))} 

 


