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Number Theory / Théorie des nombres  

 

 

Argument for a twin primes theorem. 

Landscapes, panoramas and horizons of the Eratosthenes sieve. 
 

 

Hubert Schaetzel 
 

 

Abstract  We explore three ways on the twin primes problem. We start with the intermediate sets produced by 

Eratosthenes sieve implementation. Properties related to the proportions of integers eliminated during 

process on one hand and the distances generated between integers on the other hand allow twice deducing 

the infinity of prime numbers and twin prime numbers. In the former case, the analysis of the proportions 

also allows getting an asymptotic evaluation similar to Hardy-Littlewood formula, but without fully valid 

proof. In the latter case, the analysis of the spacings between remaining integers yields a replica of 

Bertrand’s postulate with approximate 2pi spacing and the asymptotic evaluation of the maximum of the 

distances between pairs of numbers (of spacing 2), which is ranging around ∑i 2pk, enables to conclude to 

the divergence of twin prime numbers below abscissa pi
2
. Finally, an alternative method, that is readily 

generalizable to many Diophantine equations, is proposed as an invitation to new studies. Again, we infer 

the Euler product suggested by Hardy-Littlewood. 
 

 

 

 

 Argumentaire pour un théorème des nombres premiers jumeaux.  

 Crible d’Eratosthène. Crible du pgcd. 
 

Résumé  Nous étudions trois approches au problème des premiers jumeaux. Nous commençons par les ensembles 

intermédiaires produits par l’exécution du crible d’Eratosthène. Les propriétés liées aux proportions de 

nombres entiers éliminés d’une part et aux espacements générés entre nombres entiers d’autre part 

permettent par deux fois de déduire l’infinité des nombres premiers, puis des nombres premiers jumeaux. 

Dans le premier cas, l’analyse des proportions permet également d’obtenir une évaluation asymptotique 

identique à la formule d’Hardy-Littlewood, mais sans pleine et entière démonstration. Dans le second cas, 

l’analyse des espacements entre nombres restants permet d’obtenir une réplique du Postulat de Bertrand 

avec un espacement de l’ordre de 2pi et l’évaluation asymptotique du maximum de la distance entre paires 

de nombres (d’écart 2), évaluation qui est équivalente à ∑i 2pk, permet de conclure à la divergence du 

cardinal des nombres premiers jumeaux en dessous de l’abscisse pi
2
. Enfin, une méthode alternative 

aisément généralisable à de nombreuses équations diophantines est proposée en guise d’invitation à d’autres 

études. Nous en déduisons à nouveau le produit d’Euler suggéré par Hardy-Littlewood. 
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Paradox 

see [1] 

- no prime number is even except one  

- no prime number is even except two 
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1. Preamble. 
 

Rarefaction of pairs of primes distant of a given value 2n is a simple process based on Eratosthenes sieve. We will 

establish our theorems thanks to arithmetical laws governing integers’ depletions within natural numbers set N while 

implementing the said algorithm.  

The article below has certainly nothing complicated for specialists of this topic.   
 

To give more clarity and strength to the argument, we will apply it initially to the enumeration of the prime numbers, i.e. 

we will attempt to retrieve the prime number theorem (PNT). 
 

Passing from the prime numbers’ case to the twin prime numbers will simply consist of replacing a given law of scarcity 

(pi-1)/pi by another (pi-2)/pi, pi being the i
th

 odd prime number. Although the Hardy-Littlewood formula is deduced, no 

proof is given (nor for the PNT). Only, the infinitely of twin prime numbers is deduced (following similar work on prime 

numbers). 
 

We downgrade and overrate quantities of solutions in both cases which framing settles asymptotically converging upper 

and lower boundaries (tending towards infinity). 
 

The study is also upgraded after that for our two groups of objects, prime numbers and twin prime numbers, by evaluating 

the distances between elements, the guiding threads being now, more or less, the two expressions 2pi and ∑i 2pk 

respectively.   
 

However, more than the results in the pi to pi² range that allow us to conclude upon the stated problem, we focus attention, 

when running Eratosthenes algorithm, on the existence of recursive formulas’ systems to evaluate asymptotically in the pi 

to pi+pi# interval, pi# = 2.3.5.7.11…pi denoting the primorial of pi, the integers’ populations with given spacing Δ = 2j 

(populations of pseudo-primes on the one hand, populations of pseudo-twin primes or relative primes on the other hand), 

knowing less than j/2+1 initial staffs.  

(The terms “pseudo” and “spacing” will be defined very soon in the present article). 
 

Thus, the interest of this article has also become over the course of the different versions, this aspect having taken more 

and more importance with respect to the initial purpose, facing apparent absence of such a corpus elsewhere, that of an in-

depth study of the Eratosthenes sieve.  

 

The reader would have been disappointed with the lack of challenge if he had already found here all the statements 

demonstrated. On the contrary, and fortunately, he will still be able to exercise all of his insight facing high walls of 

difficulties, especially in order to appropriate himself the said recursive systems. There is a time for discovery and another 

for the domination of a subject.  

 

2. An expeditious demonstration. 
 

For the reader who does not have time, here is an appetizier for his immediate satisfaction. 

 

Proposition 1  
 

There is an infinity of twin prime numbers. 

 

Proof 
 

Let us apply the Eratosthenes algorithm up to step pi. Then, beyond pi, the intervals of size #pi, the primordial of pi, 

contain each ∏ (pi-2) pairs of 2-gap numbers. This answers the question of the existence of pairs (not necessarly primes). 

As the algorithm begins with the removal of the smallest dividers, the first pair is a pair of twin primes (you can challenge 

anyone to find a counter-example). Let us consider pj the largest number of this pair. Let us continue the depletion 

algorithm up to pj. Beyond pj, the intervals of size #pj each contain ∏ (pj-2) pairs of 2-gap numbers, the first of which is a 

pair of twin prime numbers which is different of the first pair. So we get a second coveted pair. The argument applies to 

infinity by recurrence. 

 

3. Terminology. 
 

Gap and spacing : 
 

Notions related to the distance between objects in this study can lead to pernicious confusion.  

Precise terminology is therefore required to avoid it. We will have to manipulate either isolated integers or pairs of 

integers. We will call "gap" the distance within a pair of numbers and we will call "spacing" the distance between the 

studied features which are either isolated numbers or pairs of numbers.  

Thus, for the pair of twin prime numbers (11, 13) considered as one object, the gap is 2, while for the two pairs of integers 

(11, 13) and (15, 17) considered as two objects, the spacing is 4 and the gap is 2. 

 

Writing convention : 
 

The expression « If(a,b,c) » means : If the condition a is true then the expression evaluates to b, otherwise the expression 

evaluates to c. 
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4. Fundamental theorems. 
 

In addition to the PNT, two supplementary results will be useful and are presented below (theorem 1 and generalization of 

the Mertens theorem) to which we add the calculation of an integral. 

 

4.1. Three theorems. 

 

Theorem 1  
 

Let us have r and s two coprime numbers.   

There is then a permutation between the two sequences of numbers (0, 1, 2, ..., s-1) and (0, r, 2r, ..., (s-1).r) modulo s. 

 

Proof 
 

The second series’ step is constant modulo s (and is equal to r modulo s). The integers r and s being coprime, none of the 

integers r up to (s-1).r can be zero modulo s (as they do not include any factor equal to s). Integers (0, r, 2r, ..., (s-1).r) 

modulo s are thus distinct and therefore a permutation of (0, 1, 2, ..., s-1). 

 

Illustration 
 

We will focus, later on, on couples of coprime integers r = 2.3.5.7.11...pi = pi# and s = pi+1, pi+1 being the prime number 

next to pi and we give below some examples : 

 

Table 1 

 

pi  r = 2…pi s = pi+1 2…pi  

mod pi+1 

Sequences 

2 2 3 2 (0, 2, 1) 

3 6 5 1 (0, 1, 2, 3, 4) 

5 30 7 2 (0, 2, 4, 6, 1, 3, 5) 

7 210 11 1 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) 

11 2310 13 9 (0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8, 4) 

 

Theorem 2 (Prime Number Theorem)  
 

According to the PNT, the cardinal π(x) of prime numbers less or equal to x is equivalent, when the real x tends towards 

+∞, to the quotient of x to its neperian logarithm. 

Hence : 

π(x) ~  
x 

,     x → +∞                     (1) 
ln(x) 

 

Theorem 3 (Mertens theorem)  
 

The third Mertens theorem gives the Euler product associated to (1-1/p).   

We have, γ being the Mascheroni constant (≈ 0,5772156649), the following result : 

 

П (1-1/p) ≡ e
-γ

/ln(x)                           (2) 
p ≤ x, x → +∞  

 

The prime number theorem, proved independently by Hadamard and Vallée Poussin, is one of the fundamentals of 

number theory [2]. Mertens theorem relative to the product of Euler of 1-1/p is addressed in [5].  We will use a corollary 

of it that we prove below.  
 

Other useful results are sufficiently known not to be included in the list of the above theorems :  

- convergence conditions of Пp  (1-1/p
s
) and Пp (1-1/p

s
+c/p

s’>s
),  

- ratio i.ln(pi)/pi tending towards 1 as i increases (from the prime number theorem). 

- … 
 

Subsequently, we will use either the sign #(E) or π(E) to refer to the cardinal of a set (E) 

 

4.2. Generalization of Mertens theorem.  

 

Corollary  
 

Let us have a > 1 an integer, then : 

 

П (1-a/p) ≡ ca.e
-aγ

/ln
a
(x), ca a constant > 0                (3) 

a < p ≤ x, x → +∞  
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The a = 2 case is the one useful to us : 

 

П (1-2/p) ≡ c2.e
-2γ

/ln
2
(x), c2 > 0                              (4) 

2 < p ≤ x, x → +∞  

 

Proof  
 

Let us have a positive integer a. Let us have p an element of the set of prime numbers P, set that we divide in two parts 

(the first one possibly void) : p ≤ a and p > a.  

 

We get, using the Newton binomial formula, ci being integers : 

 

(1-1/p)
a
 = 1+c1/p+c2/p

2
+…+ca/p

a
 

Of course, we have   

c1 = -a 

Let us write  

ma = П (1-1/p)  

 p ≤ a  

Here, ma = 1 if the set p ≤ a is void. 

Then, using Mertens theorem : 
 

П (1-1/p) ≡ e
-γ

/ln(x)        (5) 
p ≤ x, x → +∞  

we get : 

  

e
-aγ

/ln
a
(x) ≡  П (1-1/p)

a 
. П (1-1/p)

a
   = ma

a
.  П (1-a/p+c2/p

2
+…+ca/p

a
)           (6) 

 p ≤ a 

 
a < p ≤ x,  

x → ∞ 
 

a < p ≤ x,  

x → ∞ 

 

Let us write then for a ≠ p (that is for a < p) 

 

1-a/p+c2/p
2
+…+ca/p

a
 = (1-a/p).(1+(c2/p

2
+…+ca/p

a
)/(1-a/p)) 

 

Hence, using the second and third terms of relation (6) 

 

П (1-a/p) . П(1+(c2/p
2
+…+ca/p

a
)/(1-a/p)) ≡ ma

-a
.e

-aγ
/ln

a
(x) 

a < p ≤ x, x → ∞ a < p ≤ x, x → ∞ 
 

Let us have s a real number. It is well known that ∑n 1/n
s
 converge towards a non-null constant (strictly greater than 1) 

when s > 1. It is the same with Пp (1-1/p
s
) as ζ(s) = ∑n 1/n

s
 = Пp (1-1/p

s
)

-1
 for Re(s) > 1.  

 

We have, for 1 < a < p, the Taylor series expansion 1/(1-a/p) = 1+a/p+m2/p
2
+m3/p

3
… 

Then (c2/p
2
+…+ca/p

a
)/(1-a/p) = (c2/p

2
+…+ca/p

a
).(1+a/p+m2/p

2
+m3/p

3
…) = c2/p

2
+r2/p

3
 + higher order terms… 

Thus, Пp→∞ (1+(c2/p
2
+…+ca/p

a
)/(1-a/p)) ≡ Пp→∞ (1+c2/p

2
+r2/p

3
+…) and this last product converge as 1-1/p

2-ε
 < 

1+c2/p
2
+r2/p

3
+… < 1+1/p

1-ε
 for any coefficients c2, r2,… when p is large enough and with 0 < ε an infinitesimal.  

The product is thus a non-null constant. We multiply the inverse of this constant by ma
-a

 and note the new constant ca (ca 

> 0). 

Thus : 

П (1-a/p) ≡ ca.e
-aγ

/ln
a
(x)       

                  (7) 
a < p ≤ x, x → ∞  

 

Let us note that this result remains valid for a non-integer a, but this result is not useful here. 

 

4.3. Logarithm weighted sums. 

 

We focus here on the asymptotic value of the prime number sum Σ pi
n
/ln

m
(pi) (n≥0, m≠0).  

We use π (x) → x/ln (x), when x → + ∞ written as : 

 

π(x) = (1+o(1)).x/ln(x)                                        (8) 

 

The π(x) expression is a step function. Its derivative is 1 at the x =  pi abscissas, 0 otherwise. 

Thus : 

                       y   

  ∫ (π(t))’.v(t).dt =  Σ v(pi)                                        (9) 

                      2  pi ≤ y 

 

Partial derivation gives : 
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                       y  y    

  ∫ u’(t).v(t).dt = u(y).v(y) -  ∫ u(t).v’(t).dt                 (10)  

                      2  2    

 

Let us have u(t) = π(t) and v(t) = t
n
/ln

m
(t).  

Then : 

v’(t) = t
n-1

.(n-m/ln(t))/ln
m
(t)                             (11) 

 

and thus asymptotically : 

 

v’(t) = (1+o(1)).n.t
n-1

/ln
m
(t)                               (12) 

 

hence asymptotically : 

v/v’(t) = (1+o(1)).t/n                                        (13) 

 

So, asymptotically, derivation consists in multiplication by n/t and therefore integration consists in multiplication by t/n if 

n ≠ 0.  

Then : 

                        y 

Σ pi
n
/ln

m
(pi)  = π(y).y

n
/ln

m
(y) -  ∫ π(t).t

n-1
.(n-m/ln(t))/ln

m
(t).dt 

pi ≤ y                       2 

Thus : 

                        y 

Σ pi
n
/ln

m
(pi)  = (1+o(1)).y/ln(y).y

n
/ln

m
(y) -  ∫ (1+o(1)).t/ln(t).t

n-1
.n.(1+o(1))/ln

m
(t).dt 

pi ≤ y                       2 

and : 

                        y 

Σ pi
n
/ln

m
(pi)  = (1+o(1)).(y

n+1
/ln

m+1
(y) -n.  ∫ t

n
/ln

m+1
(t).dt ) 

pi ≤ y                       2 

 

Yet the integration is “porous” asymptotically to the logarithm as we have seen by relationship (13), so that ∫t
n
/ln

m+1
(t).dt 

≈ 1/ln
m+1

(y).∫ t
n
.dt.  

Then :  

Σ pi
n
/ln

m
(pi)  = (1+o(1)).y

n+1
/ln

m+1
 (y).(1-n/(n+1)).                           (14) 

pi ≤ y                        

 

Finally : 

Σ pi
n
/ln

m
 (pi)  = (1+o(1)).(1/(n+1)).y

n+1
/ln

m+1
(y)                                (15) 

pi ≤ y                        

 

and : 

 

Lim 

y → +∞ 

Σ pi
n
/ln

m
(pi)   

 

 =1/(n+1)                                               (16) 

 
pi ≤ y                      

y
n+1

/ln
m+1

(y)                       

 

This relationship shows easily true numerically (for n positive or zero) and converges much faster as n increases.  

Later on, we will need the derived relationships : 

 
 

Σ 1/ln(pi)  → y/ln²(y)                                                                     (17) 

pi ≤ y                        

 

Σ pi/ln(pi)  → (1/2).y²/ln²(y)                                                        (18) 

pi ≤ y                        

 

Σ 1/ln²(pi)  → y/ln
3
(y)                                                                  (19) 

pi ≤ y                        

 

5. Eratosthenes sieve.  
 

5.1. Depletion algorithm. 

 

This sieve of antique origin is described again. It is simply to phase out multiples of prime numbers starting with the 

smallest one.  

So we get numbers without small divisors. To describe them, we adopt the following term. 
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Definition 1  
 

The integers remaining after removal of the multiples of pi are called of Eratosthenes numbers of rank i, in shortcut 

Eras_pseudo_prime(i) and give an infinite list of numbers Eras(i). As a shortcut, we will also use the term pseudo-primes 

without specifying the rank i. The "s" of Eras(i) comes from "starting" list or list of cycle 1. 

 

We also chose to write p0 = 2, p1 = 3, etc.   

 

The process is carried out here between 2 and the integer N. So we have initially N-1 integers. We take off the multiples 

of 2 : 
 

Table 2 

 

Step 0 : Era(0) list – Retrieval of multiples of 2 (except 2) 

 

E
n

tr
y
 

C
y
cl

e 
1
 

C
y
cl

e 
2
 

C
y
cl

e 
3
 

C
y
cl

e 
4
 

C
y
cl

e 
5
 

C
y
cl

e 
6
 

C
y
cl

e 
7
 

C
y
cl

e 
8
 

C
y
cl

e 
9
 

C
y
cl

e 
1
0
 

C
y
cl

e 
1
1
 

C
y
cl

e 
1
2
 

C
y
cl

e 
1
3
 

C
y
cl

e 
1
4
 

C
y
cl

e 
1
5
 

C
y
cl

e 
1
6
 

C
y
cl

e 
1
7
 

C
y
cl

e 
1
8
 

C
y
cl

e 
1
9
 

C
y
cl

e 
2
0
 

C
y
cl

e 
2
1
 

C
y
cl

e 
2
2
 

C
y
cl

e 
2
3
 

C
y
cl

e 
2
4
 

C
y
cl

e 
2
5
 

C
y
cl

e 
2
6
 

C
y
cl

e 
2
7
 

C
y
cl

e 
2
8
 

C
y
cl

e 
2
9
 

C
y
cl

e 
3
0
 

C
y
cl

e 
3
1
 

C
y
cl

e 
3
2
 

C
y
cl

e 
3
3
 

C
y
cl

e 
3
4
 

2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 

 

In a cycle, as stated in the table above, of length 2, is missing 1 element (#A0 = 1) compared to the previous step (that is, 

the even number), hence proportion #RE0 = 1/2 of integers. 

 

Step 1 : Era(1) list – Retrieval of multiples of 3 (except 3) 

 

E
n

tr
y
 

C
y
cl

e 
1
 

C
y
cl

e 
2
 

C
y
cl

e 
3
 

C
y
cl

e 
4
 

C
y
cl

e 
5
 

C
y
cl

e 
6
 

C
y
cl

e 
7
 

C
y
cl

e 
8
 

C
y
cl

e 
9
 

C
y
cl

e 
1
0
 

C
y
cl

e 
1
1
 

2 3 5 7 
 

11 13 
 

17 19 
 

23 25 
 

29 31 
 

35 37 
 

41 43 
 

47 49 
 

53 55 
 

59 61 
 

65 67  

 

In a cycle of length 2*3, is missing 1 element (#A1 = 1) compared to the previous step, hence #RE1 = (2-1)/(2.3) = 1/6 of 

integers.  

 

Step 2 : Era(2) list – Retrieval of multiples of 5 (except 5) 

 

Entry Cycle 1 Cycle 2 … 

2 3 5 7 
 

11 13 
 

17 19 
 

23 
  

29 31 
  

37 
 

41 43 
 

47 49 
 

53 
  

59 61 
  

67  

 

Cycle 3 Cycle 4 Cycle 5 

71 73 
 

77 79 
 

83 
  

89 91 
  

97 
 

101 103 
 

107 109 
 

113 
  

119 121 
  

127 
 

131 133 
 

137 139 

 

 Cycle 6 Cycle 7 

 
143 

  
149 151 

  
157 

 
161 163 

 
167 169 

 
173 

  
179 181 

  
187  191 193 

 
197 199 

 
203 

  
209 

 

 Cycle 8 Cycle 9  

211 
  

217 
 

221 223 
 

227 229 
 

233 
  

239 241   247  251 253  257 259  263   269 271   277  

 

In a cycle of length 2*3*5, is missing 2 elements (25 and 35 in the first cycle, #A2 = 2) compared to the previous step, 

hence #RE2 = (2-1).(3-1)/(2.3.5) = 1/15 of integers.  

 

Step  3 : Era(3) list – Retrieval of multiples of 7 (except 7) 

 

Entry Cycle 1 

2 3 5 7 
 

11 13 
 

17 19 
 

23 
  

29 31 
  

37 
 

41 43 
 

47   53 
  

59 61 
  

67  

 

Cycle 1 

71 73 
  

79 
 

83 
  

89 
   

97 
 

101 103 
 

107 109 
 

113 
  

 121 
  

127 
 

131 
  

137 139 

 

Cycle 1 

 
143 

  
149 151 

  
157 

  
163 

 
167 169 

 
173 

  
179 181 

  
187  191 193 

 
197 199 

    
209 
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Cycle 1 Cycle 2 

211 
    

221 223 
 

227 229 
 

233 
  

239 241   247  251 253  257   263   269 271   277  

 

In a cycle of length 2*3*5*7, is missing 8 elements (49, 77, 91, 119, 133, 161, 203 and 217 in the first cycle, #A3 = 8) 

compared to the previous step, hence #RE3 = (2-1).(3-1).(5-1)/(2.3.5.7) = 4/105 of integers. 

 

We observe a "rho" type process : we have a first part of numbers, we will call the "entry" part, which has a non-repetitive 

structure and parts that we call "cycles" with repetitive patterns. The amplitudes of these patterns are equal to 2.3.5…pi, pi 

being the last prime number whose multiples were removed (the number pi being kept). Thus the numbers of the cycle 

n+1 are those of the cycle n by adding 2.3.5…pi.   

Cycle 1 starts at pi+2 (except at step 0, where one must choose pi+1 = 3). 

 

We evaluate now disappearing quantities at each step. 

At step 0, we have #A0 = 1 erasing. At step 1, #A1 = 1.  

 

Theorem 4  
 

The number of erasures #Ai+1 and the proportion of depletion #REi+1 in a cycle at step i+1 are given recursively to 

cardinals in a cycle at stage i (p0 = 2): 
 

  i 

#Ai+1 = #Ai.(pi-1) = ∏ (pk-1)                                        (20) 

 k = 0 

and 

  i 

#REi+1 = #REi.(pi-1)/pi+1 = (1/pi+1). ∏ ((pk-1)/pk)         (21) 

 k = 0 

where #A0 = 1. 

 

Proof  
 

Let us get this proof choosing a representative example. A cycle 1 at step i+1 is built from a cycle 1 at step i by 2.3.5…pi 

add-ons. Thus : 

Table 3 

 

7  37 67 97 127 157 187 217  217 = 7.31 

11  41 71 101 131 161 191 221  49 = 7.7 

13  43 73 103 133 163 193 223  133 = 7.19 

17 => 47 77 107 137 167 197 227  77 = 7.11 

19  49 79 109 139 169 199 229  49 = 7.7 

23  53 83 113 143 173 203 233  203 = 7.29 

31  61 91 121 151 181 211 241  91 = 7.13 

 

As 2…pi mod pi+1 is a non-null integer coprime to pi+1 (here 2.3.5 mod 7 = 2), each previous line contains, according to 

theorem 1, only one single number 0 modulo pi+1 (the one who disappears) and so 1 among pi+1 numbers (here the 

proportion of 1 among 7). We illustrate this by restoring the above table modulo pi+1 (pi+1 = 7) : 

 

7  2 4 6 1 3 5 0  7 = 0 mod 7 

11  6 1 3 5 0 2 4  11 = 4 mod 7 

13  1 3 5 0 2 4 6  13 = 6 mod 7 

17 => 5 0 2 4 6 1 3  17 = 3 mod 7 

19  0 2 4 6 1 3 5  19 = 5 mod 7 

23  4 6 1 3 5 0 2  23 = 2 mod 7 

31  5 0 2 4 6 1 3  31 = 3 mod 7 

 

Hence the result. 

 

Theorem 5  
 

Let us consider the integers’ set 1 up to N. 

Let us state : 
 

                    +∞ 

πs(c,N) = M –(1/c) Σ #REk.MCk                                                     (22) 

  k = 0 

 

M = N-1 (23) 
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M0 = N-(2+1)+1 = N-2 (24) 

Mk = N-(pk+2)+1 = N-pk-1     k ≥ 1 (25) 

MCk = if(Mk < 0, 0, Mk) (26) 

and 

#RE0 = 1/2                                                                                       (27) 
 

                 i                        i-1 

#REi =#Ai.∏(1/pk) = (1/pi).∏(pk-1/pk)       i ≥ 1                              (28) 

               k = 0                   k = 0 

 

Then, the cardinal of prime numbers is minored at abscissa pi, starting at some rank i (which can be i = 1), by: 

 

πs(c = 1,N)             (29) 

 

Proof  
 

It is the simple transcription of the erasing by the sieve of Eratosthenes using depletion ratios.  

The cardinal’s diminution in the cycles at step i+1 is regulated by theorem 4.  

These withdrawals begin in the first cycle never before pi+2 except for stage 0 (in pi+1 = 2+1 = 3). This therefore causes 

an excess on population enumeration when counting is anticipated to this boundary.  

Moreover, as one cannot subtract to a set elements that are not within it, when Mi becomes negative, this term and all 

those who follow are null (thus relation 26). 

Hence the result. 

 

We give below the value of c which enables matching the prime numbers’ cardinal giving approached numerical 

computation. We expect that this value tends to 1. This is what is effectively observed when a calculation is done near the 

origin as shown in the graph below : 

 

Graph 1 

 

 
 

To mark-up the cardinal, the following alternative choice, where the boundary is taken near pi
2
 instead of pi, 

 

MC0 = if(N-4 < 0, 0, N-4)                                (30) 

MCi = if(N-pi
2
-1 < 0, 0, N-pi

2
-1)                       (31) 

 

shows a faster convergence (above). 

 

Theorem 6  
 

Let us have using the same features : 

 

                    +∞ 

πs(1, +∞) = lim         M - Σ #REk.MCk                (32) 

 N → +∞      k = 0 

 

Then, the choice of the abscissa indexed by pi gives a reduction (minoration) of the prime numbers cardinal and indexing 

by pi² will give a mark-up (majoration). 

 

Proof  
 

For pi, it is immediate as multiples of pi are after pi.  

For pi², it is because of the (a priori) existence of prime numbers between pi and pi². These numbers not being withdrawn 

from the cardinal during subtractions the calculation gives an excess of numbers taken into account. 
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Moreover, as prime numbers have a density 0 in N, we have the relationship: 

 

+∞ 

Σ #REi = 1/2+1/6+1/15+4/105+8/385+… = 1      (33) 

i = 0 

 

We call #REi the depletion coefficients of the Eratosthenes Sieve (ES) and will give the proof of equality to 1 further on. 

In the meantime, we illustrate this point by the graph below : 

 

Graph 2 

 

 
 

Theorem 7  
 

The cardinal of the prime numbers, inferior to x, diverges. 

 

Proof  
 

Let us go back to relation 33 and do our calculations ignoring the unit amount and write instead : 

 

+∞ 

Σ #REi. = 1-ε         (34) 

i = 0 

 

As we cannot subtract to a set only elements it contains, we have necessarily in the previous relationship ε ≥ 0.  

Then we get using the relationship 32 : 

 

                         +∞ +∞ 

πs(1, +∞) = lim      (ε + Σ#REi).M - Σ#REi.Mi                        (35) 

 N → +∞          i = 0 i = 0 

So that : 

  +∞ 

πs(1, +∞) = lim      ε.M + Σ #REi.(M-Mi)                                (36) 

 N → +∞   i = 0 

Thus : 

  +∞ 

πs(1, +∞) = lim       ε.M+#RE0+ Σ #REi.pi                                  (37) 

 N → +∞          i = 1 

 

Then developing #REi : 
 

                          +∞ i-1 

πs(1, +∞) = lim     ε.M+#RE0+       Σ ∏(pk-1)/pk                        (38) 

 N → +∞          i = 1   k = 0 

 

Hence : 

πs(1, +∞) = ε.M+1/2+(2-1)/2+(2-1).(3-1)/(2.3)+(2-1).(3-1).(5-1)/(2.3.5)+ 

(2-1).(3-1).(5-1).(7-1)/(2.3.5.7)+  

(2-1).(3-1).(5-1).(7-1).(11-1)/(2.3.5.7.11)+… 

            (39) 

 

According to theorem 3 (Mertens theorem), the previous generic term #REi.pi tends towards e
-γ

/ln(pi) when i tends 

towards infinity. 
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Graph 3 
 

 
 

So that, cte1 and cte2 being strictly positive constants : 

 

                                    +∞   

πs(1, +∞) = ε.M+cte1+cte2. Σe
-γ

/ln(pi)                                     (40) 

                          i = 1  

 

Using relation (16), we have then : 

 

πs(1, +∞) = lim ε.M+cte1+ cte2.e
-γ

.x/ln²(x).                            (41) 

  x → +∞                        

 

The previous sum tending towards infinity, the initial gap between the two above curves is negligible. 

 

The last term contains no (negative) linear component likely to compensate at infinity the linear term ε.M. Yet π(1) 

increases (according to the PNT) like x/ln (x), and therefore contains no linear term, meaning that : 

 

ε = 0                  (42) 

 

Moreover the last term in the previous relation diverges, so cte1 is negligible in front of infinity, thus leaving only the said 

last term (cte = cte2.e
-γ

 > 0) : 
 

πs(1, +∞) = lim cte.x/ln²(x)               (43) 

  x → +∞                       

 

This expression means effectively that the cardinal of prime numbers tends to infinity. 

 

Fundamental note 
 

The final result for πs(1+∞), relationship 39, shows as a sum of fractions less than 1. This comes from the fact that we use 

M-Mi in the intermediate calculation. It is essential to note here that nevertheless we do not handle fractions of units. If it 

were so, our estimate would be false, because we would have to take all these fractions as zeros to form the reduction 

(since a integer shows up in full, not as a part of it, otherwise it may not show in general), which would amount to an 

overall reduction equal to 0. In fact, upon calculations, we handle M on one hand and #REi.Mi (cf. relation 32) on the 

other. The latter are of numbers effectively greater than 1 up to a certain rank (before becoming negative) and are counted 

as such. When the choice of rounding is done, it necessarily leads to an increase in the reduction and we therefore 

preferred to plot the graph with a more pessimistic view by not rounding (i.e. we count all positive #REi.Mi that are 

afterwards subtracted to M).  

Incidentally, rounding integers or not, the results of the calculations vary very little. 

 

Theorem 8  
 

The cardinal of the prime numbers, less than x, diverges as x/ln(x). 

 

Argument 
 

We wrote above a result of Hadamard and De la Valley-Poussin. There is no need to prove it again. 

Now, relationship 43 does not resemble to the PNT. But we will show next why. Appearances are deceiving, because we 

have not yet considered close nature of the x axis. To do this, let us first look at the alternative choice Mi = N-pi
2
-1 (which 

leads, as we have seen above, to a more fast convergence towards the expected value).   

With this choice, knowing that ε = 0, we get: 
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 +∞ 

πc(1, +∞) = 3.#RE0+ Σ #REi.pi
2
                                      (44) 

 i = 1 

 

Then developing #REi : 
 

 +∞    i-1 

πc(1, +∞) = 3.#RE0+ Σ   pi.∏(pk-1)/pk                            (45) 

 i = 1  k = 0 

 

Thus : 

 +∞   

πc(1, +∞) = cte1’+cte2’. Σ e
-γ

.pi/ln(pi)                              (46) 

 i = 1 

 

Then using relation (16), we get : 

 

πc(1, +∞) = lim cte2’.(e
-γ

/2).x²/ln²(x).                                      (47) 

  x → +∞                        

 

The expression is different from πs(1, +∞), but the result is the same, namely a divergence to infinity. 

 

Now let us look at the axis in two expressions πs(1, +∞) and πc(1, +∞). In the first expression, the measurements are 

made with sampling at pi+1-pi ≈ ln(pi) distances. In the second, the distances are now pi+1²-pi² ≈ pi.ln(pi).. We can deduce 

backwards what it would be when index i does guide the calculation.  

To do this, we sketch the following table: 

 

Table 4 

 

Mi (i ≥ 1) Mi = N-pi
2
-1 Mi = N-pi-1 Mi = N-i-1 

(i ≈ pi/ln(pi)) 

Interval between measures  pi.ln(pi) ln(pi) 1 

Ratio1 deduced : pi
2
/(pi.ln(pi)) = pi/ln(pi) pi/ln(pi) pi/ln(pi) 

Corresponding sum Σ cte2’.(e
-γ

/2).pi/ln(pi) Σ e
-γ

/ln(pi) Σ 1 

Limit cte’’.x²/ln²(x) cte’.x/ln²(x) cte.x/ln(x) 

Ratio2 deduced  

(taking x ≡ pi ≡ p) 

p/ln(p)/(p²/ln²(p)) = 

ln(p)/p 

1/ln(p)/(p/ln²(p)) = 

ln(p)/p 

1/(p/ln(p)) =  

ln(p)/p 

 

First, it should be noted that this is a less accurate result than the prime number theorem. The goal is not to demonstrate 

again this theorem (namely the multiplicative constant is equal to 1) but only to establish the consistency of the results 

(i.e. there is effectively a multiplicative constant), which will then entirely meet our ambition here.  

 

Ratios 1 and 2 remain well respectively constants from one column to another.  

So to Mi = N-pi/ln(pi)-1 → N-i-1 matches up the expression : 

 

π(1, +∞) = lim           cte.x/ln(x).                                      (48) 

  x → +∞                        

 

and in the same time (i being the pi index) : 

 

 +∞   

π(1, +∞) = Σ 1                                                                  (49) 

  i                        

 

The penultimate expression is actually the PNT by taking cte = 1, while the last is trivial (which does not reduce in any 

way his great interest here as the result is obvious). 

 

Important note : 
 

We stress here that the expressions (43), (48) and (49) are equivalent: they would give the same result, namely the same 

numerical value if it happened to be finite. Not so here, they give simply by three times the value +∞. Going from one 

expression to the other and aligning the data on the same curve (at least approximately) here amounts to a simple 

elongation (or contraction) of the abscissas. 

 

To conclude here, we came up with the asymptotic evaluation of a set of density 0 within the set of natural integers N by 

subtraction of elements that do not belong to the set. Subtracted quantities are based on a recurrent series #REi, where the 

sum Σ #REi is 1. This has enabled us to confirm the infinity of prime numbers and rediscover meanwhile its expected 



P 13/142                                                    

asymptotic growth in x/ln(x).  

 

Thereafter, for the twin prime numbers enumeration, we will redo an identical construction to state a similar conclusion 

by simply replacing pi-1 by pi-2. The precedent study is also essential in the fact that it has helped to define the nature of 

the x-axis support of the prime numbers count.  

This support axis’ determination will also be indispensable and readdressed for the twin prime numbers count. 

 

Before that, we propose to discover the structure of the spacings between integers generated by the Eratosthenes sieve. 

 

5.2. Landscaping of spacings between pseudo primes. 

 

This paragraph is essential to the preparation of paragraph 6.4. 

Our study is focusing here on an interval of size #pi, the primorial of pi, the aim being to find usable results in the interval 

[pi, pi
2
] in the said paragraph. 

 

5.2.1. Panoramas of populations.  

 

The pseudo-primes are here those of the Eras(i) list remaining when running the Eratosthenes algorithm. 

Thus we briefly analyse spacings in the cycle 1 at step i. This is done in a very different way compared to what we will do 

and see in chapter 6 for twin prime numbers. What we do here, is to list the distances of an element to the previous one 

and this one only.  

We start by counting them for steps 1 up to 9. 

 

Table 5 

 

Steps i 1 2 3 4 5 6 7 8 9 

pi 3 5 7 11 13 17 19 23 29 

Cycle 1  

size 
6 30 210 2310 30030 510510 9699690 223092870 6469693230 

Spacings  

ΔP 
Number of ΔP spacings = #SP(j,i) 

2 1 3 15 135 1485 22275 378675 7952175 214708725 

4 1 3 15 135 1485 22275 378675 7952175 214708725 

6 
 

2 14 142 1690 26630 470630 10169950 280323050 

8 
  

2 28 394 6812 128810 2918020 83120450 

10 
  

2 30 438 7734 148530 3401790 97648950 

12 
   

8 188 4096 90124 2255792 68713708 

14 
   

2 58 1406 33206 871318 27403082 

16 
    

12 432 12372 362376 12199404 

18 
    

8 376 12424 396872 14123368 

20 
    

0 24 1440 61560 2594160 

22 
    

2 78 2622 88614 3324402 

24 
     

20 1136 48868 2100872 

26 
     

2 142 7682 386554 

28       72 5664 324792 

30       20 2164 154220 

32       0 72 10128 

34       2 198 15942 

36        56 7228 

38        2 570 

40        12 1464 

42         272 

44         12 

46         2 

Numbers of 

spacings 

∑j #SP(j,i) 

2 8 48 480 5760 92160 1658880 36495360 1021870080 
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Steps i 1 2 3 4 5 6 7 8 9 

Ratio 

∑j #SP(j,i) / 

∑j #SP(j,i-1) 

 4 6 10 12 16 18 22 28 

Average 

spacings 

Δmean 

3 3,75 4,375 4,8125 5,2135 5,5394 5,8471 6,1129 6,3312 

c = 

Δmean/ln(pi) 

→ e
γ
 

2,7307 2,3300 2,2483 2,0070 2,0326 1,9552 1,9858 1,9496 1,8802 

Δmax/Δmean/i 

→ 2e
-γ

  
1,3333 0,8000 0,7619 0,7273 0,8440 0,7823 0,8307 0,8179 0,8073 

 

By construction, adding the spacings between numbers, we find the overall magnitude of the cycle 1. So 1*2+1*4 = 6, 

3*2+3*4+2*6 = 30, 15*2+15*4+14*6+2*8+2*10 = 210, etc. 

 

Theorem 9  
 

The number of spacings at step i (for column i, j = 1 to j max) is equal to the product of the pk-1, k = 1 to i. 

 

∑j #SP(j,i) = ∏i (pk-1)               (50) 

 

Proof 
 

It is simply a repeat of theorem 4.  

 

The average spacing Δm(i) = ∏i pk/(pk-1) is immediately deduced and tends towards e
γ
.ln(pi) where e

γ
 ≈ 1,781.  

If the maximum spacing is in the order of magnitude of 2pi, the ratio Δmax/Δm tends towards 2e
-γ

.pi/ln(pi), hence 2e
-γ

.i, 

meaning, it is increasing linearly with i (2e
-γ

 ≈ 1,123). 

 

The distances of 2 and 4 generated by the Eratosthenes sieve will be examined in the next chapter. We will see that they 

have actually same cardinal and increase by a pi-2 ratio (table 26 page 44). We get here the same counts as in the next 

chapter due to the fact that these two small spacings, the configurations related to the enumerations are in all points 

identical.  

For other quantities appearing in the table (spacings > 4), their anticipation is more complex and we will remain mainly in 

a conjectural domain of analysis. 

 

Let us address first how quantities do increase when the step is incremented. 

 

Table 6 

 

Steps i 1 2 3 4 5 6 

Supplementary 

prime numbers 
3 5 7 11 13 17 

Cycle 1 size 6 30 210 2310 30030 510510 

Spacings ΔP 
Ratios #RP(j,i) =  

number of spacings at rank i/number of spacings at rank i-1 

2  3 5 9 11 15 

4  3 5 9 11 15 

6 
 

 7 10,14 11,90 15,76 

8 
 

  14 14,07 17,29 

10 
 

  15 14,60 17,66 

12 
 

   23,50 21,79 

14 
 

   29 24,24 

16 
 

    36 

18 
 

    47 

20 
 

    +∞ 

22 
 

    39 

 

Lemma 1  
 

We have (when #RP(j,i) exists) :  

 

#RP(j,i) ≥ pi-2       (51) 

and 
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Lim #RP(j,i) → pi-2       (52) 

i → +∞  

 

Proof 
 

The two points result from the fact that Eratosthenes algorithm generates in the cycle 1 (and the following) gradually 

larger spacings at the level of a same x-coordinate. This creates a gradual saturation of small spaces (starting with the 

smallest one), left spaces that will gradually fit in the "mainstream", i.e. in the base proportion allocated by the depletion 

process when two numbers are taken into account at the same time (and not just one), proportion which is pi-2 as we will 

prove, in chapter 6 (theorem 12). 

 

Lemma 2  
 

The spacings’ cardinals are even, except for the first two of them (corresponding to 2 and 4). 

 

Proof  
 

Indeed, one of the dividers to each of the n1, n2, …, nk constituting the vacant spacing between two numbers is in the set 

{3, 5, …, pi} and similarly so also for 2.3.5…pi-n1, 2.3.5…pi-n2, .., 2.3.5…pi-nk. However n1-2 and nk+2 having no 

divisors throughout {3, 5, …, pi}, it will be the same for 2.3.5…pi-(n1-2) and 2.3.5…pi-(nk+2).  

So spacings come in pairs. 

 

For spacings 2 and 4, the cardinal is odd due to the fact that the elements are centred and self-symmetrical. 

 

5.2.2. Horizons on the iterative enumeration of populations.  

 

Lemma 3  
 

There is a constant cj such that the number of spacings on the j line compared to the total number of spacings at stage i is 

greater than cj/ln(pi). 

#SP(j,i)/∑j #SP(j,i) ≥ cj/ln(pi)               (53) 

 

Proof  
 

Let us note ij the stage i from which on #SP(j,i) begins to exist (becomes different from 0). According to the relationship 

(51), #RP(j,i) ≥ pi-2. From there, according to (50), for i>ij, the progression of the #SP(j,i)/∑j #SP(j,i) ratio is faster than 

that of the product ∏i>ij (pk-2)/(pk-1). So, for all i, we have #SP(j,i)/∑j #SP(j,i) ≥ .∏i<=ij 1/(pk-1).∏i>ij (pk-2)/(pk-1) = cj’.∏i>ij 

(pk-2)/(pk-1) = cj’’.∏i (pk-2)/(pk-1). The latter product tends asymptotically (with i) towards c c/ln(pi) according to Mertens 

theorem generalization (relationship (3)).   

Hence the result. 

 

Conjecture 1  
 

The populations #SP(j,i) are expressed by a system of iterative relations (on some given j line) from a certain rank i on.   

 

Examples 
 

Let us give a few examples before explaining how to get these iterative relationships. 

 

Table 7 

 

j Formulas 

1 
#SP(1,1) = 1 

#SP(1,i) = (pi-2).#SP(1,i-1) 

2 
#SP(2,1) = 1 

#SP(2,i) = (pi-2).#SP(2,i-1) 

3 

x1(2) = 2 

x1(i) = (pi-1-3).x1(i-1) 

#SP(3,1) = 0 

#SP(3,i) = (pi-2).#SP(3,i-1)+x1(i) 

4 

x1(3) = 2 

x1(i) = (pi-2-4).x1(i-1) 

x2(2) = 0 

x2(i) = (pi-1-3).x2(i-1)+x1(i) 

#SP(4,1) = 0 

#SP(4,i) = (pi-2).#SP(4,i-1)+x2(i) 
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j Formulas 

5 

x1(4) = 4 

x1(i) = (pi-2-4).x1(i-1) 

x2(3) = 2 

x2(i) = (pi-1-3).x2(i-1)+x1(i) 

#SP(5,2) = 0 

#SP(5,i) = (pi-2).#SP(5,i-1)+x2(i) 

6 

x1(5) = 12 

x1(i) = (pi-3-5).x1(i-1) 

x2(4) = 8 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(3) = 0 

x3(i) = (pi-1-3).x3(i-1)+x2(i) 

#SP(6,2) = 0 

#SP(6,i) = (pi-2).#SP(6,i-1)+x3(i) 

7 

x1(6) = 36 

x1(i) = (pi-3-5).x1(i-1) 

x2(5) = 20 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(4) = 2 

x3(i) = (pi-1-3).x3(i-1)+x2(i) 

#SP(7,3) = 0 

#SP(7,i) = (pi-2).#SP(7,i-1)+x3(i) 

8 

x1(6) = 24 

x1(i) = (pi-4-6).x1(i-1) 

x2(5) = 12 

x2(i) = (pi-3-5).x2(i-1)+x1(i) 

x3(4) = 0 

x3(i) = (pi-2-4).x3(i-1)+x2(i) 

x4(3) = 0 

x4(i) = (pi-1-3).x4(i-1)+x3(i) 

#SP(8,2) = 0 

#SP(8,i) = (pi-2).#SP(8,i-1)+x4(i) 

9 

x1(7) = 144 

x1(i) = (pi-4-6).x1(i-1) 

x2(6) = 120 

x2(i) = (pi-3-5).x2(i-1)+x1(i) 

x3(5) = 8 

x3(i) = (pi-2-4).x3(i-1)+x2(i) 

x4(4) = 0 

x4(i) = (pi-1-3).x4(i-1)+x3(i) 

#SP(9,3) = 0 

#SP(9,i) = (pi-2).#SP(9,i-1)+x4(i) 

10 

x1(8) = 240 

x1(i) = (pi-5-7).x1(i-1) 

x2(7) = 336 

x2(i) = (pi-4-6).x2(i-1)+x1(i) 

x3(6) = 24 

x3(i) = (pi-3-5).x3(i-1)+x2(i) 

x4(5) = 0 

x4(i) = (pi-2-4).x4(i-1)+x3(i) 

x5(4) = 0 

x5(i) = (pi-1-3).x5(i-1)+x4(i) 

#SP(10,3) = 0 

#SP(10,i) = (pi-2).#SP(10,i-1)+x5(i) 
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j Formulas 

11 

x1(9) = 1152 

x1(i) = (pi-5-7).x1(i-1) 

x2(8) = 1728 

x2(i) = (pi-4-6).x2(i-1)+x1(i) 

x3(7) = 372 

x3(i) = (pi-3-5).x3(i-1)+x2(i) 

x4(6) = 28 

x4(i) = (pi-2-4).x4(i-1)+x3(i) 

x5(5) = 2 

x5(i) = (pi-1-3).x5(i-1)+x4(i) 

#SP(11,4) = 0 

#SP(11,i) = (pi-2).#SP(11,i-1)+x5(i) 

12 

x1(9) = 2880 

x1(i) = (pi-6-8).x1(i-1) 

x2(8) = 1800 

x2(i) = (pi-5-7).x2(i-1)+x1(i) 

x3(7) = 216 

x3(i) = (pi-4-6).x3(i-1)+x2(i) 

x4(6) = 20 

x4(i) = (pi-3-5).x4(i-1)+x3(i) 

x5(5) = 0 

x5(i) = (pi-2-4).x5(i-1)+x4(i) 

x6(4) = 0 

x6(i) = (pi-1-3).x6(i-1)+x5(i) 

#SP(12,3) = 0 

#SP(12,i) = (pi-2).#SP(12,i-1)+x6(i) 

13 

x1(9) = 2580 

x1(i) = (pi-6-8).x1(i-1) 

x2(8) = 1186 

x2(i) = (pi-5-7).x2(i-1)+x1(i) 

x3(7) = 50 

x3(i) = (pi-4-6).x3(i-1)+x2(i) 

x4(6) = 2 

x4(i) = (pi-3-5).x4(i-1)+x3(i) 

x5(5) = 0 

x5(i) = (pi-2-4).x5(i-1)+x4(i) 

x6(4) = 0 

x6(i) = (pi-1-3).x6(i-1)+x5(i) 

#SP(13,3) = 0 

#SP(13,i) = (pi-2).#SP(13,i-1)+x6(i) 

 

To evaluate the initial values xi(...), numbering int((j+2)/2) including possibly some 0’s of the j line, it suffices to know at 

most the int((j+2)/2) first non-zero values of #SP(j,i). This is done by extracting successively from the later the remnants 

of Euclidian divisions by pi-k-(k+2).  

 

For example, for the line j = 6, we have to use the int((6+2)/2) = 4 first values at most (some of which are therefore 

possibly 0) corresponding below to the part of the table double framed. Performing the 4 successive Euclidian divisions, 

like the calculations shown in the last column below, we observe systematically the appearance of values equal to 0 to the 

right of the double frame. 

 

Table 8 

 

pi 5 7 11 13 17 19 23 … 

Line j 0 0 8 188 4096 90124 2255792 … 

Euclidian division 1 0 0 8 100 1276 20492 363188 = 2255792-90124*(23-2)  … 

Euclidian division 2 0 0 8 36 276 2628 35316 = 363188-20492*(19-3) … 

Euclidian division 3 0 0 8 12 24 144 1152 = 35316 -2628*(17-4) … 

Euclidian division 4 0 0 8 12 0 0 0 = 1152-144*(13-5) … 

 

Each Euclidian division allows the determination of a new initial value that is added on a diagonal. This is here (0, 0, 8, 

12, (0)), values which are used afterwards to build the numerical table asymptotically : 
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Table 9 

 

pi 5 7 11 13 17 19 23 29 31 37 41 43 … 

 0 0 8 188 4096 90124 2255792 68713708 2206209208 83462164156 3474628537016 151047124809308 … 

  0 8 100 1276 20492 363188 7807324 213511676 6244841876 219604134932 8587354791652 … 

   8 36 276 2628 35316 543564 10521252 266514948 7279511148 242397664236 … 

    12 24 144 1152 13824 193536 3483648 83607552 2173796352 … 

    
 

0 0 0 0 0 0 0 0 … 

 

The last line, usually omitted in the following text, is implied. 

 

General expression of recursive systems 
 

The general writing of the recursive relationships’ system is as follows 

 

Table 10 

 

x(j,i-int(j/2)) x(j,i-int(j/2)+1) … x(j,i) x(j,i+1) … 

 x(j-1,i-int(j/2)+1) … x(j-1,i) x(j-1,i+1) … 

  … … … … 

   x(j-int(j/2),i) x(j-int(j/2),i+1) … 

    0 … 

 

with  

x(k,i) = (pi-(k-1)-2-k-1).x(k,i-1)+x(k-1,i)                (54) 

and  

#SP(j,i) = x(j,i)                                                      (55) 

 

Numerical examples 
 

The values below have been checked up to rank i = 9. Beyond that, the values are speculative.   

In the tables below, the values of #SP(j,i) in parentheses allow us to establish the constants xi(r) necessary to apply the 

iterative formulas. 
 

Table 11 

 

i pi #SP(1,i) #SP(2,i) #SP(3,i) #SP(4,i) #SP(5,i) #SP(6,i) 

1 3 (1) (1) 
 

   

2 5 3 3 (2)    

3 7 15 15 14 (2) (2)  

4 11 135 135 142 (28) (30) (8) 

5 13 1485 1485 1690 394 438 (188) 

6 17 22275 22275 26630 6812 7734 4096 

7 19 378675 378675 470630 128810 148530 90124 

8 23 7952175 7952175 10169950 2918020 3401790 2255792 

9 29 214708725 214708725 280323050 83120450 97648950 68713708 

10 31 6226553025 6226553025 8278462850 2524575200 2985436650 2206209208 

11 37 217929355875 217929355875 293920842950 91589444450 108861586050 83462164156 

12 41 8499244879125 8499244879125 11604850743850 3682730287600 4396116829650 3474628537016 

13 43 348469040044125 348469040044125 481192519512250 155231331960250 186022750845750 151047124809308 

 

i pi #SP(7,i) #SP(8,i) #SP(9,i) #SP(10,i) #SP(11,i) #SP(12,i) 

1 3 
   

   

2 5 
   

   

3 7 
   

   

4 11 (2) 
  

   

5 13 (58) (12) (8)  (2)  

6 17 (1406) (432) (376) (24) (78) (20) 

7 19 33206 12372 (12424) (1440) (2622) (1136) 

8 23 871318 362376 396872 (61560) (88614) (48868) 

9 29 27403082 12199404 14123368 2594160 3325554 (2100872) 

10 31 903350042 423955224 512670088 106604280 126803610 88345892 

11 37 34861119734 16996070868 21218333416 4814320320 5463271134 4075111904 

12 41 1475437583074 741616123248 949982718776 230780018520 253219805154 199176739444 

13 43 65082209263162 33583362918924 43986950258888 11319407188560 12098327744322 9949934146072 
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In view of the (conjectured) regularity of the iterative formulas, the anticipation of these constants xi(r) would completely 

solve the problem of counting. This could not be achieved here. 

 

We can however specify the location of the first non-zero element on the j-line of the population table 5 :  

For j such as pi-2+1 ≤ j ≤ pi-1, this first element is necessarily at position i (generally) or beyond.  

For j = pi-1, i ≥ 1, moreover, the population, therefore the value of this first element, is systematically equal to 2 except for 

j = p0 = 2 with initialization to 1.   

We note the notable exception of the case of column pi = 23 where we find a non-zero number beyond the j = pi-1 line (in j 

= pi-1+1). We think it unique but we are hardly able to prove it. 

 

Let us now compare the initial values (of Table 7), at the point where we were able to determine them, to the data of the 

population table (Table 5). These initial values are inscribed in red font below within the said population table (except 

zeroes) : 

 

Table 12 

 

Steps i 1 2 3 4 5 6 7 8 9 … 

           pi 

ΔP = 2j 
3 5 7 11 13 17 19 23 29 … 

2 1 3 15 135 1485 22275 378675 7952175 214708725 … 

4 1 3 15 135 1485 22275 378675 7952175 214708725 … 

6 
 

2 14 142 1690 26630 470630 10169950 280323050 … 

8 
  

2 28 394 6812 128810 2918020 83120450 … 

10 
  

2 26+4 438 7734 148530 3401790 97648950 … 

12 
   

8 176+12 4096 90124 2255792 68713708 … 

14 
   

2 38+20 1370+36 33206 871318 27403082 … 

16 
    

12 408+24 12372 362376 12199404 … 

18 
   

 8 256+120 12280+144 396872 14123368 … 

20  
  

 0 24 1104+336 61320+240 2594160 … 

22  
  

 2 50+28 2250+372 86886+1728 3323250+1152 … 

24  
    

20 920+216 47068+1800 2097992+2880 … 

26  
   

 2 92+50 6496+1186 383974+2580 … 

28  
   

 
 

72 4536+1128 320664+4128 … 

30  
   

 
 

20 1380+804 150632+3588 … 

32  
   

  0 72 7056+3072 … 

34 
    

  2 136+62 13260+2682 … 

36 
    

  
 

56 5488+1740 … 

38 
     

 
 

2 196+374 … 

40 
    

   12 1176+288 … 

42 
    

   
 

272 … 

44 
    

   
 

12 … 

46 
    

   
 

2 … 

… 
    

     … 

 

We find the initial values (the values in blue font of table 8 for example for 2j = 12) by making a horizontal reading of the 

table.  

The populations close to the maximum of ΔP = 2j are equal to the initial values and gradually only a portion of it is to be 

taken into account (as initial values). 

 

Malleability of systems 
 

Finally, and this applies to the other formulas of the same type that we will find in this article, it should be noted the 

malleability of these iterative formulas. Indeed, we can swap the order of the ck in the (pi-k-ck) expressions at leisure while 

finding exactly the same #SP(j,i) by simply adjusting the initial conditions xk(r).  

We wrote a specific article on this subject "Invariance in a triangular system of recursive equations and unitriangular 

matrixes" [7]. 

Needless is to say that the ascending order of k (and ck) is the obvious one and is the one that has been retained here. 

Besides, giving concrete meaning to the initial coefficients in the context of an arbitrary order is not obvious. 

 

The example for j = 13 is given below.  
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Tables 13 and 14 

 

13 

x1(9) = 2580 

x1(i) = (pi-6-8).x1(i-1) 

x2(8) = 1186 

x2(i) = (pi-5-7).x2(i-1)+x1(i) 

x3(7) = 50 

x3(i) = (pi-4-6).x3(i-1)+x2(i)  

x4(6) = 2 

x4(i) = (pi-3-5).x4(i-1)+x3(i) 

x5(5) = 0 

x5(i) = (pi-2-4).x5(i-1)+x4(i) 

x6(4) = 0 

x6(i) = (pi-1-3).x6(i-1)+x5(i) 

#SP(13,3) = 0 

#SP(13,i) = (pi-2).#SP(13,i-1)+x6(i) 

x1(9) = 5052 

x1(i) = (pi-6-6).x1(i-1) 

x2(8) = 1236 

x2(i) = (pi-5-8).x2(i-1)+x1(i) 

x3(7) = 58 

x3(i) = (pi-4-3).x3(i-1)+x2(i) 

x4(6) = 2 

x4(i) = (pi-3-5).x4(i-1)+x3(i) 

x5(5) = 0 

x5(i) = (pi-2-2).x5(i-1)+x4(i) 

x6(4) = 0 

x6(i) = (pi-1-4).x6(i-1)+x5(i) 

#SP(13,3) = 0 

#SP(13,i) = (pi-7).#SP(13,i-1)+x6(i) 

x1(9) = 7972 

x1(i) = (pi-6-4).x1(i-1) 

x2(8) = 1732 

x2(i) = (pi-5-2).x2(i-1)+x1(i) 

x3(7) = 64 

x3(i) = (pi-4-8).x3(i-1)+x2(i) 

x4(6) = 2 

x4(i) = (pi-3-7).x4(i-1)+x3(i) 

x5(5) = 0 

x5(i) = (pi-2-3).x5(i-1)+x4(i) 

x6(4) = 0 

x6(i) = (pi-1-5).x6(i-1)+x5(i) 

#SP(13,3) = 0 

#SP(13,i) = (pi-6).#SP(13,i-1)+x6(i) 

 

Asymptotic behaviour  
 

The resulting numerical values follow. The numbers in parentheses are obtained from the initial xk(r) conditions to be 

adjusted, and then remain the same, regardless of the permutation adopted. 

 

i pi #SP(13,i) 

3 7 (0) 

4 11 (0) 

5 13 (0) 

6 17 (2) 

7 19 (142) 

8 23 (7682) 

9 29 (386554) 

10 31 18296026 

11 37 917779870 

12 41 47868405830 

13 43 2523638720330 

14 47 140310923994850 

15 53 8521044521043950 

16 59 562884816841615450 

17 61 38006808659692941250 

18 67 2776584409210071637450 

19 71 212874333408720904370450 

20 73 16674778854319869359926850 

21 79 1401166023549229397548238150 

22 83 122977907658913527789701081950 

23 89 11502780841555360481825175525050 

24 97 1165580304713859247287339606190850 

25 101 122562697582639018843161308883447850 

26 103 13112754736781472886415720803648313050 

27 107 1453351921671783646083875844678718429850 

28 109 163783729028421214171254691350900881085650 

29 113 19090760983054610636273575350824582551981450 

30 127 2490149754971161047278626232764643094100655650 

31 131 334505343704327817752693163631815861180635580650 

32 137 46908332520608833556782238732974003111934848052050 

33 139 6667536123998885033362185956972826564358181730380950 

34 149 1013808433029832410059335901349067128255376332794388050 

35 151 156097440634286284953011093147817174505594521931801749050 

36 157 24959101448658489141113826564592082779615686887185872886850 

37 163 4138772764364345164239583547725371204294664920449705998153550 

38 167 702574529619742553207414136546661390692757889239462591720406350 

39 173 123435023346526582185411291027417474707510191562352469863110298050 

40 179 22419312647708222993713153535618153671640710866274320769140117641950 
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i pi #SP(13,i) 

41 181 4115527016222756202180561899505189728379359941505888984112546544826950 

42 191 796414463518548004037077381518286696110100584382961450036853649232343950 

43 193 155669158241079879018417893824990993446937702823167114041697615544840818850 

44 197 31042285222743476450457585552199407740672342683825137478447501405306409875450 

45 199 6250775928449604994815855068828960411772403362461534297872032843799660800993550 

 

A little further on, we get : 

 

i pi #SP(13,i) 

2150 18911 

193868004724182763247599186666889489560180945867905375839770079496325712766765793817096316103499982708060169508148803007430636318231889919076238497744985363896948406

515875968767344495121837641155901580031250775399982548800836550951858789411869698794677442627002553173067318505467141263692887175085783549220315158364189047445057446

810858844195226141773597940192634707025881065529720982870025561451246300337624757423929166259014200970416967731242252446623862464656807075785465140026115853752326688

184162524220392754423741066403926791501921031268589210199610522593743802597421636116374238811710962304420639842480923272869253621262417407011856437836725231716304571

548481474131462836729699224751314324825762676121611819942949007974492237915547306695783091041297057373824417540034927367532998069618150805738296437801067481810487592

597246749801038245723269347791175466590171697155445760628862918429961515542313397619775891174816641334775820675508923607502748008942415740991112295740780687752499237

319330932825487862951654173069054423852330874238112848327277409221138865559435353738320700173362019624837211368083936916787190847222504170519980328668072479576215350

798644435195377869049465888164711744828626621628112726248266536595314599408166087826229697690826904347542211964147286501720538957864647290875382867373507376294903025

793324536584732550180744760347825910871944377283061189330218238558690623815043100336734399773545024347832713473741191414050379399920864969679462914030950436028476699

042250749236870310750772653187971488797884085081927449535815874721491268155410701058670329339144090534887862325029738362065823884817833626603086638188999178260875706

970487018842500339903529558446953379467129321370718295169115786473090491705104640790142088973235625901780721820562566756173126469192237035790351142534393920400479547
619055427732151026627854903491579682760580521602031909741842283266439262159607315556818165471280103316223111550763845798095714305320583049584907772187374355999455451

710079593457712314578970123198716899686087085494481647211155813129269449895239128950877825380820516649983525947630574342605571342102456045469542584760951112308993445

184603278304843571821593910443565516165729177171744269662829129785066697761324755974537574439282412605372840825998431360654043898134459514735989904129910783192220807

715076546154471610836053768168642456690349607832908295914183926066951178555094569361877096485334667919692512015755850722741660962574537143083988578555408552745037646

281142748520013905097836064811671428125475774341725915119735610503842626434037690226780607134295069408941670393024000468357391429943678796555522060225834082456918134

598942739313995775992942169579330243119509448313255537430728147303756010930541812108927422743267866595704290135566289477367499082882268765273790715531572410029234042

403306659823936412957491645630926543443190741871724628288994095557328341205718753520375687395729597801130901996000037602149079945075995378276544587232890377247088864

718418662683998893702213295837051977203969265130985613353392807251123264333228795644434185384669703592375487209012181377898332801039073132546667714510170075045973368

021905194635778323447063472281770105121189462992543458478378155757495548833005192820009977588462287049409540343283079163647693078423352257675929512669052224846890734

383065248816503216619697270879929045624591333465629634622020103088721177021028019443707753868444430815461106782829460700547948506964168001448431922561684103035447619

926792515063407170392736444682248597656093527843861010616639116629563217898925554460650039444275420174339423059379246096402309464420779897946963598166738362525341142
026453850775794851170433730999133343544197110120476471674544640017035336551245495825651597284316562229048891001576699624343544743999600532904613702737910522528090043

135212352125119683234415781384979813816174720158869342786490498111071411308133505546484607969221253095611076631950442464338119401623584007354206274418096935884875099

597043616795290909767268893008598214300893089864829724403084612745855184967317205332439348850504603720717637867221826071120887807732337675047316786530905199172037304

805014201428038953335849830703656518173929139276992078673545817411220558649891992702412426036089259214340932174538257293603277179264312234232936546935086416720138674

611707330617060022252410003889524551499592575265921708319134598642155558546795947758993747538028785287886925914576055369855667357657102776578173042480097799635751091

887975872241571421370587958997650630834303919715659247627585397602392631061919232143259873156821944329003776792168216357335070400413601563964845364005545155711138131

192414712870408469471111812255571985941141498248098412753528586805327998047089572168703397230561941682582916085243015237485697883380240645125727890691828364038644085

975751437078755032991837762937420994074373083326037565184353294159378200866807542759470743472813896463040179661736289664539875997753628697204975411085613002008224645

393376264099046127599858891708229292127101381593680461618908792922385029388439693718148420904914625590543574664912344628871452057440259534393447080319504800800706175

892281375589102153980407325745854825585846949694307194491388484012445368339302879853738287686607451509407263170120947197127584429789540014482482436675273155334555922

478671389282204383056295506195759611082241323575102321757756246129519917821309036244361194137482277188090795338726863823998244663109192849660126308684983170070253439

990009795705931732709915904197968141217829160742085803666004811495902915844764574471190269414106923218908301771446378354521028835803974337138288871152070183251823680
918158720318747600297913503237947060772215107023803980057327872475568574525954365482128802047888327350304433853886801647889331419983350820470557708739687406356366819

638858071455557799345469000383442374644826896374490698582242910490126445211189389784717683773733850172073990534938519727626426399175139442425750989069836104068540200

121445053180006229592626145511703798019593735164686049793779066001073765136742948116282484967091455335641469549969980365093273234430483979679889019417606929300971974

579617014391476377558760059166938930237891300638158381496943712331203225992045761100215267221686852292226271885919371769985177851687145382102777831326333353460682827

368169358535136287835509181388107006052378028787946421525990158103841711587809943747554040732986086009115658723509652075587874909546574381677587762554242246529385431

327325725614090316494382380944214786141614739785446973473307901389380695059520827369366974457551784427073707807630004190554817744217360975977750928947083394688108908

140850555787334293456898504207768209350074060843073085058654876052670146940188837036614089567227937110853767947594676598200111630960218525280025115294562433429636220

808667542687018108596633144695996175458704072259881586246975920207829563586388619750504856641110311538835080628114054379683266498423301535173152726299890366439977590

209168373902174252685662717520064694296512706721886944117219330322110525100196093718552514083180782853058905391643630695188896422616605490036893153717516165944776089

470779109370055742077429455580732693668544892877118727593928751150485543316708124274152185351497965276529158510734924036314136471850955100995529763337384642126513175
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084799340704528932600682669319990080132422831628417746253293560014340953828222346211827108728808281609486013297083011086199574006780847213421979421569705683664811843

006692480986139890235611131369620439384699759266726668598575215031793843051741032414960109953712187259230876330447619977601833207087990001904193152264397133763975362

64740363917347717920837080651628859350 

 

A similar study up to i = 2150 for all of the examples j = 1 to 13 allows us to draw the following curves : 

 

   
 

In the early stages i, the comparative numbers of populations of 2j-spacings are in significantly different proportions, for 

example a ratio of more than 1 to 10000 between {i = 6 (pi = 17), j = 13} and {i = 6, j = 1}. As i tends towards 

progressively towards infinity, values are shunned as a result of contributions supplemented by the increase in the number 

of equations in the recursive system (a new equation for each 2 added value to j). Thus, the ratio mentioned above drops 

to a ratio 1 to 3.66 (ratio close to its asymptotic value). 
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Starting from theorems 9 and 12, assuming that the order of magnitude of the #SP(j,i) is that of #SP(1,i) when i tends 

towards infinity, there would then exist a constant c such as ∏i→+∞ (pi-1) = ∑j #SP(j,i→+∞) > c.jmax.#SP(1, i→+∞) = 

c.jmax.∏i→+∞ (pi-2). Hence jmax < (1/c).∏i→+∞ (pi-1)/(pi-2) and, from Mertens's theorem, we might conclude that there is a 

constant c' such as jmax < c’ln(pi). 

The order of magnitude of the number of lines j in row i, (including non-zero values) would then be asymptotically in 

ln(pi). This order of magnitude is much lower than what is observed really (jmax around of pi in fact as we will see later on) 

as there are in fact intermediate values between the populations of the line j = 1 and those of the line jmax. 

 

However, what we are looking to highlight here is the very strong de facto constraint on the maximum value of j for given 

i. It is difficult, and in actual fact impossible, to reconcile the growth in the populations generated by recursive formulas 

with a jmax that would regularly be beyond pi (value given below). Indeed, any effective population (change from zero to a 

non-zero value) immediately triggers afterwards a steady increase of the said population on following ranks i and 

conversely any delay in apparition will have to be catched up without fail, the ratio ∏i→+∞ (pi-1) of the overall populations 

been forced at each stage i. Recursive links existence and coercion due to the relationship (52) is self-regulating the 

asymptotic increase of the maximum value of j (for given j). 

 

5.2.3. Evolution of aggregated populations.  

 

We give below the cumulative staffs that correspond to spacings greater than a given value. 

 

Table 15 

 

 Steps i 1 2 3 4 5 6 7 8 9 

 pi 3 5 7 11 13 17 19 23 29 

j Spacings ΔP Aggregation of populations ΔPC = #SPC(j,i) 

1 ≥ 2 2 8 48 480 5760 92160 1658880 36495360 1021870080 

2 ≥ 4 1 5 33 345 4275 69885 1280205 28543185 807161355 

3 ≥ 6 0 2 18 210 2790 47610 901530 20591010 592452630 

4 ≥ 8 
 

0 4 68 1100 20980 430900 10421060 312129580 

5 ≥ 10 
  

2 40 706 14168 302090 7503040 229009130 

6 ≥ 12 
   

10 268 6434 153560 4101250 131360180 

7 ≥ 14 
   

2 80 2338 63436 1845458 62646472 

… …    … … … … … … 

 

Because recursive formulas are linear, the aggregations follow the same types of relationships, the initial values obtained 

previously are simply added altogether (into table 7): 

 

Table 16 

 

j Formulas 

1 
#SPC(1,1) = 2 

#SPC(1,i) = (pi-1).#SP(1,i-1) 

2 

x1(2) = 1 

x1(i) = (pi-1-2).x1(i-1) 

#SP(2,1) = 1 

#SP(2,i) = (pi-1).#SP(2,i-1)+x1(i) 

3 

x1(2) = 2 

x1(i) = (pi-1-2).x1(i-1) 

#SP(3,1) = 0 

#SP(3,i) = (pi-1).#SP(3,i-1)+x1(i) 
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j Formulas 

4 

x1(5) = 32 

x1(i) = (pi-2-3).x1(i-1) 

x2(4) = 28 

x2(i) = (pi-1-2).x2(i-1)+x1(i) 

#SP(4,3) = 4 

#SP(4,i) = (pi-1).#SP(4,i-1)+x2(i) 

5 

x1(6) = 18 

x1(i) = (pi-3-4).x1(i-1) 

x2(5) = 46 

x2(i) = (pi-2-3).x2(i-1)+x1(i) 

x3(4) = 20 

x3(i) = (pi-1-2).x3(i-1)+x2(i) 

#SP(5,3) = 2 

#SP(5,i) = (pi-1).#SP(5,i-1)+x3(i) 

6 

x1(6) = 54 

x1(i) = (pi-3-4).x1(i-1) 

x2(5) = 58 

x2(i) = (pi-2-3).x2(i-1)+x1(i) 

x3(4) = 10 

x3(i) = (pi-1-2).x3(i-1)+x2(i) 

#SP(6,3) = 0 

#SP(6,i) = (pi-1).#SP(6,i-1)+x3(i) 

7 

x1(8) = 576 

x1(i) = (pi-4-5).x1(i-1) 

x2(7) = 1062 

x2(i) = (pi-3-4).x2(i-1)+x1(i) 

x3(6) = 442 

x3(i) = (pi-2-3).x3(i-1)+x2(i) 

x4(5) = 56 

x4(i) = (pi-1-2).x4(i-1)+x3(i) 

#SP(7,4) = 2 

#SP(7,i) = (pi-1).#SP(7,i-1)+x4(i) 

… ... 

 

The reader will also be able to build the systems of recursive equations corresponding to the aggregations like "spacings 

ΔP ≤ 2j " instead of above resolved "spacings ΔP ≥ 2j ". 

 

Having failed on the anticipation of the initial values in the previous paragraph, the purpose of this paragraph was to find 

some way this here. However, for these two types of aggregations, there seems to be not more success possibility than 

before. 

 

5.2.4. Cradle of the multiplicative factors.  

 

The reader will find underneath the wise course in order to find a proof for the existence of recursive relationships. 

Indeed, the multiplier factors observed in these linear relationships do appear at once when we carry out successive 

sortings based on modulo #pi/pk aggregations where pk is the decreasing list of the prime dividers of the primordial #pi. 

The evidence sought is therefore intimately linked to the proper understanding of these sortings. Below we describe this 

method and the properties of the relevant objects. 

 

Method of sorting.  
 

Starting from the integers over an interval [x0, x0+p0p1p2…pi[, (x0 > pi), we remove all multiples from p0 = 2 to pi. The 

remaining numbers are in quantity (p1-1)(p2-1)…(pi-1) and are sorted according to the increasing values of spacing (to the 

preceding ones).   

 

The numbers x of spacing 2 are then sorted according to the increasing values of x modulo p0p1p2…pi/pi. They appear in 

families with pi-2 identical modulo values and are all 1 modulo 6 valued. The total amount of elements responds to a 

system of one recursive equation. For spacing 4, the routine is then analogous except that the elements are all 5 mod 6 

valued. For these first two groups of families of cardinal pi-2-0, the proof is that of the theorem 12 (and of the preliminary 

theorem 4). 

 

The numbers x of spacing 6 = 4+2 are then sorted according to the increasing value of x modulo p0p1p2…pi/pi. Those that 

appear in families with pi-2 identical modulo values are grouped apart. The others appear modulo p0p1p2…pi/pi-1 in 

families with pi-1-2-1 identical modulo values and are grouped on their side. The set responds to a system of two recursive 

equations. 
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… 

 

The numbers x of spacing 4+2.(j-2) are then sorted according to the increasing value of x modulo p0p1p2…pi/pi. Families 

with pi-2 identical modulo values that appear are grouped apart when they exist. We then proceed with the same way 

modulo p0p1p2…pi/pi-k, k being gradually incremented while making groups of numbers showing pi-k-2-k identical modulo 

values to the k-1 sequence. 

 

We do this until the stock runs out. The number of sorting, at a given spacing, cannot exceed i. The resulting recursive 

system cannot have more than i equations. 

 

Origin of the multiplicative ratio 
 

The pi-k-2-k identical modulo-values at the k+1 sequence answer to the following count. We operate modulo p0p1p2…pi/pi-

k. In an interval of size p0p1p2…pi, we initially come up exactly with pi-k integers. For these trivially, being remotely 

equidistant, there are exactly 1 integer x that is multiple of pi-k and 1 other among x-2j+r.p0p1p2…pi/pi-k, r = 0 to pi-k-1, 

which is also multiple pi-k, and this regardless of the value of j. This is trivial in contrast to the following feature : The 

elimination of the additional k integers is due to exactly 1 elimination for the sorted modulo p0p1p2…pi/pi series, 1 

elimination for the sorted modulo p0p1p2…pi/pi-1 series, …, 1 elimination for the sorted modulo p0p1p2…pi/pi-(k-1) series, 

these k cases being all to be found in the 2j-spacing set of numbers (see examples below). 

 

Symmetry property 
 

In an interval [x0, x0+p0p1p2…pi[, x0 > pi, subject to Eratosthenes sieve, there will remain, with the provision of an offset, 

the same quantities of integers as in the interval ]-p0p1p2…pi/p0, +p0p1p2…pi/p0[ subject to the same algorithm provided 

you also remove p0, p1, p2, …, pi (and -p0, -p1, -p2, …, -pi). The result of the latter after sieving being perfectly 

symmetrical, there i therefore in the initial interval also a symmetry modulo p0p1p2…pi for an axis to be determined.   

We will thus systematically find for any configuration, a concept that we will define below, a symmetrical configuration, 

unless it is its own symmetrical.  

 

It should also be noted that the count properties observed for the part of the integers beyond pi when running the 

Eratosthenes algorithm are the same as if one studies these numbers in an interval beginning at 0, provided that 2, 3, 5, 7, 

11, ... pi are removed too. 

 

Supplementary remarks. 
 

First of all, the conjecture is clear for in steps i = 1 to 9.   
 

Using sufficient initial conditions, any population can be analysed in the form of recursive formulas, since an adjustment 

of one unit on the lower diagonal (table 10) changes each of the values vertically from the same unit exactly. The point 

here is to show that a finite number of initial values will suffice for the asymptotic assessment for a given 2j-spacing and 

that the multiplier factors are then appropriate.     
 

Below, we give the population #ΔP evaluation as it stands for the spacing of ΔP = 14 for steps i = 1 to 9. 

 

pi 3 5 7 11 13 17 19 23 29 

Line 1 0 0 0 2 58 1406 33206 871318 27403082 

Line 2 
 

0 0 2 36 536 9304 173992 3877496 

Line 3 
  

0 2 20 176 1800 25128 397656 

Line 4 
   

2 14 36 216 1728 20736 

Line 5 
   

 14 8 0 0 0 

 

As for calculation purposes, recursive formulas work perfectly provide the correct adjustment of the lower diagonal. 

However, it would be irrelevant to seek meaning in the numbers displayed when the multiplier factor of a line becomes 

negative as in line 5 for pi = 17. Appropriate explanations are only to be sought up to line 4 and starting with non-zero 

population. 

 

Numeric examples. 
 

The underneath numerical examples are intended to give a clearer understanding of the sequences of integers that give rise 

to previous arguments. 

 

The spacings are taken, as agreed in this article, between the number displayed and its previous one respecting the spacing 

ΔP. For example, for m = 11 some integer effectively inscribed in the table, the associated integer for ΔP = 4 will be 7 

(not 15).   

We start from step i = 1 using the sorting method. 
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Step 1 : p0p1 = 6. 

 

We initially choose the interval [11, 17[, but any other interval modulo 6 of initial abscissa greater than p1 = 3 could be 

chosen. 

Table 17 

 

Spacings ΔP 
#ΔP List of 

integers 
Properties 

2 1 13 1 mod 6/3 

4 1 11 1 mod 6/3 

 

This initiates Table 5.  

Note here the way how to set the modulo condition in the form p0p1…pi/pi. 

Besides pi-2 = 1 is indeed the cardinal of the elements for spacing 2 and 4 respectively. 

 

Step 2 : p0p1p2 = 30. 

Table 18 

 

Families 
Spacings 

ΔP 
#ΔP List of integers Properties 

Configurations 

d = 30/5 

1 2 3 13, 19, 31, (13) 
13 mod 30/5 

(1 mod 6) 
 d, 2d, 2d 

2 4 3 11, 17, 23, (11) 
11 mod 30/5 

(5 mod 6) 
 d, d, 3d 

3 6 2 
37 

29 
  

 

The numbers 13 and 11, of the preceding step, are generators of the families 1 and 2 through the property 1 mod 30/5 for 

the first one and 5 mod 30/5 for the second one. We have demonstrated, using the arguments of depletion developed in 

pages 8 and 44 and illustrated by Tables 3 and 27, that by going from stage i-1 to stage i, there are pi candidates in which 

only pi-2 are suitable and indeed here for family 1, only 25 and 37 are not suitable (the first to be multiple of 5, the second 

as 37-2 is multiple of 5) and the same for the family 2, where 29 and 35 are excluded (the first as 29-2 is multiple of 3 and 

the second to be multiple of 5). 

 

Family 3 "recovers" the previously excluded numbers 29 and 37 (but not 25 and 35 that are multiple of a divider of 30). 

This is then, for these numbers, their final position because 29-6 and 37-6 are not multiple of a divider of 30.  We do the 

pi-1-2-1 count getting so value 0. Thus the elements of family 3 are neither in pi-2 quantities nor in pi-1-2-1 quantities. In 

some way, we can say that they are "self-generating" being not subject to any particular multiplier factor (which is a 

somewhat exaggerated word, since in fact they are only outside the previous classifications). So there is no possibility to 

attach them a property x modulo p0p1p2…pi/pi or x modulo p0p1p2…pi/pi-1 (hence the empty box). 

 

Here and later, we will call the spacing arrangement a "configuration". Any circular permutation of the spacings is the 

same configuration.  

The configurations here are symmetrical to themselves, i.e. the symmetrical of {6, 12, 12} is {12, 12, 6}, the latter being 

identical by circular permutation to {6, 12, 12}. 

 

Step 3 : p0p1p2p3 = 210. 

Table 19 

 

Spacings 

ΔP 
#ΔP List of integers Properties 

Configurations 

(d1 = 210/7 = 30,  

d2 = 210/5 = 42)  

Miscellaneous 

d3 = 210/3 = 70 

2 15 

13, 43, 73, 103, 193, (13) 

139, 169, 199, 19, 109, (139)  

181, 211, 31, 61, 151, (181)  

13 mod 210/7 

19 mod 210/7 

31 (or 1) mod 210/7 

 d1, d1, d1, 3d1, d1 

139-13 = 3d2 

181-139 = d2 

210+13-181 = d2 

4 15 

17, 47, 107, 167, 197, (17) 

143, 173, 23, 83, 113, (143) 

101, 131, 191, 41, 71, (101) 

17 mod 210/7 

23 mod 210/7 

11 mod 210/7 

 d1, 2d1, 2d1, d1, d1  

6 14 

37, 67, 127, 157, 187, (37) 

149, 179, 29, 59, 89, (149) 

53, 137, (53) 

79, 163, (79) 

37 (or 7) mod 210/7 

29 mod 210/7 

11 mod 210/5 

37 mod 210/5 

 d1, 2d1, d1, d1, 2d1 

 

2d2, 3d2 

149-37 = 112 = 

d2+d3 
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Spacings 

ΔP 
#ΔP List of integers Properties 

Configurations 

(d1 = 210/7 = 30,  

d2 = 210/5 = 42)  

Miscellaneous 

d3 = 210/3 = 70 

8 2 
97 

121 
   

10 2 
209 

11 
   

 

We have pi-2  = 7-2 = 5, pi-1-2-1  = 5-3 = 2 and pi-3-2-3 is negative. Only searches according to the properties x modulo 

p0p1p2…pi/pi = 210/7 and x modulo p0p1p2…pi/pi-1 = 210/5 with groupings by 5 and 2 therefore make sense.   

 

In the "properties" column at the top of Table 19, we collect the list of integers in Table 18. We find them on the previous 

spacing lines, filling them entirely for spacings 2 and 4 and partially for spacing 6, the largest spacing in the previous step. 

They are developed thanks to the property modulo p0p1…pi/pi in the new lists. Let us recall again here that it is established 

that any number present at the i-1 step generates pi-2 numbers at step i in the same spacing line. 

 

The numbers #ΔP for ΔP = 2 and ΔP = 4 are given by a one-equation recursive system. Each number in the previous table 

(Table 18) is found in the upper lines of the property column and generates a batch of 7-2 = 5 numbers. The multiplier 

factor is equal to pi-2 as expected. For example, in the series 13, 43, 73, 103, 133, 163 and 193 (numbers between 11 and 

2.3.5.7+10), all of which are integers valued 13 mod 210/7, one and only one integer has as a divider a divisor of 210, 

namely 133 (divisible by 7) and in the series 13-2, 43-2, 73-2, 103-2, 133-2, 193-2, only one has as a divider a divisor of 

210, i.e. 161 (divisible by 7), thus two exclusions. These two are reassigned to the lines below. Note that the generator in 

the property column does not necessarily re-enter itself the final list. 

 

The regularity of the spacings is besides well respected (identical configurations).  

This is not surprising, since considering the number x1 having as a divider d (= pi) in the first sample (here 133 divisible 

by 7) and the corresponding number x2 in the second sample with divider d (here 49 still divisible by 7), we are searching 

then the number y1 such that y1-Δ has a divider d (here Δ = 2). Then (y1+(x2-x1)- Δ) is trivially a divider of t. This gives 

the relative positions of the two associated pairs and the corresponding regular spacings. 

 

The population #ΔP for ΔP = 6 is determined by a two-equation recursive system.  

The same rule applies for a part of the solution numbers, a proportion that is perfectly identified in the population values 

given by the following two recursive equations, which are derived from the general formula where only the initial values 

are to be constituted by numerical approach: 

 

pi 3 5 7 

Line 1 0 2 14 

Line 2 

 

2 4 

 

The cumulative is 14, of which 10 are generated by two numbers (37 (or rather 7) mod 30 and 29 mod 30) in line 1 on the 

one hand and 4 generated by two numbers in line 2 on the other hand. 

 

The rest of them originate from previous modulo 210/7 rejects. Modulo p0p1p2…pi/pi-1 (here 42), the two generators turn 

out to be 11 and 37 (or rather 53 mod 42 and 79 mod 42 looking for the head of list of integers among the modulo 210/7 

rejects). With distances p0p1p2…pi/pi-1 within a set of size p0p1p2…pi, we generally have pi-1 integers to look at initially. In 

the following table, we report these pi-1 numbers (here pi-1 = 5) on which we proceed with two types of elimination : 

 

m 11 53 95 137 179 

m-6 5 47 89 131 173 

Elimination if 

divider of 210 

yes (bas) 

(pi-1 = 5) 
 

yes (top) 

(pi-1 = 5) 
  

Elimination if 

previously 

listed 

    

yes 

(179 = 29 

mod 210/7) 

 

Similarly, in the following table for 37 (by making a circular permutation of the m-values to better compare 

configurations) : 
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m 121 163 205 37 79 

m-6 115 157 199 31 73 

Elimination if 

divider of 210 

yes 

(bottom) 

(pi-1 = 5) 

 
yes (top) 

(pi-1 = 5) 
  

Elimination if 

previously 

listed 

   

yes 

(37 = 7 

mod 210/7) 

 

 

Thus 2 initial values correspond to 2 configurations represented by the two tables. This gives a multiplier factor of p i-1-2-1 

= 2 here, the first two under the "standard" elimination of two units (since 6 does not contain the divider 5) and the last by 

the fact that in an interval of size 210 one has already been listed in a spaced list modulo 210/7. 

 

Having only two configurations in total and knowing that there is a symmetrical to any type of positioning modulo 

p0p1p2…pi,  we do check this point here. The relative spacings between the first type of eliminations are the same (value 

84 mod 210) and the symmetry axis is the middle of both eliminations. For the elimination of the second type, the integer 

179 can be seen as being contiguous to the left of 11 (distance -42) in the first table, while 37 is well contiguous to the 

right of 205 (distance of 42) in the second table. 

 

The passage of 6-spacing solutions for the part modulo p0p1p2…pi/pi-1 = 210/5 from step 2 to step 3 is given below. It is 

made modulo (p0p1p2…pi/pi)/pi-1 = (210/7)/5 = 6 (which is not particularly noteworthy for generalization as long as i is 

small) : 

 

Values at step 2 mod 6  Values at step 3 mod 6 

29 5 → 53, 137 5 

37 1 → 79, 163 1 

 

The other two pairs of numbers (97, 121) and (209, 221) find their place with spacings 8 and 10 respectively. They self-

generate, overusing these term, as they are not subject to any particular multiplying factor. Indeed, if we evaluate pi-2-2-2 

at this stage, we get -1 which does not correspond to a possible property x modulo p0p1p2…pi/pi-2 (hence the empty box 

for both spacings). 

 

Step 4 : p0p1p2p3p4 = 2310. 

Table 20 

 

Spacings 

ΔP 
#ΔP List of integers Properties 

Miscellaneous 

d3 = 2310/5 = 462 

2 135 

223, 433, 643, 853, 1063, 1273, 1483, 1693, 2113,… 

1609, 1819, 2029, 2239, 139, 349, 559, 769, 1189, … 

2071, 2281, 181, 391, 601, 811, 1021, 1231, 1651, … 

 

13, 43, 73, 103, 193 

19, 109, 139, 169, 199 

31, 61, 151, 181, 211 (or 1) 

mod 2310/11 

 

1609-223 = 3d3 

2071-1609 = d3 

4 135 

… 

… 

… 

 

17, 47, 107, 167, 197, 

23, 83, 113, 143, 173, 

41, 71, 101, 191, 131 

mod 2310/11 

 

6 142 

239, 449, 659, 1079, 1289, 1499, 1709, 1919, 29,… 

877, 1087, 1297, 1717, 1927, 2137, 37, 247, 667, 

1537, 1747, 1957, 67, 277, 487, 697, 907, 1327, 

547, 757, 967, 1387, 1597, 1807, 2017, 2227, 337… 

767, 977, 1187, 1607, 1817, 2027, 2237, 137, 557 

2153, 53, 263, 683, 893, 1103, 1313, 1523, 1943 

1339, 1549, 1759, 2179, 79, 289, 499, 709, 1129 

2263, 163, 373, 793, 1003, 1213, 1423, 1633, 2053 

 

673, 1333, 1663, 1993 

2059, 409, 739, 1069,  

257, 1247, 1577, 1907 

1643, 323, 653, 983 

29, 59, 89, 149, 179 

37, 67, 127gén, 157, 187 

 

 

137 

53 

79 

163 

mod 2310/11 

13 mod 2310/7 

79 mod 2310/7 

257 mod 2310/7 

323 mod 2310/7 

 

 

 

 

 

2153-767 = 3d3 

 

2263-1339 = 2d3 

 

 

2059-673 = 3d3 

 

1643-257 = 3d3 
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Spacings 

ΔP 
#ΔP List of integers Properties 

Miscellaneous 

d3 = 2310/5 = 462 

8 28 

97, 307, 727, 937, 1147, 1357, 1567, 1777, 1987 

2011, 2221, 331, 541, 751, 961, 1171, 1381, 1591 

457, 787,1117, 1447 

871, 1201, 1531, 1861 

919, 1399 

97 mod 2310/11 

121 mod 2310/11 

127 mod 2310/7 

211 mod 2310/7 

457 et 13 mod 2310/5 

 

 

10 30 

… 

… 

149, 809,1139, 2129 

1511, 2171, 191, 1181 

587, 1973 

347, 1733 

11 mod 2310/11 

209 mod 2310/11 

149 mod 2310/7 

191 mod 2310/7 

125 mod 2310/5 

347 mod 2310/5 

 

12 8 
211, 2111, 13, 479,  

521, 1801, 1843, 2309 
 

 

14 2 127, 2197   

 

We have pi-2 = 11-2 = 9, pi-1-2-1  = 7-3 = 4, pi-2-2-2  = 5-2 2 = 1 and pi-3-2-3 is negative. Only searches according to 

properties x modulo p0p1p2…pi/pi = 2310/11, x modulo p0p1p2…pi/pi-1 = 2310/7 and x modulo p0p1p2…pi/pi-2 = 2310/5 

with groupings by 9, 4 and 1 therefore make sense. 

 

The populations #ΔP for ΔP = 2 and ΔP = 4 are given by a one-equation recursive system with the multiplier factor equal 

to pi-2 = 9.   

The numbers generated by 13 are : 

 

List of integers 
Configurations 

d1 = 2310/11 

223, 433, 643, 853, 1063, 1273, 1483, 1693, (223)   d1, d1, d1, d1, d1, d1, d1, 2d1, 2d1 

 

The configuration is the same for all series of numbers generated by the list of 2-spacing.   

 

Note the same configurations identity for the list corresponding to spacing 4 (with a different configuration from the 

previous one) and the same for spacing 6 for the part corresponding to the elements issued from property "modulo 

2310/11", the later spacing being studying underneath.  

 

The populations #ΔP for ΔP = 6 are determined by a two-equation recursive system based on the table below : 

 

pi 3 5 7 11 

Line 1 0 2 14 142 

Line 2  2 4 16 

 

We have 142-16 = 126 = (11-2).14 standard solutions modulo 2310/11.    

 

The configuration of the first list is as follows and extends in the standard way to the other elements of the table. 

 

List of numbers 
Configuration 

 d = 210 

239, 449, 659, 1079, 1289, 1499, 1709, 1919, 29, (239)  d, d, 2d, d, d, d, d, 2d, d 

 

After ordering according to the pertinent configuration, the head terms are : 

 

List of head numbers 
Miscellaneous 

 d = 2310/2/3/5 

239, 569, 899, 1229, 1559 

547, 877, 1207, 1537, 1867 
537-239 = 877-569 = … = 4d 

 

Spacing between these numbers is p0p1p2…pi/pi/pi-1, distance that spreads to all relevant lists.   

 

Below we give their spacings for the numbers that follow the previous list. The configuration remains the same. 
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List of numbers 
Configuration 

 d = 210 

767, 977, 1187, 1607, 1817, 2027, 2237, 137, 557, (767) 

2153, 53, 263, 683, 893, 1103, 1313, 1523, 1943, (2153) 

1339, 1549, 1759, 2179, 79, 289, 499, 709, 1129, (1339) 

2263, 163, 373, 793, 1003, 1213, 1423, 1633, 2053, (2263) 

 d, d, 2d, d, d, d, d, 2d, d 

 

The 16 remaining values are obtained modulo p0p1p2…pi/pi-1 (hence here modulo 2310/7 = 330). The four generators turn 

out then to be 13, 79, 257 and 323. In the following tables, we re-enact two types of elimination (always by making a 

circular swap of the m values to better compare configurations) : 

 

m 13 343 673 1003 1333 1663 1993 

m-6 7 337 667 997 1327 1657 1987 

Elimination if 

divider of 2310 

yes (bottom) 

(pi-1 = 7) 

yes (top) 

(pi-1 = 7) 
     

Elimination if 

previously listed 
   

yes 

(1003 = 163 

mod 210) 

   

 

m 1399 1729 2059 79 409 739 1069 

m-6 1393 1723 2053 73 403 733 1063 

Elimination if 

divider of 2310 

yes (bottom) 

(pi-1 = 7) 

yes (top) 

(pi-1 = 7) 
     

Elimination if 

previously listed 
   

yes 

(79 = 79 mod 

210) 

   

 

m 257 587 917 1247 1577 1907 2237 

m-6 251 581 911 1241 1571 1901 2231 

Elimination if 

divider of 2310 
 

yes (bottom) 

(pi-1 = 7) 

yes (top) 

(pi-1 = 7) 
    

Elimination if 

previously listed 
      

yes 

(2237 = 137 

mod 210) 

 

m 1643 1973 2303 323 653 983 1313 

m-6 1637 1967 2297 317 647 977 1307 

Elimination if 

divider of 2310 
 

yes (bottom) 

(pi-1 = 7) 

yes (top) 

(pi-1 = 7) 
    

Elimination if 

previously listed 
      

yes 

(1313 = 53 

mod 210) 

 

The multiplier factor is here, as conjectured, pi-1-2-1 = 4. 

 

The passage of 6-spacing solutions for the part modulo p0p1p2…pi/pi-1 = 2310/7 from step 3 to step 4 is discussed below. It 

is implemented modulo (p0p1p2…pi/pi)/pi-1 = (2310/11)/7 = 30 : 

 

Values at step 3 mod 30  Values at step 4 mod 30 
Configurations 

 d = 2310/7 

163 13 → 673, 1333, 1663, 1993 13 2d, d, d, 3d 

79 19 → 2059, 409, 739, 1069,  19 2d, d, d, 3d 

137 17 → 257, 1247, 1577, 1907 17 3d, d, d, 2d 

53 23 → 1643, 323, 653, 983,  23 3d, d, d, 2d 

 

Each configuration has its symmetrical. We have only encountered one configuration so far because only two spacings 

values were present, thus the symmetrical merges with the original, as illustrated in the example below : 

 

 Configurations 

Original x, x, y, x, y, x, x, x, x 

Symmetric x, x, x, x, y, x, y, x, x 

Shifting of 2 units of the symmetric x, x, y, x, y, x, x, x, x 

 

But this pattern is no longer applicable here.   
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The populations #ΔP for ΔP = 8 are determined by a three-equation recursive system based on the table below : 

 

pi 3 5 7 11 

Line 1 0 0 2 28 

Line 2  0 2 10 

Line 3   2 2 

 

We have 2.(11-2) front-line solutions (97 and 121 mod 2310/11), 2.(7-2-1) second-line solutions (127 and 221 mod 

2310/7) and two other solutions complete the count (919 and 1399) as initial values.   

 

The populations #ΔP for ΔP = 10 are determined by a four-equations recursive system according to the table below : 

 

pi 3 5 7 11 

Line 1 0 0 2 30 

Line 2  0 2 12 

Line 3   2 4 

Line 4    2 

 

We will come back later on how to determine these populations and additional ones (for spacings ΔP = 12 and ΔP = 14), 

the next step being more expressive and richer by the amount of data available. 

 

Step 5 : p0p1p2p3p4p5 = 30030. 

Table 21 

 

Spacings 

ΔP 

#ΔP 
List of integers Properties 

2 1485 … 
List at step 4 

mod 30030/13 

4 1485 … 
List at step 4 

mod 30030/13 

6 1690 

… 

 

… 

… 

… 

… 

 

List at step 4 

mod 30030/13 

17, 407, 1577, 2357,  

173, 563, 953, 2123,  

379, 1159, 2329, 2719, 

613, 1783, 2173, 2563  

mod 30030/11 

8 394 

… 

 

… 

… 

 

409, 21859, 26149 

8179, 29629, 3889 

List at step 4 

mod 30030/13 

487, 691, 769, 877, 1081,  

1657, 1861, 1969, 2047, 2251 

mod 30030/11 

409 mod 30030/7 

3889 mod 30030/7 

10 438 

… 

 

… 

… 

… 

 

4307, 8597, 21467 

10313, 14603, 27473 

15437, 19727, 2567 

8573, 21443, 25733 

 

List at step 4 

mod 30030/13 

149, 251, 797, 929 

1031, 1343, 1397, 1709 

1811, 1943, 2489, 2591 

mod 30030/11 

17 

1733 

2567 

4283 

mod 30030/7 
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Spacings 

ΔP 

#ΔP 
List of integers Properties 

12 188 

… 

 

… 

… 

 

26281, 13411, 21991 

9899, 27059, 5609 

22921, 10051, 18631 

2129, 19289, 27869 

10753, 27913, 2173 

19991, 7121, 11411 

2983, 20143, 24433 

16631, 3761, 8051 

 

1399, 1973, 6023, 8989 

12889, 13283, 16759, 17153 

21053, 24019, 28069, 28643 

List at step 4 

mod 30030/13 

223, 541, 1271, 1319 

1423, 1471, 2201, 2519 

mod 30030/11 

541 

1319 

1471 

2129 

2173 

2831 

2983 

3761 

mod 30030/7 

 

 

 

14 58 

… 

 

… 

… 

 

877, 18037, 22327, 26617 

12007, 29167, 3427, 7717 

 

2521, 6421, 6931, 12343 

14191, 14341, 15703, 15853 

17701, 23113, 23623, 27523 

List at step 4 

mod 30030/13 

307 

2437 

mod 30030/11 

877 

3427 

mod 30030/7 

 

 

 

16 12 

17, 11147, 7277,  

15047, 22637, 25997 

4049, 7409, 14999 

22769, 18899, 30029 

 

18 8 
2201, 16691, 20921, 24281 

5767, 9127, 13357, 27847 
 

20 0   

22 2 9461, 20591  

 

We have pi-2  = 13-2 = 11, pi-1-2-1  = 11-3 = 8, pi-2-2-2  = 7-2 2 = 3 and pi-3-2-3 = 0. Only searches according to properties 

x modulo p0p1p2…pi/pi = 30030/13, x modulo p0p1p2…pi/pi-1 = 30030/11 and x modulo p0p1p2…pi/pi-2 = 30030/7 with 

groupings by 11, 8 and 3 therefore make sense.   

 

The numbers #ΔP for ΔP = 2 and ΔP = 4 are given by a one-equation recursive system with the multiplier factor equal to 

pi-2  = 11. 

 

The numbers #ΔP for ΔP = 6 are determined by a two-equation recursive system based on the table below : 

 

pi 3 5 7 11 13 

Line 1 0 2 14 142 1690 

Line 2  2 4 16 128 

 

We have 1690-128 = 1562 = 11.142 standard solutions modulo 30030/13. The other 128 are obtained modulo 

p0p1p2…pi/pi-1 (here modulo 30030/11 = 2730). The sixteen generators turn out then to be 17, 407, 1577, 2357, (all 17 

mod 390), 173, 563, 953, 2123, (all 173 mod 390), 379, 1159, 2329, 2719, (all 379 mod 390), 613, 1783, 2173 and 2563 

(all 223 mod 390).  

In the following table, we review each of the 4 series. We still have two types of eliminations : 

 



P 32/142                                                    

m 2747 5477 8207 10937 13667 16397 19127 21857 24587 27317 17 

m-6 2741 5471 8201 10931 13661 16391 19121 21851 24581 27311 11 

Elimination if 
divider of 

30030 

       
yes (top) 
(pi-1=11) 

  
yes 

(bottom) 
(pi-1=11) 

Elimination if 

previously 
listed 

         

yes 
(27317 = 

1907 mod 

2310) 

 

 
m 173 2903 5633 8363 11093 13823 16553 19283 22013 24743 27473 

m-6 167 2897 5627 8357 11087 13817 16547 19277 22007 24737 27467 

Elimination if 

divider of 

30030 

       
yes (top) 
(pi-1=11) 

  
yes 

(bottom) 
(pi-1=11) 

Elimination if 
previously 

listed 

         

yes 
(24743 = 

1643 mod 

2310) 

 

 
m 19489 22219 24949 27679 379 3109 5839 8569 11299 14029 16759 

m-6 19483 22213 24943 27673 373 3103 5833 8563 11293 14023 16753 

Elimination if 

divider of 
30030 

       
yes (top) 
(pi-1=11) 

  
yes 

(bottom) 
(pi-1=11) 

Elimination if 

previously 

listed 

        

yes 
(11299 = 

2059 mod 

2310) 

  

 
m 613 3343 6073 8803 11533 14263 16993 19723 22453 25183 27913 

m-6 607 3337 6067 8797 11527 14257 16987 19717 22447 25177 27907 

Elimination if 

divider of 
30030 

       
yes (top) 
(pi-1=11) 

  
yes 

(bottom) 
(pi-1=11) 

Elimination if 

previously 
listed 

        

yes 
(22453 = 

1663 mod 

2310) 

  

 

The multiplier factor here is pi-1-2-1 = 8.  

The reader attentive to the configurations of the relative positions of the eliminations, numbering 2, that of 17, 173, 407, 

563, 953, 1577, 2123, 2357 (all 17 modulo 78) on one hand and that of 379, 613, 1159, 1783, 2173, 2329, 2563, 2719 (all 

67 modulo 78) on the other hand, will also be able to see such circumstances at the previous step. These two 

configurations are again symmetrical to each other. 

For the elimination by divider, the first divisible number (by pi-1 = 11) is systematically at the top (line m), the second 

systematically at the bottom (line m-6) for this example. For elimination by membership of a previously listed family, it is 

found within the same spacing line (here ΔP = 6). 

 

m Divisible par 11 … …  

m-6 … … … Divisible par 11 

Elimination by divisor Yes (pi-1 = 11)   Yes (pi-1 = 11) 

Elimination by default  Yes or No No or Yes  

 

The numbers #ΔP for ΔP = 8 are determined by a three-equation recursive system based on the table below : 

 

pi 3 5 7 11 13 

Line 1 0 0 2 28 394 

Line 2  0 2 10 86 

Line 3   2 2 6 

 

We have 394-86 = 308 = (13-2).28 standard solutions modulo 30030/13. We have 86-6 = 80 = (11-2-1).10 solutions 

modulo p0p1p2…pi/pi-1 (here modulo 30030/11 = 2730). The ten generators are 487, 877, 1657, 1969, 2047 (all 19 modulo 

78) and 691, 769, 1081, 1861, 2251 (all 67 modulo 78).  

In the following table, we show the two symmetrical configurations that appear : 

 



P 33/142                                                    

m 487 3217 5947 8677 11407 14137 16867 19597 22327 25057 27787 

m-8 479 3209 5939 8669 11399 14129 16859 19589 22319 25049 27779 

Elimination if 
divider of 

30030 

    
yes (top) 
(pi-1=11) 

   

yes 
(bottom) 
(pi-1=11) 

  

Elimination if 

previously 
listed 

       

yes 
(19597 = 

1117 mod 

2310) 

   

 
m 22531 25261 27991 691 3421 6151 8881 11611 14341 17071 19801 

m-8 22523 25253 27983 683 3413 6143 8873 11603 14333 17063 19793 

Elimination if 

divider of 

30030 

    
yes (top) 
(pi-1=11) 

   

yes 

(bottom) 
(pi-1=11) 

  

Elimination if 
previously 

listed 

     
Yes 

(6151 = 1151 

mod 2310) 
     

 

The multiplier factor is equal to pi-1-2-1 = 8. Again, the second type of elimination corresponds to a family with the same 

spacing (so ΔP = 8 here).   

 

There remains 6 solutions of line 3 governed by a relationship modulo p0p1p2…pi/pi-2 (hence here modulo 30030/7 = 

4290):  

 
m 409 4699 8989 13279 17569 21859 26149 

m-8 401 4691 8981 13271 17561 21851 26141 

Elimination if 

divider of 

30030 

  
yes (bottom) 

(pi-2=7) 
yes (top) 

(pi-2=7) 
   

Elimination if 

previously 

listed 

 
yes 

(4699 = 1969 

mod 2730) 
  

yes 
(17569 = 1399 

mod 2310) 
  

 
m 8179 12469 16759 21049 25339 29629 3889 

m-8 8171 12461 16751 21041 25331 29621 3881 

Elimination if 

divider of 
30030 

  
yes (bottom) 

(pi-2=7) 
yes (top) 

(pi-2=7) 
   

Elimination if 

previously 
listed 

 
yes 

(12469 = 919 

mod 2310) 
  

yes 
(25339 = 769 mod 

2730) 

  

 

The multiplier factor is equal to pi-2-2-2 = 3. These tables are the first showing two eliminations of the second type 

(previously listed). In this case, one comes from belonging to a family modulo p0p1p2…pi/pi and the other to a family 

modulo p0p1p2…pi/pi-1 (and with ΔP = 8). 

 

The passage of previous solutions of spacing 8 for the part modulo p0p1p2…pi/pi-2 = 30030/7 from step 4 to step 5 is 

discussed below. It is implemented modulo (p0p1p2…pi/pi)/pi-2 = (30030/13)/7 = 330 (d = (p0p1p2…pi)/pi-2 = 4290) : 

 

Values at step 4 mod 330  Values at step 5 mod 330 Configurations 

1399 79 → 409, 21859, 26149, (409) 79  5d, d, d 

919 259 → 8179, 29629, 3889, (8179) 259  5d, d, d 

 

The spacing between integers is the same because the two types of configurations are symmetrical to each other.   

 

The populations #ΔP for ΔP = 10 are determined by a four-equations recursive system according to the table below : 

 

pi 3 5 7 11 13 

Line 1 0 0 2 30 438 

Line 2 
 

0 2 12 108 

Line 3 
  

2 4 12 

Line 4 
   

2 0 

 

The multiplier factor of the last line being pi-3-2-3 = 0 (for i = 5), the last line does not give any contribution to the one 

above. We only take up an explanation here for the third line.   

 

The 12 solutions of line 3 are governed by a relationship modulo p0p1p2…pi/pi-2 (here modulo 30030/7 = 4290) and are 

generated according to 4 initial configurations and multiplier factor pi-2-2-2 = 3 : 
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m 17 4307 8597 12887 17177 21467 25757 

m-10 7 4297 8587 12877 17167 21457 25747 

Elimination if 
divider of 

30030 

yes (bottom) 
(pi-2=7) 

  
yes (top) 

(pi-2=7) 
   

Elimination if 

previously 
listed 

    

yes (17177 = 

797 mod 
2730) 

 

yes (25757 = 

347 mod 
2310) 

 
m 6023 10313 14603 18893 23183 27473 1733 

m-10 6013 10303 14593 18883 23173 27463 1723 

Elimination if 
divider of 

30030 

yes (bottom) 
(pi-2=7) 

  
yes (top) 

(pi-2=7) 
   

Elimination if 
previously 

listed 

    
yes (23183 = 

1343 mod 2730) 
 

yes (1733 = 1733 

mod 2310) 

 
m 11147 15437 19727 24017 28307 2567 6857 

m-10 11137 15427 19717 24007 28297 2557 6847 

Elimination if 

divider of 

30030 

yes (bottom) 
(pi-2=7) 

  
yes (top) 

(pi-2=7) 
   

Elimination if 

previously 

listed 

    

yes (28307 = 

587 mod 

2310) 

 
yes (6857 = 1397 

mod 2730) 

 
m 17153 21443 25733 30023 4283 8573 12863 

m-10 17143 21433 25723 30013 4273 8563 12853 

Elimination if 

divider of 
30030 

yes (bottom) 
(pi-2=7) 

  
yes (top) 

(pi-2=7) 
   

Elimination if 

previously 

listed 

    
yes (4283 = 1973 

mod 2310) 
 

yes (12863 = 
1943 mod 2730) 

 

Again, the two eliminations of the second type originate from the belonging to a family modulo p0p1p2…pi/pi and the 

other to a family modulo p0p1p2…pi/pi-1 (and ΔP = 10). 

 

The passage of previous solutions of spacing 10 for the part modulo p0p1p2…pi/pi-2 = 30030/7 from step 4 to step 5 is 

implemented modulo (p0p1p2…pi/pi)/pi-2 = (30030/13)/7 = 330 : 

 

Values at step 4 mod 330  Values at step 5 mod 330 Configurations 

347 17 → 4307, 8597, 21467, (4307) 17 1 

587 257 → 15437, 19727, 2567, (15437) 257 S1 

1733 83 → 10313, 14603, 27473, (10313) 83 2 

1973 323 → 21443, 25733, 8573, (21443) 323 S2 

 

Regarding configurations, the ranking according to the unit digits is accidental and quite anecdotal. In fact, this ranking is 

done by taking into account the spacings between integers and responds to the following table (d = 4290 = 30030/7) and 

shows that all configurations merge because the symmetrical spacings are the same as the initial spacings: 

 

Configurations Spacings 

1 et 2  d, 3d, 3d 

S1 et S2  d, 3d, 3d 

 

The populations #ΔP for ΔP = 12 are determined by a five-equation recursive system based on the table below : 

 

pi 3 5 7 11 13 

Line 1 0 0 0 8 188 

Line 2 
 

0 0 8 100 

Line 3 
  

0 8 36 

Line 4 
   

8 12 

Line 5 
   

 12 

 

For the generation of the first three lines, the previous examples are sufficient. We have also seen that the fourth line is 

governed by a multiplier factor 0 in pi = 13 without proper contribution. The last 12 numbers self-generate (and indeed 

modulo p0p1p2…pi/pi-j, j = 1 to 3, no relevant grouping does appear).  

 

The numbers #ΔP for ΔP = 14 are determined by a five-equation recursive system based on the table below : 
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pi 3 5 7 11 13 

Line 1 0 0 0 2 58 

Line 2  0 0 2 36 

Line 3   0 2 20 

Line 4    2 14 

Line 5     14 

 

The first two lines respond to the standard assessment operating modulo 30030/13 for elements corresponding to line 1 

and modulo 30030/11 for the elements of line 2.   

For the third-line generation, there are 20-14 = 6 solutions initialized by 2 configurations. However, we meet four 

solutions for each of them 877, 18037, 22327, 26617 and 3427, 7717, 12007, 29167 giving respectively 877 mod 30030/7 

and 3427 mod 30030/7. This does not call into question the sorting method, because there are at least the three expected 

solutions, but we do not know here which of the two integers it is appropriate to add in the batch of 14 solutions of line 5 

(line 4 contributing for none). 

If alternatively, we choose to solve using modulo 30030/13 for the first line, and then modulo 30030/13/11 for the second, 

the sorting leads to the same sets. Proceeding modulo 30030/13/11/7 for the remaining 20 integers, we get the following 

results : 

 

Numbers corresponding to lines 3 to 5 mod 30 

2521, 6421, 6931, 14191, 14341, 17701 1 

27523, 12343, 15703, 15853, 23113, 23623 13 

877, 3427, 7717, 12007, 18037, 22327, 26617, 29167 7 

 

This time, we can distinguish 6+6+8 = 6+14 integers. Of course, we can also imagine other combinations for these totals. 

But what is of interesting to us here is simply to find some form of consistency with respect to relevant populations. 

 

For the population #ΔP including ΔP >14, there is no specific classification to consider at this stage. 

 

Step 6 : p0p1p2p3p4p5p6 = 510510. 

 

We have pi-2  = 17-2 = 15, pi-1-2-1  = 13-3 = 10, pi-2-2-2  = 11-4 = 7, pi-3-2-3 = 7-5 = 2 and pi-4-2-4 is negative. Only 

searches according to properties x modulo p0p1p2…pi/pi = 510510/17, x modulo p0p1p2…pi/pi-1 = 510510/13, x modulo 

p0p1p2…pi/pi-2 = 510510/11 and x modulo p0p1p2…pi/pi-3 = 510510/7 with groupings by 15, 10, 7 and 2 therefore make 

sense.   

 

We present this case only partially, the aim being only to confirm the concepts already exposed, limiting ourselves to the 

spacing ΔP = 12 and the groupings x modulo p0p1p2…pi/pi-3 = 510510/7 and x modulo p0p1p2…pi/pi-2 = 510510/11. 
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Table 22 

 

Spacings 

ΔP 
#ΔP List of integers Properties 

12 4096 

… 

 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

 

… 

… 

… 

… 

… 

… 

 

6619, 14269, 75499,  

90499, 158329, 160129, 218809, 236359, 

304189, 364669, 371269, 440149,  

496253, 503903, 70373, 139253, 145853, 

206333, 274163, 291713, 350393, 352193, 

420023, 435023 

List at step 5 

mod 510510/17 

223, 631, 809, 1213, 1861, 2369, 2573, 

2951, 3251, 3359, 3761, 3793, 3901, 4201, 

4481, 4783, 4813, 5293, 5939, 6521, 6751, 

7363, 7471, 7771, 8353, 8663, 9509, 10091, 

10223, 10391, 10499, 10903, 10933, 11213, 

11923, 12361, 12469, 13961, 14503, 14611, 

14911, 14981, 15493, 16033, 17159, 17231, 

17531, 17569, 17639, 18181, 21101, 21643, 

21713, 21751, 22051, 22123, 23249, 23789, 

24301, 24371, 24671, 24779, 25321, 26813, 

26921, 27359, 28069, 28349, 28379, 28783, 

28891, 29059, 29191, 29773, 30619, 30929, 

31511, 31811, 31919, 32531, 32761, 33343, 

33989, 34469, 34499, 34801, 35081, 35381, 

35489, 35521, 35923, 36031, 36331, 36709, 

36913, 37421, 38069, 38473, 38651, 39059 

mod 510510/13 

1861, 4073, 5221, 5293, 5323, 7433, 7639, 

7949, 8051, 8963, 11411, 11953, 13283, 

14681, 18041, 18553, 19909, 21239, 25183, 

26513, 27869, 28381, 31741, 33139, 34469, 

35011, 37459, 38371, 38473, 38783, 38989, 

41099, 41129, 41201, 42349, 44561 

mod 510510/11 

19, 2569, 6619, 12469, 14269, 17569, 

mod 510510/7 

and 

55373, 58673, 60473, 66323, 70373, 72923 

mod 510510/7 

 

The numbers #ΔP for ΔP = 12 are determined by a five-equation recursive system based on the table below : 

 

pi 3 5 7 11 13 17 

Line 1 0 0 0 8 188 4096 

Line 2 

 

0 0 8 100 1276 

Line 3 

  

0 8 36 276 

Line 4 

   

8 12 24 

Line 5 

   

 12 0 

Line 6 

   

  12 

 

The 0 figure in the last column is the result of a calculation and the 12 figure in the last line is an "adjustment factor". The 

24 in line 4 corresponds to the 24 integers at the bottom of Table 22. This population has doubled compared to the 

previous step and modulo p0p1p2…pi/pi-3 (510510/7 = 72930), we actually have exactly 12 distinct values (given in the 

same table). 

 

We begin by looking at the 12 solutions, which are 6619, 14269, 75499, 90499, 158329, 160129, 218809, 236359, 

304189, 364669, 371269 and 440149, governed by a relationship p0p1p2…pi/pi-3 and find the multiplier factor pi-3-2-3 = 2 

expected (and we note that p0p1p2…pi/pi = 510510/17 = 30030, p0p1p2…pi/pi-1 = 510510/13 = 39270, p0p1p2…pi/pi-2 = 

510510/11 = 46410): 

 
m 6619 79549 152479 225409 298339 371269 444199 

m-12 6607 79537 152467 225397 298327 371257 444187 

Elimination if 
divider of 

510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 
previously 

listed 

 
yes (79549 = 
33139 mod 

46410) 

 
yes (225409 = 

29059 mod 

39270) 

yes (298339 = 
28069 mod 

30030) 

  

 



P 37/142                                                    

m 160129 233059 305989 378919 451849 14269 87199 

m-12 160117 233047 305977 378907 451837 14257 87187 

Elimination if 
divider of 

510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 

previously 
listed 

 

yes (233047 = 

36709 mod 
39270) 

 
yes (378907 = 

7639 mod 46410) 

yes (451849 = 

1399 mod 30030) 
  

 
m 75499 148429 221359 294289 367219 440149 513079 

m-12 75487 148417 221347 294277 367207 440137 513067 

Elimination if 
divider of 

510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 
previously 

listed 

 

yes (148429 = 
30619 mod 

39270) 

 
yes (294289 = 

24019 mod 

30030) 

yes (367219 = 
42349 mod 

46410) 

  

 
m 236359 309289 382219 455149 17569 90499 163429 

m-12 236347 309277 382207 455137 17557 90487 163417 

Elimination if 

divider of 

510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 

previously 

listed 

 
yes (309289 = 

8989 mod 30030) 
 

yes (455149 = 

37459 mod 

46410) 

yes (17569 = 

17569 mod 

39270) 

  

 
m 304189 377119 450049 12469 85399 158329 231259 

m-12 304177 377107 450037 12457 85387 158317 231247 

Elimination if 

divider of 
510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 

previously 

listed 

 

yes (377119 = 

16759 mod 

30030) 

 

yes (12469 = 

12469 mod 

39270) 

yes (85387 = 

38989 mod 

46410) 

  

 
m 364669 437599 19 72949 145879 218809 291739 

m-12 364657 437587 7 72937 145867 218797 291727 

Elimination if 

divider of 
510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 

previously 
listed 

 

yes (437599 = 

19909 mod 
46410) 

 

yes (17177 = 

12889 mod 
30030) 

yes (145879 = 

28069 mod 
39270) 

  

 

There is only one configuration here in the sense of eliminations location. However, we can distinguish subconfigurations 

for the second type of elimination. Each has exactly one modulo p0p1p2…pi/pi elimination, one modulo p0p1p2…pi/pi-1 

elimination and now one modulo p0p1p2…pi/pi-2 elimination. In addition, the 6 possible permutations of these three 

subconfigurations are each present in equal proportions (i.e. once here). 

 

For the other 12 solutions, 70373, 139253, 145853, 206333, 274163, 291713, 350393, 352193, 420023, 435023, 496253 

and 503903, we anticipate (writing only one) the same behaviour for subconfigurations, although that configuration might 

be different from the previous one. As in the previous steps, to a given configuration corresponds a symmetrical, the axis 

of symmetry being the "middle" of the two eliminated entities of the first type (elimination by divider) and the table below 

is the symmetrical of the third of the previous list : 

 
m 362093 435023 507953 70373 143303 216233 289163 

m-12 362081 435011 507941 70361 143291 216221 289151 

Elimination if 
divider of 

510510 

  
yes (bottom) 

(pi-3 = 7) 
   

yes (top) 
(pi-3 = 7) 

Elimination if 

previously 
listed 

yes (362093 = 

8663 mod 39270) 
   

yes (143303 = 

4073 mod 46410) 

yes (216233 = 

6023 mod 30030) 
 

 

The transition of 12-spacing solutions from step 5 (see Table 21) to step 6 is implemented modulo p0p1p2…pi/pi/pi-3 = 

(510510/17)/7 = 4290 : 
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Values at step 5 mod 4290  Values at step 6 mod 4290 
Configurations 

 d = 510510/7 

1399 1399 → 14269, 160129 1399 

2d, 5d 

8989 409 → 90499, 236359 409 

12889 19 → 218809, 364669 19 

16759 3889 → 158329, 304189 3889 

24019 2569 → 440149, 75499 2569 

28069 2329 → 371269, 6619 2329 

 
     

1973 1973 → 503903, 139253 1973 

2d, 5d 

6023 1733 → 435023, 70373 1733 

13283 413 → 206333, 352193 413 

17153 4283 → 145853, 291713 4283 

21053 3893 → 274163, 420023 3893 

28643 2903 → 350393, 496253 2903 

 

If we then go back to Table 22, we find, in line 3 at this step, 276-24 = 252 integers that correspond to the 24+12 integers 

in the previous step. The transition of 12-spacing solutions from step 5 (see Table 21) to step 6 is made modulo 

p0p1p2…pi/pi/pi-2 = (510510/17)/11 = 2730 : 

 

Values at 

step 5 
Mod 2730  Values at step 6 Mod 2730 Configurations 

16631 251 → 412481, 505301, 41201, 87611, 134021, 180431, 366071 251 1 

11411 491 → 475511, 57821, 104231, 150641, 197051, 243461, 429101 491 1 

19991 881 → 183791, 276611, 323021, 369431, 415841, 462251, 137381 881 1 

3761 1031 → 339551, 432371, 478781, 14681, 61091, 107501, 293141 1031 1 

7121 1661 → 110861, 203681, 250091, 296501, 342911, 389321, 64451 1661 1 

8051 2591 → 193691, 286511, 332921, 379331, 425741, 472151, 147281 2591 1 

21991 151 → 363241, 38371, 84781, 131191, 177601, 224011, 316831 151 S1 

22921 1081 → 446071, 121201, 167611, 214021, 260431, 306841, 399661 1081 S1 

26281 1711 → 217381, 403021, 449431, 495841, 31741, 78151, 170971 1711 S1 

10051 1861 → 373141, 48271, 94681, 141091, 187501, 233911, 326731 1861 S1 

18631 2251 → 81421, 267061, 313471, 359881, 406291, 452701, 35011 2251 S1 

13411 2491 → 144451, 330091, 376501, 422911, 469321, 5221, 98041 2491 S1 

2983 253 → 456163, 502573, 84883, 131293, 177703, 224113, 409753 253 2 

27913 613 → 25183, 71593, 164413, 210823, 257233, 303643, 489283 613 2 

20143 1033 → 383233, 429643, 11953, 58363, 104773, 151183, 336823 1033 2 

2173 2173 → 389833, 436243, 18553, 64963, 111373, 157783, 343423 2173 2 

10753 2563 → 98113, 144523, 237343, 283753, 330163, 376573, 51703 2563 2 

24433 2593 → 237373, 283783, 376603, 423013, 469423, 5323, 190963 2593 2 

5609 149 → 319559, 505199, 41099, 87509, 133919, 226739, 273149 149 S2 

19289 179 → 458819, 133949, 180359, 226769, 273179, 365999, 412409 179 S2 

27869 569 → 167099, 352739, 399149, 445559, 491969, 74279, 120689 569 S2 

9899 1709 → 173699, 359339, 405749, 452159, 498569, 80879, 127289 1709 S2 

2129 2129 → 21239, 206879, 253289, 299699, 346109, 438929, 485339 2129 S2 

27059 2489 → 100769, 286409, 332819, 379229, 425639, 7949, 54359 2489 S2 

 
     

28643 1343 → 4073, 96893, 143303, 189713, 236123, 282533, 468173 1343 1 

1973 1973 → 285893, 378713, 425123, 471533, 7433, 53843, 239483 1973 1 

28069 769 → 271039, 456679, 503089, 38989, 85399, 131809, 224629 769 S1 

1399 1399 → 42349, 227989, 274399, 320809, 367219, 413629, 506449 1399 S1 

16759 379 → 404419, 450829, 33139, 79549, 125959, 172369, 358009 379 2 

8989 799 → 251959, 298369, 391189, 437599, 484009, 19909, 205549 799 2 

21053 1943 → 304973, 490613, 26513, 72923, 119333, 212153, 258563 1943 S2 

13283 2363 → 152513, 338153, 384563, 430973, 477383, 59693, 106103 2363 S2 

6023 563 → 38783, 85193, 131603, 270833, 317243, 410063, 502883 563 3 

17153 773 → 473063, 8963, 55373, 194603, 241013, 333833, 426653 773 3 

12889 1969 → 83869, 176689, 269509, 315919, 455149, 501559, 37459 1969 S3 

24019 2179 → 7639, 100459, 193279, 239689, 378919, 425329, 471739 2179 S3 

 

We can notice that the last 12 solutions "work" in exactly the same way as the other 24 integers viewed modulo 

p0p1p2…pi/pi/pi-2.  

Regarding configurations, the classification according to the unit digits of each integer is accidental and quite anecdotal. 

Moreover, the attentive reader will have already noticed that the latter changes between the groupings of the first 24 and 
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the 12 subsequent. In fact, this ranking is done by taking into account the spacings between integers and answers the 

pattern of the following table (d = 46410 = 510510/11) : 

 

Configurations Spacings 

1  2d, d, d, d, d, 4d, d 

S1  4d, d, d, d, d, 2d, d 

2  d, 2d, d, d, d, 4d, d 

S2  4d, d, d, d, 2d, d, d 

3  d, d, 3d, d, 2d, 2d, d 

S3  2d, 2d, d, 3d, d, d, d 

 

Next steps : 
 

Essentially, there are no fundamentally richer teachings to expect than that acquired at the already studied steps. 

 

5.2.5. Maximal spacing.  

 

Now let us have focus on vertical considerations. 

 

Conjecture 2  
 

The maximum spacing ΔPmax, between integers of the Eras(i) list at the i depletion stage, is inferior or equal to 2pi-2. 

 

The purpose is to prove that for the series {y, y+2, …, y+2c, …, y+2pi-2}, where y is odd, there is at least an integer c 

between 0 and pi-1, such as y+2c ≠ 0 mod pk for any k between 1 and i. This conjecture is thus written in a totally 

equivalent way in the following form : 

 

∀ y = 1 mod 2, ∃ c ∈ {0, 1, 2, … pi − 1} \ gcd(y + 2c , 3.5 … pi) = 1                  (56) 

 

This innocuous statement, in our view, is one of the most fundamental of arithmetic.  

It presents itself after many attempts at resolution as a real headache for its complete resolution. Nevertheless, the problem 

can be circumscribed in its broad outlines according to the theorems and remarks made below. 

 

Example : i = 8, pi = 23, y = 513 

 

pk   \   2c 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 

3 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 

5 3 0 2 4 1 3 0 2 4 1 3 0 2 4 1 3 0 2 4 1 3 0 2 

7 2 4 6 1 3 5 0 2 4 6 1 3 5 0 2 4 6 1 3 5 0 2 4 

11 7 9 0 2 4 6 8 10 1 3 5 7 9 0 2 4 6 8 10 1 3 5 7 

13 6 8 10 12 1 3 5 7 9 11 0 2 4 6 8 10 12 1 3 5 7 9 11 

17 3 5 7 9 11 13 15 0 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 

19 0 2 4 6 8 10 12 14 16 18 1 3 5 7 9 11 13 15 17 0 2 4 6 

23 7 9 11 13 15 17 19 21 0 2 4 6 8 10 12 14 16 18 20 22 1 3 5 

Numbers 

of zeroes 
2 1 1 1 0 0 3 1 1 1 1 1 1 2 0 1 1 0 1 1 1 2 0 

 

Here the solutions, we are looking for, are c = 4, c = 5, c = 14, c = 17, c = 22 (2c = 8, 2c = 10, 2c = 28, 2c = 34, 2c = 44). 

They are therefore usually not uncommon in the chosen interval, except that when pi tends towards infinity, the amount of 

0 per column in the double frame should tend on average, on a purely statistical basis, to 1/3+1/5+1/7+…+1/pi and thus to 

infinity (with the same reasoning starting with 1/5 instead of 1/3, or 1/7, etc.) which would make seem highly unlikely the 

systematic existence of c as conjectured here. 

 

Theorem 10  
 

The maximum spacing ΔPmax is larger or equal to 2pi-1. 

 

Proof  
 

The solution ΔP = 2pi-1 is obtained constructively (see theorem 11 below) and hence always exists. 

 

Theorem 11  
 

There is always a pair giving spacing 2pi-1. One of the elements of the pair is centred in M1 and the other one in M2 = 

2.3… pi-M1 and the couple (M1, M2) meets the equations’ systems :  
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M1 = 0 mod 2.3.5…pi-2 

M1 = -1 mod pi-1 

M1 = 1 mod pi 

M2 = 0 mod 2.3.5…pi-2 

M2 = 1 mod pi-1 

M2 = -1 mod pi 

     (57) 

 

Proof  
 

We can limit to the study of the case of M1 as M2 is the mere symmetrical of M1 (i.e. M1+M2 = 2.3.5…pi) that we have 

identified in the previous theorem. Again let us use then theorem 1. As 2…pi-2 and pi-1 are coprime, we have that 

k.2.3.5…pi-2 mod pi-1, k = 1 à pi-1.pi, generate pi repetitions of pi-1 distinct numbers (0 up to pi-1-1). Similarly, k.2.3.5…pi-2 

mod pi, k = 1 to pi-1.pi, generate pi-1 repetitions of pi distinct numbers (0 to pi-1). The two lists, obtained by k incrementing, 

form pairs of numbers, which, under the Chinese theorem (or theorem 1), are all distinct. One of these pairs is therefore 

necessarily {-1 mod pi-1, 1 mod pi} and moreover it is unique. 

 

To get the value of M1 (or of M2), one just solves two Bachet-Bézout equations. As the cycles are repetitive to infinity, the 

solution is necessarily also in cycle 1. Such a pair of solutions therefore always exists.   

 

Its construction is done in a standard way according to the example below (where M = M1) (i = 6, M = 217140 = 

2.3.5.7.11.k and k = 94) : 

 

Table 23 

 

M±(2k+1) M±(2k+1) 3 5 7 11 13 17 

M-13 217127 

      M-11 217129    X   

M-9 217131 X 

     M-7 217133 

  

X 

   M-5 217135 

 

X 

    M-3 217137 X 

     M-1 217139 

    

X 

 M+1 217141 

     

X 

M+3 217143 X 

     M+5 217145 

 

X 

    M+7 217147 

  

X 

   M+9 217149 X 

     M+11 217151 

   

X 

  M+13 217153       

 

Developing in the table according to the allocation (M+pk, pk), as M has 2 to pi as divisors, all the interstices M+j.pk are 

addressed (meaning for us here that they are emptied), then M+1 and M-1 places are affected by construction. We get this 

way the largest free space between numbers. In addition, we can now assess the spacing. It is based on 13 and in the 

general case on pi-1 and gives therefore a spacing of 2pi-1. Of course, the most obvious, looking at the example, would be 

actually to take 2(pi-2+2) because the contributions of pi-1 and pi are made in M-1 and M+1, but one must not forget small 

dividers that allow us (thanks again here to theorem 1) to match a “small” divider up to the positions M-(pi-1-1) and M+(pi-

1-1) modulo pi-1. 

 

Any change to this construction gives an intermediate empty space. It is the only one that can reach a value of 2p i-1 

spacing. The question is whether an adjacency to another empty space (of integers with small divisors) is possible to 

further increase the spacing. To do this, simply look at the lower and upper boundaries just adjacent to this space M-pi-1 

and M+pi-1, which are odd numbers, and check if they have or not, one or the other, divisors between 3 and p i. To do this, 

let us rewrite the equations, resulting for the first of these limits: M = 2.3…pi-2.k, M = -1+k1.pi-1, M = 1+k2.pi, M-pi-1 = 

k3.pj where k, k1, k2, k3 are strictly positive integers and 3 ≤ pj ≤ pi, 1≤ k ≤ pi-1.pi.  

We have three cases:  

If pj ≤ pi-2 then pi-1 = M-k3.pj = k4.pj-k3.pj= (k4-k3).pj, for some integer k4, which is impossible.  

If pj = pi-1 then M = k3.pj+pi-1 = (k3+1).pi-1 = -1+k1.pi-1, thus (k1-k3-2).pi-1 = 1, which is impossible.  

If pj = pi then M = k3.pi+pi-1 = 1+k2.pi, thus (k2-k3).pi = pi-1-1 which is still impossible because pi > pi-1-1. 

The argumentation is the same for the upper limit.  

The previous empty interval is therefore the largest possible which ends proof set-up.   

 

We give in appendix 3 the entire list of the M1 and M2 for i = 2 to 50, as well as i = 100, 150, …, 500, 1000 and 1500,   

using online calculator Pari GP. 

 

Nota : 
 

The fact that it gives the biggest spacing in general stems from its construction which fills the spaces optimally. This 

filling in itself contains two advantages:  

- The first one is its symmetry versus the horizontal axis, which systematically doubles the gain at each new step.   
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- The second one is the inheritance of the previous setup, namely, there can be only optimum progression without 

questioning the previous configuration. Any other configuration is dependent, at rank i, on random variation of neighbour 

spacings, the average value of which is Δmean(i) → e
γ
.ln(pi) ≈ 1,781.ln(pi). This is to be compared with a undeniable 

increase of the spacing, for the optimum standard scheme given here, of 2(pi-1-pi-2), an expression that tends towards 

2.ln(pi) asymptotically. The difference between the two is not staggering, but with a systematic routine extending to 

infinity, this regular asymptotic growth is definitely to the advantage of said scheme. It is reasonable to think that the 

following example is quite anecdotal, perhaps even unique. 

 

A unique (?) overboosted example 
 

For the case i = 8, ΔPmax is effectively superior to 2pi-1. Let us first give the standard scheme. 

 

Table 24 

 

Distance to 

the first 

value 

M = 193483290  

= 2.3.5...17.k 

and k = 379 

Series of odd 

integers 
3 5 7 11 13 17 19 23 

0 M-19 193483271 
        

2 M-17 193483273 
     

X 
  

4 M-15 193483275 X (X) 
      

6 M-13 193483277 
    

X 
   

8 M-11 193483279 
   

X 
    

10 M-9 193483281 X 
       

12 M-7 193483283 
  

X 
     

14 M-5 193483285 
 

X 
      

16 M-3 193483287 X 
       

18 M-1 193483289 
      

X 
 

20 M+1 193483291 
       

X 

22 M+3 193483293 X 
       

24 M+5 193483295 
 

X 
      

26 M+7 193483297 
  

X 
     

28 M+9 193483299 X 
       

30 M+11 193483301 
   

X 
    

32 M+13 193483303 
    

X 
   

34 M+15 193483305 X (X) 
      

36 M+17 193483307 
     

X 
  

38 M+19 193483309 
        

 

The number of redundancies (more than one cross on a line) is equal here to 2 over 20. 

 

The  « high-vitamin » example underneath is such that ΔPmax = 2pi-1+2 = 2pi-6. It shows 6 pairs of solutions. 

 

Scheme 1 

 

Integers at position 0 

Scheme 2 

(symmetric of scheme 1) 

Integers at position 0 

20332471 202760359 

24686821 198406009 

36068191 187024639 

65767861 157324969 

97689751 125403079 

140722741 82370089 

 

The table below schematizes the solution with 20332471 in position 0, the other 5 solutions of scheme 1 being available 

by swapping the 3 crosses on the last three columns (pk = 17, 19 and 23) from one line to another, this being possible 

because these crosses are alone in their respective column. 

 



P 42/142                                                    

Distance from 

the first value 
        

 
3 5 7 11 13 17 19 23 

-2 
        

0 
        

2 X  (X)      

4  X       

6    X     

8 X        

10     X    

12        X 

14 X (X)       

16   X      

18       X  

20 X        

22      X   

24  X       

26 X        

28    X     

30   X      

32 X        

34  X       

36     X    

38 X        

40 
        

42 
        

 

The number of redundancies are equal to 2 over 21. 

 

Note: This maximum spacing corresponds to some case where the two void borders are not made up of a single integer 

without small dividers but by a pair of numbers. In the next step, it can only increase by 2 (new spacing = 42) and will 

therefore be smaller than the 2pi-1 spacing of the standard scheme (i = 9, 2pi-1. = 2p8 = 46). 

 

Statement 1  
 

When ΔPmax > 2pi-1, we think that framing is systematically realized by a pair of numbers as above. 

We would thus be in the case of another problem (that of pairs of numbers) in which these exceptions play no role neither 

predominant nor even notable. These pairs take revenge for their anonymity there by playing here troublemakers. 

 

5.2.6. Minimal spacing.  

 

We are talking of the spacing 2 and integers that in the cycle 1 are not exclusively primes, but specifically numbers with 

large divisors (which gap 2 and are so named twins).  

The average density of large twin dividers in the cycle 1 is exactly ∏((pk-2)/pk), k = 1 to i, at step i. Assuming a relatively 

uniform distribution in a large enough interval, as for example the interval pi +2 to pi² (as soon as 30 values are included 

for example), interval which contains by algorithmic construction only primes, we get a generative density of twin prime 

numbers of about ∏((pk-2)/pk) ≈ c2.e
-2γ

/ln
2
(pi) using the generalization of the Mertens theorem, that is also some c/ln

2
(pi) 

upstream of the abscissa pi. This will create progressively in the range 0 to pi (which increases when i increases) a 

quantity c.pi/ln
2
(pi) of twin prime numbers. 

 

Note:  

Even if the distribution of 2-spacings is not uniform, nothing does influence or reduces their evolution apart from the 

average ratio (pi-2)/pi. The twin numbers late to the call between pi +2 to pi² will come up more numerously later on, 

where those in advance will delay the arrival of followers. Asymptotically the average necessarily prevails over any other 

phenomenon. 

 

Thus again: 

 

Statement 2 
 

The asymptotic evolution of the cardinal of twin prime numbers is c.pi/ln
2
(pi), c a positive constant (to be determined).  

So there is an infinite number of twin primes.   

 

We already have a statement along the desired lines. Let us nevertheless develop further the topic, especially that of ratio 

(pk-2)/pk. 
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6. Eratosthenes crossed sieve. 
 

We are just talking of the Eratosthenes sieve to which we add a special counter that we name signature. 

 

6.1. Case of the twin prime numbers. 

 

We start with the odd numbers (hence the x-axis scaling with a step of 2, fact which one must pay attention later on) and 

we gradually remove multiples of prime numbers seeking for couples of twin prime numbers (1 is not a prime number, 

hence the absence of 2 under the integer 3 in the following table) : 

 

Tables 25 

Step 0 : Initial list  
 

E
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1
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6
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3
 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 

  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 

Step 1 : 3-Multiples withdrawal (except 3) 
 

Entry Cycle1 Cycle2 Cycle3 Cycle4 Cycle5  Etc. 

1 3 5 7  11 13  17 19  23 25  29 31  35 37  41 

  2 2   2   2   2   2   2   

 

Step 2 : 5-Multiples withdrawal (except 5) 
 

Entry Cycle1 Cycle2 Etc. 

1 3 5 7  11 13  17 19  23   29 31   37  41 43  47 49  53   59 61   67  

  2 2   2   2      2      2   2      2     

 

Step 3 : 7-Multiples withdrawal (except 7) 
 

Entry Cycle 1 (not entirely represented) 

1 3 5 7  11 13  17 19  23   29 31   37  41 43  47   53   59 61   67  

  2 2   2   2      2      2         2     

 

Step 4 : 11-Multiples withdrawal (except 11) 
 

Entry Cycle 1 (not entirely represented) 

1 3 5 7  11 13  17 19  23   29 31   37  41 43  47   53   59 61   67  

  2 2   2   2      2      2         2     

 

Step 5 : 13-Multiples withdrawal (except 13) 
 

Entry Cycle 1 (not entirely represented) 

1 3 5 7  11 13  17 19  23   29 31   37  41 43  47   53   59 61   67  

  2 2   2   2      2      2         2     

 

Step 6 : 17-Multiples withdrawal (except 17) 
 

Entry Cycle 1 (not entirely represented) 

1 3 5 7  11 13  17 19  23   29 31   37  41 43  47   53   59 61   67  

  2 2   2   2      2      2         2     

 

In the previous process, when a multiple is removed of a column, the 2 at the following column is removed also (if still 

there).  

We call the last line of the tables (containing the figures 2) the signatures’ line. 

 

We observe a "rho" type process : we have a first part of numbers, we will call the "entry" part, which has a non-repetitive 

structure and parts that we call "cycles" with repetitive patterns. The amplitudes of these patterns are equal to 2.3.5…p i, 

with pi being the last prime number whose multiples were removed (the integer pi being retained). Thus, the integers of 

the cycle n+1 are those of the cycle n by adding the 2.3.5…pi product and the signatures will repeat identically up to 

infinity. 

Cycle 1 starts at pi+4 (pi+2+2n in the general case of a gap of 2n instead of 2 except for p0 = 2 (at p0+3)). 
 

We can provide a picture of the signatures, odd "survivors" of this process, i.e. numbers which retain 2 facing them on the 
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last row of the said table : 

 

Table 26 
 

Step 

i 
pi 2.3…pi Entry 

#(entry 

survivors) 
Cycle1 

#(Cycle1 

survivors) 

= 

#(Bi) 

#(Bi)/#(Bi-1) pi-#Bi/#Bi-1 

1 3 6 1-5 1 7-12 1   

2 5 30 1-7 2 9-38 3 3 2 

3 7 210 1-9 2 11-220 15 5 2 

4 11 2310 1-13 3 15-2324 135 9 2 

5 13 30030 1-15 3 17-30046 1485 11 2 

6 17 510510 1-19 4 21-510530 22275 15 2 

7 19 9699690 1-21 4 23-9699712 378675 17 2 

 

The reader must be attentive to the fact that when we are talking of a survivor, we are talking about a pair of integers : this 

one who has the gap 2 registered under its value and the previous one that makes the pair with it. We do not count 

numbers but pairs of numbers. We count signatures. 

 

We observe that the number of signatures in the repetitive parts evolves according to the formula : 

 

Theorem 12  
 

The number of signatures per cycle is given recursively by: 

 

#(Bi+1)/#(Bi) = pi+1-2                (58) 
 

Proof  
 

Relation (58) results from theorem 1. We need to get at stage i, the number of eliminations, i.e. multiples of pi (or integers 

0 modulo pi) present in 1 cycle 1. A sequence (0, r, 2r,..., (s-1).r) modulo s, where r = 2.3... pi-1 and s = pi are coprime, 

contains exactly a single 0. It is the same by adding a constant c to each of the terms of (0, r, 2r, …, (s-1).r), that is for (c, 

c+r, c+2r, …, c+(s-1).r) mod s. We will have then exactly for a pair of numbers p and q such as p-q = 2, two eliminations 

because 2 being coprime with pi, the 0 within (c, c+r, c+2r, …, c+(s-1).r) mod s and the 0 within (2+c, 2+c+r, 2+c+2r, …, 

2+c+(s-1).r) mod s are necessarily shifted.  

We take also B0 = 1 (p0 = 2) which initiate in a coherent way the recursive sequence.   

 

It follows immediately: 

#(Bi) =   Π (pk-2)                         (59) 

         3 ≤ pk ≤ pi   

 

Illustration 
 

p-q = 2 and pi = 7 

At step 2 (withdrawal of multiples of 5), we have the {13, 19, 31} survivors, as the reader will find above. At the next 

step, the survivors of interest here are between 11 and 220 (i.e. 7+4+2.3.5.7-1) and are built from {13, 19, 31} modulo 30 

(30 = 2.3.5).  

 

We get the following tables : 

Table 27 

 

For p (in p-q = 2) 
 

13  13 43 73 103 133 163 193  133 = 7.19 

19 => 19 49 79 109 139 169 199  49 = 7.7 

31  31 61 91 121 151 181 211  91 = 7.13 

 

For q (in p-q = 2) : 
 

11  11 41 71 101 131 161 191  161 = 7.23 

17 => 17 47 77 107 137 167 197  77 = 7.11 

29  29 59 89 119 149 179 209  119 = 7.17 

 

Let us reconsider the two tables modulo 7 with 0 shifted by 2 in the second table. 

We get : 
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For p (in p-q = 2) 
 

13  6 1 3 5 0 2 4  133 = 0 mod 7 

19 => 5 0 2 4 6 1 3  49 = 0 mod 7 

31  3 5 0 2 4 6 1  91 = 0 mod 7 

 

For q (in p-q = 2) : 
 

11  4 6 1 3 5 0 2  161 = 0 mod 7 

17 => 3 5 0 2 4 6 1  77 = 0 mod 7 

29  1 3 5 0 2 4 6  119 = 0 mod 7 

 

It is, a priori, impossible to predict where in each table the eliminations will occur (even at a stage as early as above). But, 

we have necessarily a permutation of (0, 1, …, pi-1) in each line and therefore a unique elimination (in each line) as 2.3. 

5…pi-1 is prime with pi. 

 

The positions of the eliminations are shifted from one line to the other in each of the two illustrations. The order of 

presentation of congruencies is the same following a circular permutation (here the order is 0, 2, 4, 6, 1, 3, 5), but this is 

not helpful for what we are here concerned.   
 

In addition, and this time it is required to our purpose, the eliminations positions (as the other non-zero congruencies) are 

shifted from the first table to the second one between two corresponding lines (lines of 13 and 11, lines of 19 and 17, lines 

of 31 and 29) as gap 2 is prime with pi. Hence, we get elimination of exactly 2pi solutions for the pi examined situations.   

 

We get a depletion of the number of "survivors" at step i which is expressed not heuristically, but by an arithmetic law. At 

every step i, we have pi columns of which 2 are eliminated.  

The depletion of the signatures is thus given by the ratio : 

 

(pi-2)/pi                (60) 

 

We find easily the relationship (58)  since #(Bi)/#(Bi-1) is equal to this ratio multiplied by pi : 

 

#(Bi) = ( 
pi-2 

).pi = pi-2 
#(Bi-1) pi 

 

This non-zero ratio shows that there is never exhaustion of some potential candidates to the prime numbers twin in the 

cycles. But this would not suffice to get infinite twins. Twin prime numbers remain at infinity because the eliminations 

due to the Eratosthenes crossed sieve, when the steps are incremented, are regulated by a proportion that is quite enough 

close to 1. For an assessment of the lower bound of the twin prime numbers population, the key is indeed in the ratio (pi-

2)/pi.  

 

The goal underneath is only some numerical clarifications. We give quantities at the start of the routine showing the 

'evidence' of the result. 

 

Table 28 

 

Step i pi 

Rpi = 

(2.3.5…pi)/

((3-2)(5-

2)…(pi-2)) 

pi+1
2
/Rpi Number of 

pairs 

present 

between 

pi+4 and 

pi+1² 

c/2 = 

pi+1
2
/Rpi/i² 

1 3 6 4,17 3 4,17 

2 5 10 4,90 4 1,23 

3 7 14 8,64 7 0,96 

4 11 17,11 9,88 8 0,62 

5 13 20,22 14,29 14 0,57 

6 17 22,92 15,75 15 0,44 

7 19 25,61 20,65 18 0,42 

8 23 28,05 29,98 25 0,47 

9 29 30,13 31,89 26 0,39 

10 31 32,21 42,50 36 0,43 

11 37 34,05 49,37 42 0,41 

12 41 35,80 51,65 44 0,36 

13 43 37,54 58,84 54 0,35 

14 47 39,21 71,64 66 0,37 
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Step i pi 

Rpi = 

(2.3.5…pi)/

((3-2)(5-

2)…(pi-2)) 

pi+1
2
/Rpi Number of 

pairs 

present 

between 

pi+4 and 

pi+1² 

c/2 = 

pi+1
2
/Rpi/i² 

15 53 40,75 85,42 78 0,38 

16 59 42,18 88,22 82 0,34 

17 61 43,61 102,94 100 0,36 

18 67 44,95 112,14 110 0,35 

19 71 46,25 115,21 112 0,32 

 

What means this table? At step i, we remove all the multiples of pi. As pi+1 is prime, at the next step, the first withdrawal 

is necessarily beyond pi+1
2
. But the first pair is already present well below this abscissa. The abscissas ratio increases 

progressively (it may decrease a bit from time to time) and this phenomenon is irreversible. 

 

The number of signatures is ∏ (pk-2), k = 1 à i, p0 = 2, in a cycle of size 2.3.5…pi, hence statistically a distance between 

signatures of 2.∏ pk/(pk-2). In the [pi +4, pi+1²] interval, whose approximate size tends towards pi+1², we therefore have 

(pi+1²/2).∏ (pk-2)/pk → (pi+1²/2).(c/ln²(pi)) = (pi+1²/pi²).(c/2).pi²/ln²(pi) ≈ (c/2).i² signatures.  

The graphs below illustrate that : 

 

Graphs 4 and 5 

 

  
 

The growth of the number of pairs actually twin primes is parabolic versus to the current step (i.e. index i): 

 

#( number of twin prime pairs at step i) ≈ 0,34.i
2
                       (61) 

 

Another way to find this result is to observe that, according to the relationship 59, the number of signatures in the cycle 1 

at step i is given by #(Bi) = Π3 ≤ pk ≤ pi (pk-2). The size of the cycle 1 being Π3 ≤ pk ≤ pi pk, on average, the distance between 

the remaining signatures is so Π3 ≤ pk ≤ pi pk/(pk-2), expression that tends, according to the generalization of the Mertens 

theorem, towards c.ln²(pi) when i tends towards infinity with c some constant (of the order of 1,2). This means that within 

the cycle 1 between pi+4 and pi², there are on average (1/c).(pi²-pi-4)/ln²(pi) pairs of numbers. However, these can be in 

this interval only (twin) prime numbers, since all the multiples of 3 up to pi were removed. When pi increases, pi becomes 

negligible in front of pi² and the order of magnitude of the expression is then (1/c).pi²/ln²(pi). As pi/ln(pi) tends towards i, 

when i tends to infinity the order of magnitude of quantities is c’i², c’ tending towards a non-null constant. 

 

6.2. Case of relative prime numbers. 

 

We examined previously the case of the gap 2 for twin prime numbers. Let us look at the 2n gaps (relatives like cousins, 

etc.). We have compiled a table of a few cases to illustrate generality. Cycle 1 begins at 2n+pi+2. Table 29 gives the 

number of eliminations in cycle 1 (and in the following cycles) as the sequence increases, table 30 gives the number of 

survivors in the cycles. 

 



P 47/142                                                    

Tableau 29 

 

 Sequence = pi 3 5 7 11 13 

Gaps = 2n,  

with divisors of n 

only among 

Examples #(removals in cycle1) = #Ai 

2 2, 4, 8, 16… 2 2 6 30 270 

2 and 3 6, 12, 18, 24, 36, 48, 54… 1 4 12 60 540 

2 and 5 10, 20, 40, 50… 2 1 8 40 360 

2 and 7 14, 28, 56… 2 2 3 36 324 

2 and 11 22, 44… 2 2 6 15 300 

2 and 13 26, 52… 2 2 6 30 135 

2, 3 and 5 30, 60… 1 2 16 80 720 

2, 3 and 7 42… 1 4 6 72 648 

2, 5 and 7 70… 2 1 4 48 432 

2, 3, 5 and 7 210… 1 2 8 96 864 

2, 3, 5, 7 and 11 2310… 1 2 8 48 960 

 

Tableau 30 

 

 Sequence = pi 3 5 7 11 13 

Gaps = 2n,  

with divisors of n 

only among 

Examples #(remainder in cycle1) = #Bi 

2 2, 4, 8, 16… 1 3 15 135 1485 

2 and 3 6, 12, 18, 24, 36, 48, 54… 2 6 30 270 2970 

2 and 5 10, 20, 40, 50… 1 4 20 180 1980 

2 and 7 14, 28, 56… 1 3 18 162 1782 

2 and 11 22, 44… 1 3 15 150 1650 

2 and 13 26, 52… 1 3 15 135 1620 

2, 3 and 5 30, 60… 2 8 40 360 3960 

2, 3 and 7 42… 2 6 36 324 3564 

2, 5 and 7 70… 1 4 24 216 2376 

2, 3, 5 and 7 210… 2 8 48 432 4752 

2, 3, 5, 7 and 11 2310… 2 8 48 480 5280 

 

Lemma 4  
 

The number of remaining elements in one cycle is given recursively by : 

 

#Bi/#Bi-1 = if (pi \2 n, pi-1, pi-2)             (62) 

 

Proof 
 

Let us go back to the proof of the theorem 4 page 8 showing the existence of a single element 0 modulo pi with theorem 1. 

In the mechanism of withdrawal by the Eratosthenes crossed sieve, the two 0 modulo pi, that match, can only be either 

shifted or aligned.   

They are aligned if and only if p-q = 0 mod pi, so if 2n = 0 mod pi, or finally pi divides 2n.   

If there is a shifting, there are two eliminations (as shown above), otherwise if there is only one (as shown below). 

 

Illustration 
 

p-q = 10 and pi = 5 

At step 1 (removal of multiples of 3), there are remaining all the integers 5 modulo 6, the first cycle starting at 15 (that is 

3 +2 +10).  

At next step (removal of multiples of 5), the survivors that interest us are between 17 and 46 (that is 5 +2 +10 +2.3.5-1) 

and are built from {17} modulo 6. We have the tables : 

 

For p (in p-q = 10) 
 

17 => 17 23 29 35 41    35 = 5.7 
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For q (in p-q = 10) : 
 

7 => 7 13 19 25 31    25 = 5.5 

 

Let us rewrite the two features modulo 5. 

We get : 

 

For p (in p-q = 10) 
 

17 => 2 3 4 0 1    35 = 0 mod 5 

 

For q (in p-q = 10) : 
 

7 => 2 3 4 0 1    25 = 0 mod 5 

 

The said alignment of values 0 modulo pi is verified.  

 

Theorem 13  
 

The rarefaction of the number of elements in the cycles is the strongest when p-q = 2
m
. 

 

Proof 
 

According to the previous lemma 4, the survivors ratio #(Bi)/#(Bi-1) is minimal (and equal to pi-2) at each step since pi 

never divides n as n is only multiple of 2 (and pi ≥ 3). Hence, we get minimum number of signatures and the result. 

 

Thus, if there is an infinite number of twin prime numbers, there are an infinite number of relative prime numbers. 

 

Lemma 5  
 

The number of removals (or disappearances) is given by : 

 

#Ai = #Bi-1.if (pi \2 n, 1, 2)             (63) 

 

Proof 
 

It is a paraphrase of the topic concerning eliminations. 

 

Lemma 6  
 

The number of removals of in a cycle at step i+1 is given by the number of removals in a cycle at step i by: 

 

#Ai+1 = #Ai.if (pi \ 2n, pi-1, pi-2).if (pi+1 \ 2n, 1, 2)/if (pi \ 2n, 1, 2)             (64) 
 

Proof 
 

We have #Ai = #Bi-1.if (pi \ 2n, 1, 2) and thus #Ai+1 = #Bi.if (pi+1 \ 2n, 1, 2).  

As #Bi/#Bi-1 = if (pi \ 2n, pi-1, pi-2), the result follows by simple application of proportions. 

Besides, we take #A0 = 1 (p0 = 2) to initiate in a coherent way the recursive sequence. 

 

Lemma 7  
 

For twin prime numbers, the number of removals in a cycle at step i+1 is given by: 

 

#ARi+1 =   Π (pk-2)                   (65) 

         3 ≤ pk ≤ pi   

 

Proof 
 

We have n = 1 and then apply recursion #Ai+1 = #Ai.(pi-2) since pi does not divide n and we have besides have #AR1 = 1. 

 

Lemma 8  
 

For relative prime numbers, the number of removals in a cycle at step i+1 is given by: 

 

#Ai = if (pi \2n, 1/2, 1). Π(pk-1)/(pk-2)  .#ARi             (66) 

 
pk\2n 

3 ≤ pk < pi 

 
 

 

where #ARi is the number of removals in a cycle for twin prime numbers (2n = 2), cardinal used as a reference. 

 

Proof 



P 49/142                                                    

 

This is mere application of lemma 6. 

 

We can also write pk\n and pi\n instead of pk\2n and pi\2n since the formula is used for i ≥ 1. 

 

#Ai = if (pi \n, 1/2, 1). Π(pk-1)/(pk-2)  .#ARi             (67) 

 
pk\n 

3 ≤ pk < pi 

 
 

 

The reader can observe that the determinant terms of the Euler product of Hardy and Littlewood formula that are Π(pk-

1)/(pk-2) for pk\n show up here.  

Then let us write : 

 

#HLi =  Π(pk-1)/(pk-2)                                  (68) 

 
pk\n 

3 ≤ pk < pi 

 
 

and 

#HL =  Π(pk-1)/(pk-2)                                   (69) 

 pk\n   

 

We get immediately : 

#Ai = if (pi \n, 1/2, 1). #HLi.#ARi                        (70) 

 

6.3. Evaluation of relative prime numbers cardinals. 

 

Theorem 14  
 

The Eratosthenes crossed sieve gives the set of relative prime numbers by iteration to infinity. 

 

Proof 
 

The Eratosthenes crossed sieve gives at step i the whole set of relative prime numbers (i.e. distant of 2n fixed in advance) 

up to the abscissa pi
2
. When i growths to infinity, pi tends to infinity as well as pi

2
.  

Hence the result. 

 

Thus, we can estimate the number of pairs from 0 to infinity by counting the of the signatures line’ items from 0 to 

infinity. 

 

6.3.1. Case of twin prime numbers.  

 

The solutions are obtained by iterated subtractions of odd integers by the of Eratosthenes crossed sieve which is the only 

agent at work here. 

 

We can evaluate this using lemma 7 or with tables 25 features : 

 

At step 1, pi = 3, the proportion of signatures (of odd integers, which is undertone starting now) disappearing after 3+4 is 

#A1/p1 = 2/3.  

At step 2, pi = 5, the additional proportion of signatures disappearing after 5+4 is 2.(3-2)/(3.5).  

At step 3, pi = 7, the additional proportion of signatures disappearing after 7+4 is 2.(3-2).(5-2)/(3.5.7).  

At step 4, pi = 11, the additional proportion of signatures disappearing after 11+4 is 2.(3-2).(5-2).(7-2)/(3.5. 7.11).  

At step 5, pi = 13, the additional proportion of signatures disappearing after 13+4 is 2.(3-2).(5-2).(7-2)(11-2)/(3.5.7. 

11.13).  

 

Thus at step i, the additional proportion of signatures disappearing after pi+4 is 2.(3-2).(5-2).(7-2)(11-2)(pi+1-2)/(3.5.7. 

11.13…pi), so that :  

 

  pi   pi-1  

#RCi = #ARi /(  Π p)  = (2/pi). Π (p-2)/p                 (71)  

          p = 3           p = 3  

 

This is the first of the depletion coefficients #RCi expressions of Eratosthenes crossed sieve (ECS). 
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6.3.2. Case of pairs of prime numbers distant of 2
m

.  

 

The process is the same as before and we give first two examples : 

 

Gaps of 4 : 

 

Tables 31 

 

Step 0 : Initial list  
 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 

  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

 

Step 1 : 3-Multiples withdrawal (except 3) 
 

Entrée Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Etc. 

1 3 5 7  11 13  17 19  23 25  29 31  35 37  41 43 

  4 4  4   4   4   4   4   4 4 

 

Step 2 : 5-Multiples withdrawal (except 5) 
 

Entrée Cycle1 Cycle2 Etc. 

1 3 5 7  11 13  17 19  23   29 31   37  41 43  47 49  53   59 61   67  

  4 4  4   4   4         4   4   4         

 

Gaps of 8 : 

 

Tables 32 

 

Step 0 : Initial list  
 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 

    8 8 8 8 8 8 8 8 8 8 8 8 8 8 

 

Step 1 : 3-Multiples withdrawal (except 3) 
 

Entrée Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Etc. 

1 3 5 7  11 13  17 19  23 25  29 31  35 37  41 43  45 

     8 8   8   8   8   8   8   

 

Step 2 : 5-Multiples withdrawal (except 5) 
 

Entry Cycle1 Cycle2 Etc. 

7  11 13  17 19  23   29 31   37  41 43  47 49  53   59 61   67  71 73   

  8 8   8      8   8      8      8   8      

 

At step i, the number remaining in the cycle j is the same regardless of m in 2
m
 (here 1 at step 0, 1 at step 1 and 3 at step 

2). 

 

In the general case, we thus have : 

 

At step 1, pi = 3, the proportion of signatures disappearing after 3++2+2
m
 is 2/3.  

At step 2, pi = 5, the additional proportion of signatures disappearing after 5+2+2
m
 is 2.(3-2)/(3.5).  

At step 3, pi = 7, the additional proportion of signatures disappearing after 7+2+2
m
 is 2.(3-2).(5-2)/(3.5.7).  

At step 4, pi = 11, the additional proportion of signatures disappearing after 11+2+2
m
 is 2.(3-2).(5-2).(7-2)/(3.5. 7.11).  

At step 5, pi = 13, the additional proportion of signatures disappearing after 13+2+2
m
 is 2.(3-2).(5-2).(7-2)(11-2)/(3.5.7. 

11.13).  

… 

 

Thus at step i, the additional proportion of signatures disappearing after pi+2+2
m
 is 2.(3-2).(5-2).(7-2)(11-2)(pi-1-2)/(3.5.7. 

11.13…pi), thus already :  

 

  pi   pi-1  

#RCi = #ARi /  Π p  = (2/pi). Π (p-2)/p                   (72)  

          p = 3           p = 3  
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6.3.3. Case of relative prime numbers.  

 

On the previous model at step i, the additional proportion of signatures disappearing after p i+2+2n is : 

 

  pi   pi-1  

#RCi = if (pi \n, 1/2, 1).#HLi.#ARi /(  Π p)  = if (pi \n, 1/2, 1). #HLi.(2/pi). Π (p-2)/p                      (73)     

          p = 3           p = 3  

 

6.3.4. Formula of cardinals.  

 

Let us repeat again that the disappearing proportions are imposed arithmetically. There is no margin incertitude over their 

total number when the whole set of N up to the point at infinity is taken into account.    

 

Starting there, we can estimate the number of solutions for twin prime numbers and similarly for primes of gaps 2
m
 up to 

infinity by writing an infinite series that is built from the previous sieve. 

 

Theorem 15  
 

π(p-q = 2
m
) = lim M-(2/3).M1-(2/(3.5)).M2-(2.3/(3.5.7)).M2-(2.3.5/(3.5.7.11)).M3-...-RCi.MCi-…            (74) 

 N → +∞ 
 

where 

M = (N-1-2
m
)/2 

Mi = (N-pi-2-2
m
)/2  

MCi = if((N-pi-2-2
m
)/2 < 0, 0, (N-pi-2-2

m
)/2) 

(75) 

(76) 

(77) 

 

and #RCi is defined above. 

 

Proof. 
 

We start from the odd numbers 3+2
m

 up to N, the infinite value being attributed to N in a second time. We have M = (N-

3-2
m
)/2+1 integers. 

Then the numbers are removed following the proportions given in paragraph 6.3.1 starting at abscissa pi+2
m
, Mi = (N-pi-

2
m
)/2+1.  

The proportions bearing on the odd numbers, it is necessary to take a ratio 1/2 in the abscissa differences N-(pi+2+2
m

). 

We define Mi = (N-pi-2-2
m
)/2. We then get the infinite sum giving the sought cardinal (p1 = 3). 

 

When such a numerical application is carried out, the series as in the case of the Eratosthenes sieve is not infinite. 

Specifically, the Mi coefficients must be taken equal to 0 when (N-pi-2-2
m
)/2 becomes negative and so for calculations we 

must retain the expression : 

 

MCi = if((N-pi-2-2
m
)/2 < 0, 0, (N-pi-2-2

m
)/2) 

 

For our numerical applications, we then rewrite the relationship (74) as : 

 

π(c) = lim M-(1/c).((2/3).MC1+(2/(3.5)).MC2+(2.3/(3.5.7)).MC2+(2.3.5/(3.5.7.11)).MC3+...+#RCi.MCi+…      (78) 

 N → +∞ 

 

When c = 1, then π(c) = π(p-q = 2
m
). 

 

We then follow the evolution of the values of c that matches π(c) to the actual number of relative prime numbers.   

 

If c ≤ 1, then the actual number of solutions is less than π(1).  

If c ≥ 1, then the actual number of solutions is greater than π(1).  

The reader will understand that we use 1/c in the expression (78) not because we seek complication, but to match to the 

"≤" sign a reduction and to "≥" sign an increase. 

 

Twin prime numbers example shows that the c number turns out to be greater than 1 (with rare exceptions) which means 

that the cardinal of twin prime numbers near the origin is greater than π(1).  

We can do a second evaluation by choosing a different category for reference by pretending that the first pair of twins can 

appear only starting from pi
2
, namely by choosing : 

 

MCi = if((N-(2+2n+pi
2
))/2 < 0, 0, (N-(2+2n+pi

2
))/2)             (79) 

 

This method should then give an underestimate of π(1) reducing the cardinal of twin prime numbers near the origin as 

'statistical' area of the first pair of twins range below 2+2n+pi
2
. The numerical application confirms it.  

It should be understood that these choices have a very relative importance, because the only point that interests us is the 

point to infinity for which c = 1 stands as the limit value every time. The choice of the x-axis has only effect than to stick 
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a little better to the real cardinals near origin.   

 

For a gap 2n, the formula generalizes as : 

 

Theorem 16  
 

                       +∞ 

π(p-q = 2n) = lim            M- Σ #RCi.MCi                        (80) 

 N → +∞         i = 1 

where 

M = (N-1-2n)/2 

Mi = (N-pi-2-2n)/2  

                           (81) 

(82) 

MCi = if((N-pi-2-2n)/2 < 0, 0, (N-pi-2-2n)/2)               (83) 

and 

         i 

#RCi =  #Ai.∏(1/pk)                                                          (84) 

       k = 1 

 

Proof 
 

We just use theorems 15 and 6 and the result follows immediately. 

 

Numerical applications 
 

For numeric applications, it suffices to use in the same way again,  

 

MCi = if((N-pi-2-2n)/2 < 0, 0, (N-pi-2-2n)/2) 

 

As well as the alternative choice : 

 

MCi = if((N-pi
2
-2-2n)/2 < 0, 0, (N-pi

2
-2-2n)/2)                 (85) 

 

This gives for the coefficients c for 2n = 2 : 

 

Graph 6 

 

 
 

The first choice reduces the number of solutions, because generally the first number related after pi+2+2n will appear 

only after a certain interval (it as the minimum x-coordinate of the first such number), while on the other hand, several 

cases could have occurred before abscissa pi²+2+2n, thus raising the number of solutions. 

 

Theorems 15 and 16 formulas then give without much work interesting results by difference or division. 

 

6.3.5. Common asymptotic branches. 

 

Using difference, we get : 

 

Theorem 17  
 

The number of solutions of π(p-q = 2
i
) is either finite for all i, or infinite for all i. 

 

Proof 
 

π(p-q = 2
m
) - π(p-q = 2) = lim (2/3).(2

m
-2)+(2/(3.5)).(2

m
-2)+(2.3/(3.5.7)).(2

m
-2)+(2.3.5/(3.5.7.11)).(2

m
-2)+... 

 N → +∞ 
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Thus N disappears in right-hand side by the subtraction operation and we can factor out the term 2
m

-2.   

In addition, as we cannot remove to a set more items that it contains, the sum 

 

2/3+2/(3.5)+2.3/(3.5.7)+2.3.5/(3.5.7.11)+… 

 

is necessarily inferior or equal to 1. 

 

Hence, after numerical verification that this sum is close to 1 (and in fact exactly equal to 1): 

 

π(p-q = 2
m
) - π(p-q = 2) = (2

m
-2).(2/3+2/(3.5)+2.3/(3.5.7)+2.3.5/(3.5.7.11)+2.3.5.9/(3.5.7.11.13)+...) 

 ≈ 2
m
-2 

 

We infer that the difference of the number of solutions of π(p-q = 2
i
) and π(p-q = 2

j
) is finite.  

Hence the result. 

 

This can then be generalized. 

 

Theorem 18  
 

Let us have 2n and 2m with same dividers without exception. The numbers of solutions π(p-q = 2n) and π(p-q = 2m) are 

then either both finite or infinite. 

 

Proof 
 

Indeed, the infinite sum Σ # RCi is less or equal to 1 as was point out in the previous paragraph.  

We then resume the exercise with gaps of type 2n and 2m.   

We have then π(p-q = 2n) - π(p-q = 2m) = (2n-2m).(Σ #RCi) ≤ (2n-2 m).   

The difference being finite, we infer the previous theorem.   

 

Thus, if the number of solutions tends to infinity, the numbers of solutions are found on the same asymptote when 

dividers are all common.  

This gives, for examples, the two following graphs: 

 

Graphs 7 and 8 

 

  
 

6.3.6. Implementation of a bijection between relative prime numbers with common asymptotic branches. 

 

The whole chapter is carried over in appendix 4 to clarity to the mainstream article. 

 

6.3.7. Hardy-Littlewood formula. 

 

Theorem 19  
 

The cardinal of relative prime numbers are in the ratio #HL of Hardy-Littlewood formula. 

 

Proof 
 

As Σi #RCi = 1-ε, ε ≥ 0, we get : 
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                   +∞ 

π(p-q = 2n) = lim      ε.M+ Σ #RCi.(M-Mi)                                                     (86) 

 N → +∞      i = 1 

Using M-Mi = (pi+1)/2, we write 

 

         +∞ pi-1 

π(p-q = 2n) =  lim   ε.M+ Σ if(pi \n, 1/2, 1).#HLi.(pi+1)/pi. Π (pk-2)/pk             (87) 

  N → +∞ i = 2 pk = 3 

 

Then for i the maximum index m of all divisors of n : 

 

                                +∞ pi-1 

π(p-q = 2n) =  lim   ε.M-cte1+#HL. Σ (pi+1)/pi. Π (pk-2)/pk                              (88) 

  N → +∞                 i = m+1 pk = 3 

 

where cte1 is a constant. 

 

So that also : 

 

                                          +∞ pi-1 +∞ pi-1 

π(p-q = 2n) =  lim   ε.M-cte1+#HL.           Σ   Π (pk-2)/pk+#HL. Σ    (1/pi). Π (pk-2)/pk                 (89) 

  N → +∞                   i = m+1 pk = 3 i = m+1     pk = 3 

 

Yet according to Mertens theorem corollary  

 

П (1-2/p) ≡ c2.e
-2γ

/ln
2
(x), c2 > 0         (90) 

2 < p ≤ x, x → +∞  

 

We get straightforward : 

 

   +∞ +∞ 

π(p-q = 2n) =  lim   ε.M-cte1+#HL.  Σ cte2/ln
2
(pi)+#HL. Σ (1/pi).cte2/ln

2
(pi)               (91) 

  N → +∞   i = m+1 i = m+1 

 

What we rewrite : 

 

     +∞ +∞ 

π(p-q = 2n) =  lim   ε.M-cte1-cte3+#HL. (Σ cte2/ln
2
(pi)+ Σ (1/pi).cte2/ln

2
(pi) )              (92) 

  N → +∞  i = 1                i = 1    

 

Neither the first sum, nor the second sum to the right of equality do contain a linear component that could compensate for 

the linear component ε.M. Being the only component of this type and knowing that the relative prime numbers are less 

dense than the prime numbers in N, we have necessarily ε = 0.   

Moreover, the infinite sum Σ 1/ln
2
(pi) diverges, so cte1+cte3 is a non-significant term.  

The remaining terms are thus : 

 

  +∞ +∞ 

π(p-q = 2n) =  cte2.#HL.( Σ 1/ln
2
(pi)+ Σ (1/pi)/ln

2
(pi) )       (93) 

  i = 1 i = 1 

 

We find there the same asymptotic proportions as those of Hardy-Littlewood formula.  

Hence the theorem quoted above. 

 

Theorem 20  
 

There are an infinite number of relative prime numbers with given gap 2n. 

 

Proof 
 

The infinite sum Σ 1/ln
2
(pi) diverges as ln

2
(pi) < i from a certain rank on.   

Let us have ui = 1/ln
2
(pi) and vi = (1/pi)/ln

2
(pi). Then vi/ui = 1/pi → 0. The result is that Σvi/Σui → 0. 

Thus the infinite sum Σ (1/pi)/ln
2
(pi) is negligible towards the infinite sum Σ 1/ln

2
(pi).  

So : 
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         +∞ 

π(p-q = 2n) =  cte’’.#HL. Σ 1/ln
2
(pi)                                  (94) 

       i = 1 

 

Using relation (16), the previous expression will write as (cte’ ≠ 0) : 

 

π(p-q = 2n) =  cte’.#HL. lim y/ln
3
(y)                                 (95) 

               y → +∞     

 

Hence the result, this expression tending towards infinity. 

 

Argument 
 

We can deduce again backwards as to the chapter on prime numbers, based on an analogy of table 4, what it would be 

when the index is i, and not pi, which guide the initial calculation, thus redefining the abscissa axis support of the said 

calculation.  

To do this, we design the following table : 

 

Table 33 

 

Mi (i ≥ 1) Mi = N-pi
2
-1 Mi = N-pi-1 Mi = N-i-1 (i ≈ pi/ln(pi)) 

Interval between measures  pi.ln(pi) ln(pi) 1 

Deduced ratio1  pi
2
/(pi.ln(pi)) = pi/ln(pi) pi/ln(pi) i ≈ pi/ln(pi) 

Corresponding sum  Σ cte1’’.#HL.pi/ln
2
(pi) Σ cte2’’.#HL/ln

2
(pi) Σ cte3’’.#HL/ln(pi) 

Limit cte1’.x
2
/ln

3
(x) cte2'.#HL.x/ln

3
(x) cte3’.#HL.x/ln

2
(x) 

Deduced ratio2 

(taking x ≡ pi ≡ p) 

p/ln
2
(p)/(p²/ln

3
(p)) = 

ln(p)/p 

1/ln
2
(p)/(p/ln

3
(p)) = 

ln(p)/p 

1/ln(p)/(p/ln
2
(p)) = 

ln(p)/p 

 

Ratios 1 and 2 remain the same from one column to another. 

 

The logarithm is a unit higher : 

 

π(p-q = 2n) =  cte.#HL. lim x/ln
2
(x)                               (96) 

               x → +∞     

 

The usual Hardy-Littlewood formula is obtained by taking cte = 1.    

 

Important note:  
 

We repeat here the remark made for Eratosthenes sieve case. The end result for π(2n) comes in the form of a sum of 

fractions less than 1 in relationship 94. This comes from the fact that we manipulate M-Mi in the intermediate calculation. 

It is essential to note here that, we handle not fractions of units because otherwise our estimate would be false. We would 

have to take all these fractions equal to 0, which would amount to a global reduction of 0. Instead, when the actual 

calculations are done, we handle M on one hand and #RCi.Mi on the other hand in relationship 74. The first and the 

seconds are integers greater than 1 up to a certain rank. Rounding to integers or not, the results of the calculations again 

vary little here (meaning c is actually close to 1 when M is large).  

Appendix 1 presents a calculation with rounding to integers and obtained coefficient c is very close to 1. 

 

Theorem 21  
 

There are an infinite number of relative prime integers with gap 2n. 

 

Proof 
 

This is an immediate result of the relationship 88.  

Asymptotic progressions are in the Hardy-Littlewood #HLi(2n) ratio, and thus if one of them is infinite, all of them are 

infinite.   

 

To conclude, we have linked asymptotically equations arising from the Eratosthenes sieve to the PNT. This sieve with a 

slight modification (pi-2 instead of pi-1) gives a result similar to the PNT here with simply a factor in ln²() instead of ln(). 

For the same process, there is the same result : infinity in one case, infinity in the other. The remainder is calculation, 

useful however. 

 

Note: We have not demonstrated the Hardy-Littlewood formula but simply retrieved the asymptotic proportions that are in 

it. 
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6.3.8. Comparative evolution of depletion coefficients.  

 

The coefficients of depletion are at the heart of our study. Having the common property Σi #RCi = 1, regardless of the 

choice of the gap p-q = 2n, in the same way as for Eratosthenes sieve (i.e. Σi #REi = 1), it is useful to take the time to 

compare their evolutions. To recognize different choices, we will use the notation #RCi(2n) for terms referring to the 2n 

gap. 

 

There are two limit cases : The Σi #REi case of course and the Σi #RCi(2) case. The representative curves of all the others 

Σi#RCi(2n) cases are placed between these two limit cases from a certain rank i on (rank that can be as big as we want).   

Thus, we have the following curves: 

 

Graphs 9, 10, 11 and 12 

 

  
 

   
 

The last curve is not an exception to limit cases that we have identified. Simply, the number of divisors is such that the red 

curve is still here below the blue curve at the stage i = 100000. It is necessary to extend the data very far to see these 

curves intersect and then the red curve going closer to the purple curve.  

As contributions near the origin are finite, regardless of the chosen 2n value, these contributions are negligible before 

infinity and from a certain rank on the red curve will be much closer to the purple curve than from the blue curve, 

imposing then the result (i.e. a progression in x/ln²(x)). 

 

The green curve below, where 2n systematically contains all prime numbers up to a certain rank, is therefore a reference 

only up to a certain abscissa, any choice of n being necessarily finite. The red curve, corresponding to a gap where 2n 

systematically divides the prime numbers up to a certain rank pi (here up to pi ≤ 31), goes along that same green curve up 

to the abscissa pi (here pi = 31) then going away above it. 
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Graph 13 

 

 
 

Is a particularly interesting case where 3 is omitted in the list of the divisors of 2n, because it is no longer the previous 

limit curve (crossed Eratosthenes sieve green curve) that tangent partly the red curve but the curve blue (simple case of 

Eratosthenes sieve), and this starting when the chosen number of divisors becomes sufficient, tangential accompaniment 

being lost as soon as systematic dividers stop (here after p550 = 4001). 

 

Graphs 14, 15 and 16 

 

  
 

 
 

Of course, again, it is not because we can match Σi #RCi(2n) depletion curve, by a suitable choice, with Σi #REi upon as 

large range as we wish, that this changes anything on the overall behaviour of relative prime numbers at infinity. 

Infinity is immeasurable, and regardless of the choice of n, the red curve will detach from the blue one to approach then 

the violet one. In other words, all the curves for p-q = 2n (and thus the depletion coefficients) are almost identical to those 

of p-q = 2 starting from a sufficiently large rank.   

As the asymptotic contribution is the one that ensures the infinity of solutions, the conclusion is that p-q = 2n has either a 

finite number of solutions for any positive n or an infinite number of solutions for any positive n. 

 

6.4. Landscaping of twin numbers spacings. 

 

6.4.1. Generalities. 

 

In this paragraph, we will establish the infinitely many twin primes in a relatively simple way. However this simplicity 

leads a strong underestimation of the asymptotic cardinal. 
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This paragraph follows paragraph 5.2 in which the spacings between primes in cycle 1 at step i of the Eratosthenes 

algorithm were analysed. It follows the said paragraph but is not its direct consequence. Thus we will see that the quasi-

symmetry of the table 23’s example for the sole prime numbers, if it possibly still exists for pairs of primes, is now no 

longer visible here.  

 

The term landscaping is maintained here, but we use also architecture. We also note that previously there was no 

condition on primes and that so only one case was to be considered. On the contrary here, constraints are added to the 

integers which are objects of the study i.e. they are either twins, cousins, sexy, etc. This results in a special study for each 

of these cases, which cannot be done here exhaustively. 

 

We will limit therefore often to the case of the architecture of the spacings between twin prime numbers (2n = 2). 

Specifically, we will study the architecture of the spacings between twin integers lacking small divisors, i.e. the twin 

integers of the Eratosthenes Eras(i) sets, hence the missing word “prime” in the paragraph’s title. We list the spacings of 

an element to the previous and this one only. When we talk about element, we mean a pair of remaining numbers. The 

spacing is given by the distance between values in correspondence. For example, the spacing between the pair (3,5) and 

the pair (7,9) is equal to 9-5 = 7-3 = 4.  

 

The study is done on an interval of size #pi. But the goal is to draw an interesting property that can be used over the 

interval [pi, pi
2
]. 

 

6.4.2. Basic idea. 

 

The maximum spacing between integers in Eras(i) list is 2pi-1 (except for i = 8). Considering now pairs, assuming the best 

possible placement (positions values as relative primes), the occurrence of a maximum contingency appears a priori only 

once in doublet by forming an interval sum of the previous spaces, that is ∑i 2pk-1. We will check thereafter that the reality 

is somewhat different, especially that the maximum, although the order of magnitude is respected, can be larger and/or 

may be more numerous. 

 

6.4.3. Panoramas od enumeration. 

 

We start by enumerating spacings between twin numbers at steps 1 up to 7. 

 

Table 34 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1  

sizes 
6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

6 1 1 3 21 189 2457 36855 

12  2 8 56 504 6552 98280 

18   2 22 238 3374 53690 

24    6 96 1536 26208 

30   2 22 270 4230 72378 

36    4 60 1022 18776 

42    4 84 1716 34812 

48     20 474 10462 

54      40 1968 

60     12 380 9452 

66     12 286 6322 

72      64 2816 

78      66 2620 

84      12 632 

90      24 1236 

96      22 876 

102       16 

108      20 954 

114       0 

120       142 

126       48 

132       26 

138       86 

144       0 

150       20 



P 59/142                                                    

Steps i 1 2 3 4 5 6 7 

Numbers of 

spacings 
1 3 15 135 1485 22275 378675 

Average  

spacings 
6 10 14 17,11 20,22 22,92 25.61 

c = Δ/ln²(pi) 4,97 3,86 3,70 2,98 3,07 2,86 2,95 

 

Other numerical data for cousins, sexy, etc. numbers are included in Appendix 5. 

 

By construction, adding the spacings between integers, we find the overall magnitude of the cycle 1. So, using the values 

in the previous table, 1.6 = 6, 1.2+2.12 = 30, 3.6+8.12+2.18+2.30 = 210, etc. 

 

The 6-spacings are in odd amounts, while others are in even-numbered quantities for the same reason as that given to the 

chapter of the spacings between prime numbers (lemma 2 page 15). 

 

The number of spacings is equal to the number of signatures (here of value 2n = 2) and this one has already been 

evaluated in our study in table 26. It is equal to ∏(pk-2). The average spacing is thus equal to 2.∏pk/(pk-2) → c.ln²(pi), the 

product bearing on i terms and c tending towards a constant, as i increases, according to the generalization of the Mertens 

theorem (c assessment is close to 2,4 around pi = 10007).  

Assuming a uniform random distribution, this average would be of the same order of magnitude in the interval p i+2 to pi²-

1 (as in the rest of the cycle 1), interval in which remain only prime numbers (twins of addition by construction). There is 

thus, when pi becomes negligible in front of pi², approximately pi²/(c.ln²(pi)) = (2/c).pi²/ln²(pi²)) twin prime numbers in this 

interval, thus a growth proportional to x/ln²(x). 

 

Let us see then how quantities do increase when steps are incremented. 

 

Table 35 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

pi-4 
 

1 3 7 9 13 15 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

 

E(j) = Spacings Δ 

#R(j,i) = quantity of spacings Δ at rank i/quantity of spacings at rank i-1 

 

6  1 3 7 9 13 15 

12   4 7 9 13 15 

18 
 

  11 10,82 14,18 15,91 

24 
 

   16 16 17,06 

30 
 

  11 12,27 15,67 17,11 

36 
 

   15 17,03 18,37 

42 
 

   21 20,43 20,29 

48 
 

    23,7 22,07 

54 
 

    ∞ 49,2 

60 
 

    31,67 24,87 

66 
 

    23,83 22,10 

72       44 

78       39,70 

84       52,67 

90       51,5 

96       39,82 

102       ∞ 

108       47,7 

 

Lemma 9  
 

We have (when #R(j,i) exists) :  

 

#R(j,i) ≥ pi-4  

and 

#R(j,i) → pi-4 

i → +∞ 

(97) 

 

Proof 
 

For the second relationship, this ensues from Eratosthenes algorithm generating in the cycle 1 (and the followings) 

spacings E(j) growing necessarily at the level of a same x-coordinate. This creates a gradual saturation of small void 

spaces (starting with the smaller including 6 who is in this situation from the start), set of void spaces coming 
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progressively in “standard” proportion, i.e. base proportion allocated by the depletion when two integers are taken into 

account simultaneously (and not one only), which is pi-4. Indeed, recalling the lemma 1 (and theorem 12), we had 2 

disappearances at each stage. But here these disappearances are matched (to a second element) and we have therefore 4 

removals at each stage. 

 

So we have in summary the three relationships: 
 

  i  

#S(j,i) =  ∏ pk-2  

   

  i  

Δ(j).#S(j,i) =  ∏ pk  

   

    #R(j,i) ≥ pi-4  

 

The maximum value of Δ(j) = Δ(j,i) for which #S(j,i) is non-zero is highly conditioned for the condition #R(j,i) ≥ pi-4 that 

acts as a counter-reaction : If at rank i we have a high value of Δ(j,i) max, then that is repeatedly carried over to the 

following ranks and especially at the expense of a new strong value of Δ(j+1,i) max. At page 127, appendix 11, we come 

up with simulations that show how difficult it is to "go through the roof." 

 

Before resuming the study on columns, let us focus with lines. As we shall see, it would be relatively easy to deduce 

#S(j,i+1) from #S(j,i) data starting some rank i on provided one would have enough numerical values available beyond 

this rank i on a given j-line. Unfortunately, this is never the case. Indeed, the time required to get #S(j,i) populations is 

reasonable up to i = 9 (pi = 29). It would take a month for i = 10 and probably several years for i = 11, etc. However, we 

will give the general principle of this assessment below from examples : 

 

Conjecture 3  
 

The #R(j,i) coefficients are expressed by a system of iterative relationships in j from a certain rank i on.  

 

For the 2n = 2 case, the recurrence relationships are of similar structure (only coefficients changing) for j = 1 mod 2 and 

j+1 from a certain rank i on (for given j).    

 

This is a complete reminder of the iterative relationships obtained in paragraph 5.2.2.    

We give a number of examples as we did in the said paragraph : 

 

Table 36 

 

j Δ Formulas Conditions 

1 6 #S(1,i) = (pi-4).#S(1,i-1) i ≥ 2 

2 12 #S(2,i) = (pi-4).#S(2,i-1) i ≥ 4 

3 18 #S(3,i) = (pi-4).#S(3,i-1)+2
3
.(pi-1-6).(pi-2-6)…(p3-6) i ≥ 4 

4 24 #S(4,i) = (pi-4).#S(4,i-1)+ 2
5
.3

2
.(pi-1-6).(pi-2-6)…(p6-6) i ≥ 7 

 

The recurrence applies for j = 4 at an earlier rank by replacing (pi-1-6).(pi-2-6)…(p6-6) by 1. The values below have been 

checked up to rank i = 9. Beyond that rank, the values are speculative.  

Let us note that the values of #S(j,i) in parentheses do not deduce from the iterative formulas. 

 

i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) 

1 3 (1) 
   

2 5 1 (2) 
  

3 7 3 (8) (2) 
 

4 11 21 56 22 (6) 

5 13 189 504 238 (96) 

6 17 2457 6552 3374 1536 

7 19 36855 98280 53690 26208 

8 23 700245 1867320 1060150 539136 

9 29 17506125 46683000 27184430 14178528 

10 31 472665375 1260441000 749635250 398923200 

11 37 15597957375 41594553000 25129354250 13567039200 

12 41 577124422875 1538998461000 941919228250 514460232000 

13 43 22507852492125 60020939979000 37159509136750 20500741404000 

 

The writing of the iterative formulas for j = 3 and j = 4 was done in a concise form previously. It is equivalent to the 

following equation systems, namely 2 initial conditions and 2 linear equations (ax+b type): 
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Table 37 

 

j = 3, i ≥ 4 

x1(4) = 8 

x1(i) = (pi-1-6).x1(i-1) 

#S(3,3) = 2 

#S(3,i) = (pi-4).#S(3,i-1)+x1(i) 

j = 4, i ≥ 6 

x1(6) = 288 

x1(i) = (pi-1-6).x1(i-1) 

#S(4,5) = 96 

#S(4,i) = (pi-4).#S(4,i-1)+x1(i) 

 

We can very well find the values of #S(j,i) up to pi = 29 as previously calculated by replacing pi-1-6 with pi-3, the values of 

these numbers coinciding on a wide range : 

 

pi 3 5 7 11 13 17 19 23 29 31 37 41 

pi-1-6    1 5 7 11 13 17 23 25 31 

pi-3    3 5 7 11 13 17 19 23 29 

 

The proposed formulas are therefore questionable, but what follows, reinforced by the similar formulas given earlier in 

Table 7, seems to prove us right for the choice we have made. 

 

Beyond j = 4, a system of iterative relationships is much more practical of use than a unique concise relationship that is 

besides difficult to come forth with.  

For j = 5, the coincidence of the results up to the rank i - 9 (p9 = 29) can be expressed as follows : 

 

Table 38 

 

i 5 6 7 8 9 10 11 12 i 

pi 13 17 19 23 29 31 37 41 pi 

x1(i)   1008 9072 99792 1496880 31434480 722993040 x1(i) = (pi-2-8).x1(i-1) 

x2(i)  720 8928 125136 2227104 52720272 1349441280 42555672720 x2(i) = (pi-1-6).x2(i-1)+x1(i) 

#S(5,i) 270 4230 72378 1500318 39735054 1125566730 38493143370 1466801977410 #S(5,i) = (pi-4).#S(5,i-1)+x2(i) 

 

The ultimate case of the results we have been able to investigate, namely that of #S(7,i), appears easier to treat than that of 

#S(6,i) :  

Table 39 
 

i 4 5 6 7 8 9 10 11 12 i 

pi 11 13 17 19 23 29 31 37 41 pi 

x1(i) 
   

768 2304 16128 145152 1886976 35852544 x1(i) = (pi-3-10).x1(i-1) 

x2(i) 
  

288 2208 22176 260064 4046112 86855328 2033525088 x2(i) = (pi-2-8).x2(i-1)+x1(i) 

x3(i) 
 

48 624 9072 140112 2641968 64811376 1707139728 54954856656 x3(i) = (pi-1-6).x3(i-1)+x2(i) 

#S(7,i) 4 84 1716 34812 801540 22680468 677184012 24054212124 944960705244 #S(7,i) = (pi-4).#S(7,i-1)+x3(i) 

 

Conjecture 4  
 

The system of iterative relations (for the 2n = 2 case) involves int((j+1)/2) linear relations for int((j+1)/2) initial conditions 

at the j-line. The expression (pi-k-ci-k) within the linear relations follow reverse wise an incremental sequence {k = 0, k = 1, 

k = 2, …, k = m = int((j-1)/2)} with {ci = 4, ci-1 = 6, ci-2 = 8, …, ci-k = 2k+4, …, ci-m = 2.int((j+3)/2)} for the evaluation of 

#S(2m+1,i) and #S(2m+2,i). 

 

This wholly recalls the series {ci = 2, ci-1 = 3, ci-2 = 4, …, ci-k = k+2, …, ci-n = n+2} that we met for isolate numbers 

spacings’ populations calculation in paragraph 3.2.2. 

 

We retrieve then effectively the couple of conditions given in relation (97). 

Indeed, if we attribute to the iterations x1(i), x2(i), x3(i), …, xk(i), …, xn(i), #S(2n+1,i) the multiplying factors pi-k-(2k+4), 

then, whatever the initial values of xk(i) (in the previous example 768 for x1(7), 288 for x2(6), etc.), the ratio xk-1(i)/((pi-k-

(2k+4)).xk(i-1)) becomes negligible when i tends towards infinity because these multiplicative factors form a strictly 

increasing series {pi-n-(2n+4), …, pi-2-8, pi-1-6, pi-4}, the distance between these latter values being at least 4.  

This decrease of the contributions of xk-1(i) in xk(i) = (pi-k-(2k+4)).xk(i-1)+xk-1(i) is shown underneath for the table 39’s 

example : 
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Table 40 
 

i 5 6 7 8 9 10 11 12 13 14 15 

pi 13 17 19 23 29 31 37 41 43 47 53 

x1(i)/x2(i) 
  

0,34783 0,10390 0,06202 0,03587 0,02173 0,01763 0,01261 0,01021 0,00896 

x2(i)/x3(i)  0,46154 0,24339 0,15827 0,09844 0,06243 0,05088 0,03700 0,03012 0,02642 0,02225 

x3(i)/#S(7,i) 0,57143 0,36364 0,26060 0,17480 0,11649 0,09571 0,07097 0,05816 0,05106 0,04318 0,03564 

 

Therefore, we get then systematically (xk(i)-xk-1(i))/xk(i-1) → pi-k-(2k+4).  

 

We show below, still for the table 39’s example, the evolution of the values of xk(i)/xk(i-1)-(pi-k-(2k+4)) versus i (p100 = 

557, p10000 = 104743). 
 

Graphics 17 and 18 

 

  
 

As we did for #SP(j,i)/#SP(1,i) ratios at page 21, we can also have a look on the #S(j,i)/#S(1,i) ratios here. As before, we 

observe again, despite low (or not) initial values, an asymptotic catch-up of the said ratios with an order of magnitude of a 

unit. 

 

 
 

On the basis of such a hypothesis, when i tends towards infinity, there is a constant c such as '∏i→+∞ (pi-2) = ∑j 

#S(j,i→+∞) > c.j.#S(1, i→+∞) = c.j.∏i→+∞ (pi-4). Hence j < (1/c).∏i→+∞ (pi-2)/(pi-4)  and, using the generalization of the 

Mertens theorem, we conclude that there is a constant c’ such as :  

 

j < c’ln²(pi)                (98) 

 

The order of magnitude of the number of lines j at sequence i is thus asymptotically in ln²(pi). 

 

It should be noted, however, that in the absence of a proper proof, the specified general form is only a matter of 

assumption and coincidence. 

Beyond this lack, the difficult part of this construction game is also the anticipation of the whole "random" part of the first 

values on a given j-line. As such, we give below the initial values that we have been able to determine. The reader will be 

able to compare this table to table 12. In particular, the first initial value is not systematically the first non-zero value of 

the j-line. 

 



P 63/142                                                    

Table 41 

 

 Steps i 1 2 3 4 5 6 7 8 9 

 pi 3 5 7 11 13 17 19 23 29 

j Δ(j)          

1 6 1 1 3 21 189 2457 36855 700245 17506125 

2 12 
 

2 8 56 504 6552 98280 1867320 46683000 

3 18 
  

2 14+8 238 3374 53690 1060150 27184430 

4 24 
   

6 96 1248+288 26208 539136 14178528 

5 30 
  

2 22 270 3510+720 71370+1008 1500318 39735054 

6 36 
   

4 60 1022 18776 356744+36720 10460840+36480 

7 42 
   

4 36+48 1428+288 34044+768 801540 22680468 

8 48 
    

20 474 10462 275040 8256720 

9 54 
     

40 1240+728 65712+3576 2472660+6540 

10 60 
    

12 240+140 8864+588 241720+1650 7359158+456608 

11 66 
    

12 286 6322 166526 5067262 

12 72 
     

64 2816 94492 3197558 

13 78 
     

66 2046+574 80828+2884 2844932+183268 

14 84 
     

12 632 25912+1044 1009376+17028 

15 90 
     

24 744+492 41856+1686 1548726+162342 

16 96 
     

22 876 27136 948278 

17 102 
      

16 704+3680 251328+13018 

18 108 
     

20 620+334 31536+790 1125562+68454 

19 114        440 54546 

20 120       142 7852 387506 

 …       … … … 

 

The initial values of the lines without values in red font could not be determined with certainty. We have at this point the 

following :  

 

Lines j 1 2 3 4 5 6 7 8 9 10 

Number of linear equations or 

initial values needed  
1 1 2 2 3 3? 4 4? ≥4 (5?) ≥5 

 

In Appendix 6, we present a number of cases beyond the 2n = 2 example.  

The same remarks of caution must be taken into account there as well. 

 

6.4.4. Generative process.  

 

The existence of recursive relationships is linked to the same process observed in the case of pseudo-primes. It revolves 

around groupings modulo #pi/pk where pk is the decreasing list of the primary dividers of the first #pi. 

The implementation of the sorting, in any way analogous to the said case, is described below. 

 

Method of sorting. 
 

Starting from the pseudo-twin-primes covering an interval [x0, x0+p0p1p2…pi[, (x0 > pi), we have (p1-2)(p2-2)…(pi-2) 

integers remaining. These are arranged according to the increasing values of the spacings (to the previous ones). 

 

The integers x with 6-spacing are sorted according to the increasing values of x modulo p0p1p2…pi/pi. They appear in 

families of pi-4 identical modulo values. The total amount of elements responds to a system to one recursive equation.  

For spacing 12, the routine is similar.   

 

The integers with 18-spacing are sorted according to the increasing value of x modulo p0p1p2…pi/pi. Those who appear in 

families with pi-4+pos identical modulo values, where pos is a positive or null cardinal, are gathered apart. The others 

appearing modulo p0p1p2…pi/pi-1 in families with pi-1-6+pos identical modulo values, where pos is a positive or null 

cardinal, are ranked on their side. The set responds to a system with two recursive equations. 

 

… 

 

The integers x with 6j-spacing are sorted according to the increasing value of x modulo p0p1p2…pi/pi. Families with pi-

4+pos identical modulo values, where pos is a positive or null cardinal, are gathered apart when they exist. We then 

proceed in the same way modulo p0p1p2…pi/pi-k, k being gradually incremented, making groups of integers giving pi-k-4-

2k+pos identical modulo values, where pos is a positive or null cardinal, at sequence k+1. 
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We do this until the stock runs out. The number of sorting, at a given spacing, cannot exceed i. The resulting recursive 

system cannot have more than i equations. 

 

Particular feature versus the pseudo-primes case.  
 

The remarkable point is the existence of corrective factors for the cardinals of modulo-families. We noted this factor by 

"pos". This correction is always positive or null, in other words families are supernumerary. At least they are so initially. 

Indeed, the said factor will gradually evolve, possibly erratically, towards zero when step i increases. This is illustrated 

below by a few examples. Several values of coefficients pos (and therefore of the cardinal of families) are possible 

simultaneously for a given situation and these variability when occurring is transcribed below in the same box of our 

tables. 

 

The first term of a line is not derived from a modulo grouping. It does not give rise to a multiplier factor. The arbitrary 

simulation of the “pos” factor (given in parentheses below) can therefore give a negative value. However, this negative 

value usually appears only on the first line of the lower diagonal. 

 

Δ(1) = 6 
 

pi 5 7 11 13 17 19 23 

Factors 1*(5-4) = 1 1*(7-4) = 3 3*(11-4)= 21 21*(13-4) = 189 189*(17-4) = 2457 2457*(19-4) = 36855 36855*(23-4) = 700245 

        

Pos (0) 0 0 0 0 0 0 

 

Δ(2) = 12 
 

pi 5 7 11 13 17 19 23 

Factors 1*(5-3)= 2 2*(7-3)= 8 
     

 
 

0*(7-4)= 0 8*(11-4) = 56 56*(13-4) = 504 504*(17-4) = 6552 6552*(19-4) = 98280 98280*(23-4) = 1867320 

        

Pos (1) 1 0 0 0 0 0 

 

Δ(3) = 18 
 

pi 7 11 13 17 19 23 

Factors 2*(7-6) = 2 
     

 0*(7-5) = 0 
     

 0*(7-4) = 0 2*(11-4) = 14 22*(13-4) = 198 238*(17-4) = 3094 3374*(19-4) = 50610 53690*(23-4) = 1020110 

Factors 
 

4*(7-5) = 8 
    

 
 

0*(7-6) = 0 8*(11-6) = 40 40*(13-6) = 280 280*(17-6) = 3080 3080*(19-6) = 40040 

       

Pos (-2) 0 0 0 0 0 

Pos 
 

(1) 0 0 0 0 

 

Δ(4) = 24 
 

pi 11 13 17 19 23 

Factors 3*(11-9) = 6 
    

 0*(11-8) = 0 
    

 … 6*(13-3) = 60 
   

 0*(11-4) = 0 0*(13-4) = 0 96*(17-4) = 1248 1536*(19-4) = 23040 26208*(23-4) = 497952 

Factors 
 

6*(11-5) = 36 36*(13-5) = 288 
  

 
 

0*(11-6) = 0 0*(13-6) = 0 288*(17-6) = 3168 3168*(19-6) = 41184 

      

Pos (-5) 1 et 0 0 0 0 

Pos 
 

(1 et 0) 1 0 0 
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Δ(5) = 30 
 

pi 7 11 13 17 19 23 

Factors 2*(7-6) = 2 
     

 0*(7-5) = 0 
     

 0*(7-4) = 0 2*(11-4) = 14 22*(13-4) = 198 270*(17-4) = 3510 4230*(19-4) = 63450 72378*(23-4) = 1375182 

Factors 
   

16*(13-5) = 128 
  

 
 

8*(7-6) = 8 8*(11-6) = 40 64*(13-6) = 448 720*(17-6) = 7920 8928*(19-6) = 116064 

Factors 
  

16*(7-5) = 32 
   

 
  

0*(7-6) = 0 
   

 
  

… 24*(11-7) = 96 128*(13-7) = 768 
 

 
  

0*(7-8) = 0 16*(11-8) = 48 48*(13-8) = 240 1008*(17-8) = 9072 

       

Pos (-2) 0 0 0 0 0 

Pos 
 

(0) 0 1 et 0 0 0 

Pos 
  

(3) 1 et 0 1 et 0 0 

 

Δ(6) = 36 
 

pi 11 13 17 19 23 

Factors 2*(11-9) = 4 
    

 0*(11-8) = 0 
    

 … 
 

60*(17-3) = 840 1022*(19-3) = 16352 
 

 0*(11-4) = 0 4*(13-4) = 36 0*(17-4) = 0 0*(19-4) = 0 18776*(23-4) = 356744 

Factors 
   

182*(17-5) = 2184 2424*(19-5) = 33936 

 
 

4*(11-6) = 20 22*(13-6) = 154 0*(17-6) = 0 0*(19-6) = 0 

Factors 
 

4*(7-6) = 4 
   

 
 

0*(7-7) = 0 2*(11-7) = 8 16*(13-7) = 96 240*(17-7) = 2400 

 
 

0*(7-8) = 0 0*(11-8) = 0 16*(13-8) = 80 0*(17-8) = 0 

Factors 
  

20*(7-6) = 20 
  

 
  

… 32*(11-9) = 64 96*(13-9) = 384 

 
  

0*(7-10) = 0 0*(11-10) = 0 0*(13-10) = 0 

      

Pos (-5) 0 1 1 0 

Pos 
 

(0) 0 1 1 

Pos 
 

(2) 1 1 et 0 1 

Pos 
  

(4) 1 1 

 

Δ(7) = 42 
 

pi 11 13 17 19 23 

Factors 2*(11-9) =  4 
    

 0*(11-8) = 0 
    

 … 
    

 0*(11-4) = 0 4*(13-4) = 36 84*(17-4) = 1092 1716*(19-4) = 25740 34812*(23-4) = 661428 

Factors 
 

4*(11-5) = 24 8*(13-5) = 64 
  

 
 

0*(11-6) = 0 44*(13-6) = 308 624*(17-6) = 6864 9072*(19-6) = 117936 

Factors 
 

24*(7-6) = 24 12*(11-6) = 60 
  

 
 

0*(7-7) = 0 16*(11-7) = 64 208*(13-7) = 1248 
 

 
 

0*(7-8) = 0 0*(11-8) = 0 96*(13-8) = 480 2208*(17-8) = 19872 

Factors 
  

64*(7-5) = 128 
  

 
  

0*(7-6) = 0 160*(11-8) = 480 
 

 
  

… 0*(11-9) = 0 576*(13-9) = 2304 

 
  

0*(7-10) = 0 0*(11-10) = 0 0*(13-10) = 0 

      

Pos (-5) 0 0 0 0 

Pos 
 

(1) 1 et 0 0 0 

Pos 
 

(2) 2 et 1 1 0 

Pos 
  

(5) 2 1 

 

To obtain all the "pos" coefficients equal to 0 for Δ(6) = 36 and Δ(7) = 42, one would have to consider at least extending 

the calculations up to pi = 29 which implies computing out of reach (one month of calculation for each of the objects + 

memory space problem on Pari GP). 
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6.4.5. Extrema research. 

 

Let us now observe the maximum spacing by providing an array of values for steps 1 up to 10 to start with. 

 

Table 42 

 

Steps i 1 2 3 4 5 6 7 8 9 10 

pi (column guide divisor) 3 5 7 11 13 17 19 23 29 31 

Em(i) = Max spacings 6 12 30 42 66 108 150 204 258 348 

Sum(i)  = ∑i 2pk 6 16 30 52 78 112 150 196 254 316 

Diff = Em(i)-Sum(i) 0 -4 0 -10 -12 -4 0 8 4 32 

Diff/Sum(i) 0,00% -25,00% 0,00% -19,23% -15,38% -3,57% 0,00% 4,08% 1,57% 10,13% 

 

Let us recall that the maximum spacing between prime numbers at the i-stage is, according to hypothesis 2 (page 39) and 

theorem 11, equal to something like 2pi. Everything now goes, for the twin numbers without small divisors (Eras(i) 

effective divisors greater than pi) remaining in step i, as if one has to take into account, for the order of magnitude of the 

maximum of the spacings Em(i), the sum of the 2pk, k = 1 to i. 

 

We give, to visualize things, two tables corresponding to maximum spacings. We see the pairs of numbers up to their joint 

disappearances when one of them (of the pair) displays the guide divisor of the column. We see no obvious correlation to 

pass from one to the other. The difficulty lies in the fact that the maximum at step i does not inherit from the maximum at 

rank i-1. In addition, unlike the graphic evidence of the construction scheme of the maximum spacing in the case of the 

prime numbers (and its quasi-symmetry according to the table 23 example), there is no such thing here : 
 

Tables 43 and 44 

 

 
 

The maximum at step i depends on the best arrangement and is questioned at every new step.  

In contrast, even though there may be several solutions, the maximum comes around a relatively fixed pattern. Constraints 

are limiting the possible variations of the maximum. 

 

Let us look at a concrete example with case pi = 17, which gives 20 solutions of maximum spacings 108 : 
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Table 45 

 

List 1 List 2 

(22634,22636) ; (22742,22744) (487766,487768) ; (487874,487876) 

(24944,24946) ; (25052,25054) (485456,485458) ; (485564,485566) 

(55784,55786) ; (55892,55894) (454616,454618) ; (454724,454726) 

(58094,58096) ; (58202,58204) (452306,452308) ; (452414,452416) 

(70076,70078) ; (70184,70186) (440324,440326) ; (440432,440434) 

(126164,126166) ; (126272,126274) (384236,384238) ; (384344,384346) 

(218984,218986) ; (219092,219094) (291416,291418) ; (291524,291526) 

(221294,221296) ; (221402,221404) (289106,289108) ; (289214,289216) 

(252134,252136) ; (252242,252244) (258266,258268) ; (258374,258376) 

(254444,254446) ; (254552,254554) (255956,255958) ; (256064,256066) 

 

The list 2 is symmetric of list 1 modulo 2.3…pi (for example 22634+487876 is 510510). 

 

We give below the evolution of the remaining pairs based on step i. The shadows formed by the surviving pairs are 

relatively similar views by far. They are identical for a pair and its symmetrical pair (this last is not represented). The 

reader will be able to clearly view the tables at appendix 7. 

 

Table 46 

 

 
 

Continuing the routine, our table, initially table 42, is as follows. However our search for the maximum is not exhaustive 

below as a result of the excessive number of cases to be examined (even with computer means), hence the Ep(i) proposal 

pending some final value Em(i) : 
 

Table 47 

 

Steps i 11 12 13 14 15 16 17 18 19 

pi (guide divisor) 37 41 43 47 53 59 61 67 71 

Ep(i) (<= Max spacings 

Em(i))  
510 540 582 690 810 852 972 1098 1176 

Sum(i)  = ∑i 2pk 390 472 558 652 758 876 998 1132 1274 

Diff = Ep(i)-Sum(i) 120 68 24 38 52 -24 -26 -34 -98 

Diff/Sum(i) 30,77% 14,41% 4,30% 5,83% 6,86% -2,74% -2,61% -3,00% -7,69% 
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Graphs 19 and 20 

 

  
 

In fact, we see large getaways compared to the expected ideal values in one way or another, but also very close values. 

We present this continuation of table 42 to show that large deviations with priori expected values may exist. Here, when 

the value is greater to the awaited ∑i 2pk, the relative difference is minimal (this may be actually more than what is 

displayed), especially for pi = 37. Conversely, this relative difference may dwindle when the value is lower (for example, 

pi = 61). But in fact no matter the exact value at a given stage as we will soon see, only matter the general trend. 

 

6.4.6. Algorithmic background. 

 

Research methods of the maximum spacing. 
 

We used two methods. 

 

The first is a systematic method by recording all of the spacings of amplitude Δ(j) throughout the cycle 1. As knowledge 

of intermediate maximums is got, one can make larger jumps in the search for the pair of numbers in Eras(i) in order to 

limit the number of verifications. It is possible to operate this way up to pi = 31 (on Pari GP several weeks of calculations 

are however necessary).  

This method ensures that the said maximum is actually the good one. 

 

The second is a random method allied with a “Newton lift”.  

It is modelled in table 48 below (for the case pi = 19). By the arrows ↑↓, we mean that the set of numbers below some 

column can be shifted by a same pace upwards or downwards. Of course, doing this, the results on the left side will be 

changed. The method is then to look for increasingly large values of the spacings by shifting values. These offsets are 

made systematically on a given column: for example in column pi = 11 by shifting 1, then 2, then 3,... up to 10. Shift of 11 

(and then more shifting) however would serve no purpose since giving an analogous feature to the original (then 12 to 21, 

etc.). The solution of larger spacing is retained then another column is chosen at random and the process is repeated. 

When the process reaches saturation, i.e. if the obtained maximum increases no more after many tests, the result is saved 

and a reset is made leading to a new maximum and the greatest of this and the previous is selected, etc. The method, 

employed here from pi = 37 on, has the disadvantage that it does not ensure that the maximum found after many tests is 

actually the largest existing. 

 

Note 1 :  

However, we have a relatively good confidence in the results presented in table 47. Indeed, for pi = 31, for example, the 

first method requires several weeks to be exhaustive, of which several days to reach the first maximum value (on the Pari 

GP online tool), when the second method gives the right configuration of the maximum often (as random and therefore 

subject to large variation) in less than a minute (on standard Excel spreadsheet). 

 

Note 2 : 

The interest and the effectiveness of the second method also reside in the fact that it is close to the real phenomenon of 

production of the maximum spacing, as discussed below, drawing the reason for the limitation of the maximum reached. 
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Table 48 

 

Arbitrary 

scale 

Min and 

max for 

spacing 

evaluation 

(= 30 here) 

Detection 

of pairs 

(when 

result = 2) 

Divisors 

identification 
3 5 7 11 13 17 19 

    ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 

Etc. 

 

0 2 1 

 

1 

    -26 

 

1 0 

       -24 -24 2 0 

       -22 

 

0 2 1 

  

1 

   -20 

 

0 1 

 

1 

     -18 

 

1 0 

       -16 

 

0 1 1 

      -14 

 

0 1 

  

1 

    -12 

 

0 1 

      

1 

-10 

 

0 2 1 1 

     -8 

 

0 1 

    

1 

  -6 

 

1 0 

       -4 

 

0 1 1 

      -2 

 

0 1 

     

1 

 0 

 

0 3 

 

1 1 1 

   2 

 

0 1 1 

      4 

 

1 0 

       6 6 2 0 

       Etc.  0 1 1 

       

The search can also be done in a systematic way with this second method. If undertaken in this way all of the spacings are 

obtained with the following occurrences : 

 

Table 49 

 

Step i 1 2 3 4 5 6 7 

pi (guide divisor) 3 5 7 11 13 17 19 

Cycle 1 size 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of occurrences of spacings Δ 

6 1 1 3 21 189 2457 36855 

12 
 

4 16 112 1008 13104 196560 

18 
  

6 66 714 10122 161070 

24 
  

0 24 384 6144 104832 

30 
  

10 110 1350 21150 361890 

36 
   

24 360 6132 112656 

42 
   

28 588 12012 243684 

48 
    

160 3792 83696 

54 
    

0 360 17712 

60 
    

120 3800 94520 

66 
    

132 3146 69542 

72 
     

768 33792 

78 
     

858 34060 

84 
     

168 8848 

90 
     

360 18540 

96 
     

352 14016 

102 
     

0 272 

108 
     

360 17172 

114 
      

0 

120 
      

2840 
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Step i 1 2 3 4 5 6 7 

pi (guide divisor) 3 5 7 11 13 17 19 

Cycle 1 size 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of occurrences of spacings Δ 

126 
      

1008 

132 
      

572 

138 
      

1978 

144 
      

0 

150 
      

500 

Number of 

incidences 
1 5 35 385 5005 85085 1616615 

Ratio to the 

previous  
5 7 11 13 17 19 

 

The number of occurrences for pi = 3 here is 1, because it is impossible to change positions in the first column. 

 

If we then compare the cardinal of the spacing Δ in cycle 1 and cardinal of the occurrences of the spacing Δ by the last 

systematic method used here, we find a ratio with regular increment 1 when the spacing is incremented (of 6), namely the 

cardinal is identical for spacing 6, then doubled for spacing 12, then tripled for spacing 18, etc.   

 

We have not tried to find here the profound nature of this result. But it promotes (a little) the research of large spacings 

with the random method. While in principle we get 20/22275 spacings of amplitude 108 (0.090%) for pi = 11, we have 

360/85085 (0,423%) chances of randomly finding (which is not surprising since bigger than others). 

 

Note:  

The same rule for ratios occurs for any other values of 2n. 

 

6.4.7. Classes. 

 

Of course, a vital result would be to have the number of incidences of each Δ spacing. Systematic method, although basic, 

finds its limit in computation time. Another way to approach the subject of this count is considering enumeration results 

by classes, namely 2.3…pi, and therefore to proceed modulo 6, then modulo 30, then modulo 210, etc. 

 

Modulo 6, count is trivial. There is a single class to 0 modulo 6.  

Modulo 30, there are 5 classes with underneath tables of results : 

 

Table 50 / Table 51 

 

            guide pi 

Δ mod 30 
3 5 7 11 13 17 19 23 29 31 37 41 

0 0% 0% 28,6% 28,6% 29,4% 29,7% 29,6% 28,4% 28,9% 29,1% 28,5% 28,8% 

6 100% 20% 8,6% 11,7% 13,6% 14,2% 14,5% 15,0% 14,6% 14,1% 14,0% 14,0% 

12 0% 80% 45,7% 36,4% 31,9% 30,4% 29,4% 29,2% 27,1% 26,6% 26,8% 25,5% 

18 0% 0% 17,1% 17,1% 17,5% 17,8% 18,4% 19,0% 20,4% 20,7% 21,6% 22,0% 

24 0% 0% 0,0% 6,2% 7,7% 7,8% 8,1% 8,3% 9,1% 9,6% 9,1% 9,7% 

 

            guide pi 

Δ mod 30 
43 47 53 59 61 67 71 73 79 83 89 97 

0 28,5% 29,2% 29,3% 28,6% 29,7% 29,2% 29,5% 29,7% 29,1% 29,2% 29,5% 29,0% 

6 14,5% 14,2% 14,0% 14,1% 14,2% 14,0% 13,7% 13,3% 13,9% 13,6% 13,0% 13,9% 

12 26,1% 25,2% 24,7% 24,5% 24,7% 24,5% 24,3% 24,3% 24,1% 24,5% 23,8% 23,7% 

18 21,5% 21,9% 22,2% 22,7% 22,1% 22,3% 22,7% 22,6% 22,9% 22,6% 23,5% 22,9% 

24 9,6% 9,5% 9,9% 10,1% 9,3% 10,0% 9,8% 10,1% 10,0% 10,1% 10,2% 10,4% 
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Graphs 21 and 22 

 

  
 

In these tables, we find the exact percentages of modulo 30 spacings up to pi = 19. Beyond that, it is a statistical 

assessment. The asymptotic proportions seem to be around :  

 

Δ mod 30 0 6 12 18 24 

Proportions 9/30 4/30 7/30 7/30 3/30 

 

The modulo 210 study offers nothing remarkable statistically at the stage where we could carry it, the question being the 

asymptotic proportions are they integers’ ratios of nk/210 type ? 

 

6.4.8. Configurations. 

 

For the understanding of the presentation, let us take an example to clarify the notion of configuration with the table 

below : 
 

Tableau 52 

 

Configuration 

abscissa 

Detection of pairs 

(when result = 2) 

Divisors 

identification 
3 5 7 11 

/   ↑↓ ↑↓ ↑↓ ↑↓ 

/ 1 0 
    

/ 2 0 
    

0 0 2 1 
  

1 

1 0 1 
 

1 
  

2 1 0     

3 0 1 1    

4 0 1   1  

5 1 0     

6 0 2 1 1   

7 1 0     

8 2 0     

Etc. … … … … … … 

 
Configuration value 

(here)  
0 1 4 0 

 

A configuration is identified by positions’ abscissas. The position the 3-guide dividers are settled on either side of a pair 

of paired numbers (a pair of Eras(i) without small dividers up to the chosen stage). The abscissa just after the said pair is 

taken equal to 0, and then incremented, which then defines the other positions. They necessarily take, in the pi column, 

values between 0 and pi-1. 

Here the previous example gives the following configuration : 

 

0 1 4 0 

 

For this configuration, which is limited here to pi = 11, the spacing between pairs is 9*2 = 18. 
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6.4.9. Spacings generated by the sieve. 

 

Lemma 10  
 

The maximum spacing between pairs potentially generated by the second research method (random way or not) is less 

than or equal to ∑i 2pk. 

 

Proof 
 

Starting the configuration (0 0 0 ... 0) to which corresponds a spacing of 6, we do vary it to reach one of the configurations 

having maximum spacing. Let us suppose that we are omniscient. We know the final configuration and to achieve it, it is 

necessary not more than ∑i (pk-1) offsets (roughly ∑i pk offsets) of the initial elements, as a 0 modulo pi offset of the 

column of divider guide pi leads to an identical configuration (and unchanged spacing). A 1*2-shift (manipulating here 

only odd integers) has a mechanical effect, except of random noise, which means supplementary spacing of 2. On 

average, each of the efficient offsets pushing sometimes higher, sometimes lower boundaries by 2, we then consider the 

worst case to our argumentation (which produced the biggest spacing and therefore the maximum rarefaction of pairs of 

twins), namely the necessity to exhaust all of the modulo pi paths where each of these induces a systematic (of 2) increase 

on the resulting spacing.  

Hence the result. 

 

Note :  
 

In the previous lemma, we are not saying that the spacing between pairs cannot be greater than ∑i 2pk, but only what 

generates this spacing cannot act beyond ∑i 2pk. 

 

Theorem 22  

 

The maximum spacing between Eras(i) pairs is of the order of magnitude of ∑i 2pk. 

 

Proof / Addenda to the proof  
 

It is a simple repetition of the previous lemma to which we add a set of reframing remarks : 

 

The attentive reader already knows that spacings Δ are all multiples of 6 and therefore evolve at least by leaps of 6. To 

reproduce the algorithm for our example, we do so by 3 shifts, each worth 2. Offsets can be either all positive or all 

negative, but must have the same sign to reproduce the algorithm leading to the maximum. They can be spread over one 

or more columns (up to 3 columns). To finish the total displacement in a given column i must be less than pi, value, value 

called guide divisor of the said column.   

 

The evolution of the previous configuration for a gain (or loss) of 6 can be, among others, one of the following solutions : 

 

Example 1 (positive shift on a unique column): 

 

Guide divisor  3 5 7 11 

Initial config. 0 1 4 0 

+ 0 3 0 0 

Final config.  0 4 4 0 

 

Example 2 (positive shifts on several columns): 

 

Initial config. 0 1 4 0 

+ 0 1 0 2 

Final config.  0 2 4 2 

 

Example 3 (negative shifts): 

 

Initial config. 0 1 (= 6) 4 0 (= 11) 

- 0 2 0 1 

Final config.  0 4 4 10 

 

The set of possibilities increases exponentially with pi. 

 

Having arbitrarily chosen pi a maximum step, we try next to visualize the possibilities of gradual transition of a 

configuration which is associated with the minimum spacing 6 to a final configuration giving the maximum spacing.  We 

then ask ourselves the following two questions:  

- Is there a series of configurations leading from the smallest spacing to the largest one, configurations whose respective 

shifts correspond to the so-called spacings?   

- If such series exist, is it possible to find one among them without exceeding a total pk shift (ideally strictly inferior to pk) 



P 73/142                                                    

within each of the pk columns from 3 to pi ? 

 

For pi = 5, there are 5 possible configurations for which spacings are given in the last column below : 

 
Guide divisor pi 3 5 Spacings 

Configuration 1 0 0 6 

Configuration 2 0 1 12 

Configuration 3 0 2 12 

Configuration 4 0 3 12 

Configuration 5 0 4 12 

 

“Logical” passages from the 6-spacing configuration to the 12-spacing configuration are the following (one case in 

positive progress and its symmetrical in negative growth) : 

 
pi 3 5  pi 3 5 

6 0 0  6 0 0 

+ 0 3  - 0 3 

12 0 3  12 0 2 

 

Here the two previous questions find an affirmative answer. 

 

For pi = 7, the list of configurations is somewhat longer : 

 
6 0 0 0 

 
12 0 1 0 

 
18 0 0 2 

+ 0 1 2 
 

+ 0 2 1 
 

+ 0 0 6 

12 0 1 2 
 

18 0 3 1 
 

30 0 0 1 

              
6 0 0 0 

 
12 0 1 1 

 
18 0 0 5 

+ 0 2 1 
 

+ 0 0 3 
 

+ 0 6 0 

12 0 2 1 
 

18 0 1 4 
 

30 0 1 5 

              
6 0 0 0 

 
12 0 1 3 

 
18 0 0 5 

+ 0 3 0 
 

+ 0 3 0 
 

+ 0 5 1 

12 0 3 0 
 

18 0 4 3 
 

30 0 0 6 

              
6 0 0 4 

 
12 0 2 2 

 
18 0 1 4 

+ 0 3 0 
 

+ 0 2 1 
 

+ 0 6 0 

12 0 3 4 
 

18 0 4 3 
 

30 0 2 4 

              

     
12 0 2 2 

 
18 0 1 4 

     
+ 0 3 0 

 
+ 0 5 1 

     
18 0 0 2 

 
30 0 1 5 

              

     
12 0 2 3 

 
18 0 1 4 

     
+ 0 0 3 

 
+ 0 4 2 

     
18 0 2 6 

 
30 0 0 6 

              

     
12 0 3 4 

 
18 0 2 6 

     
+ 0 3 0 

 
+ 0 0 6 

     
18 0 1 4 

 
30 0 2 5 

              

     
12 0 3 4 

 
18 0 3 1 

     
+ 0 2 1 

 
+ 0 6 0 

     
18 0 0 5 

 
30 0 4 1 

              

     
12 0 3 5 

 
18 0 3 1 

     
+ 0 0 3 

 
+ 0 5 1 

     
18 0 3 1 

 
30 0 3 2 

              

     
12 0 4 0 

 
18 0 4 3 

     
+ 0 1 2 

 
+ 0 1 5 

     
18 0 0 2 

 
30 0 0 1 

              

     
12 0 4 0 

 
18 0 4 3 

     
+ 0 0 3 

 
+ 0 0 6 

     
18 0 4 3 

 
30 0 4 2 

              

     
12 0 4 6 

     

     
+ 0 3 0 

     

     
18 0 2 6 
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The transition solutions, answering to the first question, are : 

 

Table 53 

 
Guide 
divisor 

3 5 7  
Guide 
divisor 

3 5 7 
     

6 0 0 4 
 

6 0 0 4 
     

+ 0 3 0 
 

+ 0 3 0 
     

12 0 3 4 
 

12 0 3 4 
     

+ 0 3 0 
 

+ 0 2 1 
     

18 0 1 4 
 

18 0 0 5 
     

+ 0 4 2 
 

+ 0 5 1 
     

30 0 0 6 
 

30 0 0 6 
     

 
0 10 2 

  
0 10 2 

     

              
Guide 
divisor 

3 5 7 
 

Guide 
divisor 

3 5 7 
 

Guide 
divisor 

3 5 7 

+ 0 3 0 
 

+ 0 3 0 
 

+ 0 3 0 

12 0 3 4 
 

12 0 3 4 
 

12 0 3 4 

+ 0 3 0 
 

+ 0 2 1 
 

+ 0 3 0 

18 0 1 4 
 

18 0 0 5 
 

18 0 1 4 

+ 0 5 1 
 

+ 0 6 0 
 

+ 0 6 0 

30 0 1 5 
 

30 0 1 5 
 

30 0 2 4 

 
0 11 1 

  
0 11 1 

  
0 12 0 

 

Negative "smooth" progressions configurations are the symmetric modulo pi. 

For all of these progressions, none satisfies the second condition, the thrusts within the column of guide divisor 5 being 

greater than the value of the guide. This may be due to the fact that there are no intermediate configurations corresponding 

to a spacing equal to 24, the change from 6 to 18 being barely achieved : 

 
Guide 
divisor 

3 5 7 

6 0 0 4 

+ 0 3 0 

12 0 3 4 

+ 0 2 1 

18 0 0 5 

 0 5 1 

 

At next step pi = 11, all the links mixing positive and negative configurations progressions of a 6n-spacing to a 6n+6-

spacing are given below in table 54 and the first of such courses is to the right : 
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Table 54 
 

 

Table 55 

 
pi 3 5 7 11 

6 0 0 0 0 

+ 0 1 0 2 

12 0 1 0 2 

- 0 0 3 0 

18 0 1 4 2 

- 0 2 0 1 

24 0 4 4 1 

+ 0 0 3 0 

30 0 4 0 1 

+ 0 1 1 1 

36 0 0 1 2 

- 0 1 0 2 

42 0 4 1 0 

 0 5 7 6 
 

 

The reader can refer to appendix 8 for reading the contents of boxes. 

 

However, the table of progressions that cross the entire table for the minimum spacing (always 6) up to the maximum 

spacing (here 42) continuously are less but still abundant. However, if we seek as previously the only cases where all 

offsets are same signs, we are reduced to 12 positive configurations (a priori if our research is indeed exhaustive). These 

are provided in appendix 9. There are also 12 corresponding negative configurations symmetrical modulo pi. 

 

Among the first, 2 sets of positive configurations are closest to ideal, namely configurations set evolving in a column of 

the divider guide strictly less than the value of the guide (here the guide 5 is reached again what is not completely 

satisfactory). 

 

Table 56 

 
pi 3 5 7 11 

 
pi 3 5 7 11 

6 0 0 0 5 
 

6 0 0 0 5 

+ 0 1 1 1 
 

+ 0 1 1 1 

12 0 1 1 6 
 

12 0 1 1 6 

+ 0 0 3 0 
 

+ 0 0 3 0 

18 0 1 4 6 
 

18 0 1 4 6 

+ 0 2 1 0 
 

+ 0 2 1 0 

24 0 3 5 6 
 

24 0 3 5 6 

+ 0 1 1 1 
 

+ 0 2 1 0 

30 0 4 6 7 
 

30 0 0 6 6 

+ 0 1 0 2 
 

+ 0 0 0 3 

36 0 0 6 9 
 

36 0 0 6 9 

+ 0 0 0 3 
 

+ 0 0 0 3 

42 0 0 6 1 
 

42 0 0 6 1 

 
+0 +5 +6 +7 

  
+0 +5 +6 +7 

 

The number of configurations explodes to the next rank pi = 13 and the presence of an ideal set of configurations, 

answering the question becomes plausible. For the consistently positive progressions, we meet 3341 cases (and as many 

cases in negative progressions). Among these, however, no set of positive configurations has all thrusts in a column of the 

divider guide strictly less than the value of the said guide. The best choices, with 33 cases, see their 5-guide reached again 

(being nevertheless the only one). We give one of them below and the reader will find the remainder in appendix 10: 
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Table 57 

 
pi 3 5 7 11 13 

6 0 0 0 7 3 

+ 0 2 1 0 0 

12 0 2 1 7 3 

+ 0 0 0 3 0 

18 0 2 1 10 3 

+ 0 0 0 2 1 

24 0 2 1 1 4 

+ 0 2 1 0 0 

30 0 4 2 1 4 

+ 0 0 0 0 3 

36 0 4 2 1 7 

+ 0 0 2 1 0 

42 0 4 4 2 7 

+ 0 1 1 0 1 

48 0 0 5 2 8 

+ 0 0 0 1 5 

60 0 0 5 3 0 

+ 0 0 1 2 0 

66 0 0 6 5 0 

∑ 0 5 6 9 10 

 

There are also 12 additional cases where, at the same time, the column guides 5 and 7 are reached, but without exceeding 

(while other guides 11 and 13 are not met). 

 

Beyond that (pi > 13), consider exhaustively all of configurations to detect the systematically positive (and negative by 

symmetry) progressions becomes an extravagant task.   

 

The difficulty to find a quite satisfactory set of configurations, replicating the process near the final stage (maximum 

spacing), is due, it must be stressed, to the "tension" as the maximum point is reached. This may limit the full ideal 

achievement. 

 

The ideal is there initially, namely for pi = 5, perhaps as a simple accident. Beyond that, progress towards the ideal seems 

gradually. Out of scope for pi = 7, it is better for pi = 11, then almost reached in pi = 13 by noticing that what is lacking to 

the ideal lies at the lower border (and not in the middle of the progression) : 

 
+ 0 2 1 0 0 

 

If it had been in place 
+ 0 (1) 1 (1) 0 

there it was our ideal. 

 

To get rid of "background noise" does not seem to be a fad. Configurations that allow you to move step by step from the 

minimum spacing to the maximum spacing probably exist from a certain i-row. 

 

Of course, a shift comes often, especially when it occurs on the last columns (and that pi is large), by a non-event. 

Conversely, a spacing can multiply after a simple priori innocuous shift. Any change leads to random spacing evolution in 

a way or another (up or down). But even if the noise here is indeed stronger than the signal sent, the path progress is done 

at the underlying rhythm. 

 

A shift of 1*2 (since we manipulate only odd integers) means not a shift within the boundaries of 2. It can be almost 

anything when the course is not followed according to a “smooth trail”. The set of the configurations is chaotic. But 

underlying force is one and only one and the result for the maximum spacing goes straight with it. If nothing happens after 

a number of shifts, then the constraint will apply with a sudden readjustment. On the contrary, if the border moves more 

then 2 (at least 6) and effect has been sent in advance than loosening prevails and nothing may often happen on the next 

stage. 

 

Spacings of numbers near a maximum spacing (like by any other spacing) are expected to be of average amplitude (that is 

in ln²(pi) negligible in front of pi). This maximum spacing of some ∑i 2pk amplitude is going to increase (after step i) by 

negligible terms. The random hero of a given step will revert to anonymity later on. A given maximum spacing is doomed 

after a few rounds to become one among others and enter the rank of the second, third, etc. chap. This is normal fate since 

cycle 1 grows by a multiplicative factor pi at each step, giving many new situations, and the expected scarcity of twin 

primes imposes increasing spacings. This is why we say that there is no inheritance notion. The mere accidental victory of 

the strongest cannot last and does not. 

 

The lack of inheritance notion (on a continuum of steps) may seem a handicap because almost nothing is predictable at 
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step i+1 from the results at step i. But in fact, it is a very positive point for our argumentation. Whatever happens at step i, 

for example, the maximum value of the spacings is much higher (or much lesser) than the expected value, never mind, at 

step i+1 almost everything is questioned again, the previous result has no lasting influence. Stage i, the work force is 2∑i 

pk and produces a given result. Step i+1, the thing to consider is 2∑i+1 pk but very little the previous result. The latter will 

pass into oblivion a few steps past. 

-The result is lower as the expected one : this means adverse positioning at the observed point but imposing no perennial 

effect.  

- The result is greater to the expected one : this is coming from a merger between the spacing in question and one (or 

more) neighbours. The most characteristic case we found is pi = 37. Substantially larger at a stage i = 11, we see however 

that this spacing is not sustainable as a maximum. Three steps further, this maximum enters anonymity (another 

maximum arose elsewhere). 

 

6.4.10. Lower and upper bounds. 

 

Let us give now some additional details: 

 

Lower bound 
 

Assuming necessity of a complete shift of 3*2 units each time in order to get maximum spacing, assuming also that each 

shift must take place entirely on the same column (same pi), then the minimum to the maximum we are looking for would 

be 2∑i (pk-mod(pk,3)) (for pi ≠ 3). Let us observe the first surveys compared to the possibility of this lower bound (for the 

maximum spacing): 

 

Table 58 

 

Step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

pi 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 

Em(i) = Max spacings 6 12 30 42 66 108 150 204 258 348 510 540 582 690 810 852 972 1098 1176 

Min of maximum 6 12 24 42 66 96 132 174 228 288 360 438 522 612 714 828 948 1080 1218 

Difference 0 0 6 0 0 12 18 30 30 60 150 102 60 78 96 24 24 18 -42 

 

We note that the maximum spacing’s minimum is not far from being again achieved at steps 16 up to 18 after the first 

cases reached in steps 1, 2, 4 and 5. It might even not reached at step 19, which is not however detrimental to our 

argumentation. Nothing forbids low values (set of configurations which cannot express completely). 

 

Below this bound, we get however generally spacings for almost all the a priori allowed values, namely the multiples of 6. 

Of course, exceptions may exist as mentioned, for example for the pi = 7 case, the spacing values are 6, 12, 18 and 30, the 

spacing 24 never occurs and for the case pi = 13, the observed values are 6, 12, 18, 24, 30, 36, 42 48, 60 and 66, the 

spacing 54 not appearing. 

 

Upper bound 
 

The upper bound can be superior to 2∑i pk as shown in the numerical results. Excess compared to the expected value is 

the result of the collision with the environment as mentioned previously. However, this unexpected value is easily 

identifiable as an exception by its isolation from the other values of standard spacings. Case pi = 37 is the most typical 

among the values discussed here, the spacing of amplitude 510 is followed by the spacing 432, then 426, etc. Thus, it is 

rather the spacing 432 (instead of 510) which is to be compared with 2∑i pk = 390. Even though spacing (432) is still 

significantly above 2∑i pk (390), the same remark about the possibility of collision with the environment is still at this 

point as we observe other holes between 420 and 408 and 390 and 378. Similar remarks can be made to a lesser extent for 

pi = 31 (348 isolated from 330, isolated itself from 318, 318 to retain and compare to 316), pi = 41 (540 isolated from 528 

and several holes are recognized down to 480, 480 to retain and compare to 472), pi = 43 (582 isolated from 570, isolated 

itself from 558 to retain and compare to 558), pi = 53 (810 isolated from 768 to retain and compare to 758), etc. 

 

To do an inventory of all values obtained when searching randomly enables to have more or less insurance on the 

proximity (or the actual achievement) of the maximum, the appearance of holes after systematic series of 6-distant 

spacings announcing some way such proximity to the maximum, or at least the approximate logical value. 
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Table 59 

 

pi 

Max 

spacings 

found 

Followers (etc. meaning that all admissible spacings exist 

under the previous value) 
∑ 2pk 

« Min » of 

max =  

2∑i (pk-

mod(pk,3)) 

3 6 / 6 6 

5 12 etc. 16 12 

7 30 18, etc. 30 24 

11 42 etc. 52 42 

13 66 60, 48, etc. 78 66 

17 108 96, etc. 112 96 

19 150 138, etc. except 114  150 132 

23 204 etc. except 144  196 174 

29 258 240, etc. 254 228 

31 348 330, 318, etc. 316 288 

37 510 432, 426, 420, 408, 390, 378, etc. except 354 390 360 

41 540 528, 516, 510, 498, 492, 480, 474, 468, 462, 450, 438, etc. 472 438 

43 582 570, 558, etc. except 534 558 522 

47 690 678, 672, 660, 648, 642, 636, 630, 618, etc. 652 612 

53 810 798, 768, 762, 750, 720, 714, 708, 702, 690, etc. 758 714 

59 852 846, 834, 822, 816, 810, 798, 780, 768, etc. 876 828 

61 972 942, 924, 912, 906, 900, 882, etc. 998 948 

67 1098 1050, 1038, 1026, 1020, 1008, 996, etc. except  966  1132 1080 

71 1176 1146, 1128, 1122, 1098, 1092, 1080, 1068, etc. except 1044 1274 1218 

 

Note:  
 

Missing numbers (like 54, 114, 144, 244, 354, 444, 534, 624, 774, 894, 1044) below the minimum for the maximum (or 

slightly above) are often valued 24 modulo 30. In a general way, configurations giving a 24 mod 30 spacing are rarer than 

those that surround them (see table 49 and the paragraph 6.4.7 page 70).  

 

An asymptotic evaluation of the upper bound is easy as part of statistical considerations. To do this, we start from table 34 

to build the following table: 

 

Table 60 

 

Steps i 1 2 3 4 5 6 1 2 3 4 5 6 

pi 3 5 7 11 13 17 3 5 7 11 13 17 

Spacings 

Δ 

Cum(i) 

Total cases with spacings >= given value (in abscissa) 

Rt(i) 

Relative sizes of spacings to maximum spacing 

6 1/1 3/3 15/15 135/135 1485/1485 22275/22275 6/6 6/12 6/30 6/42 6/66 6/108 

12   2/3 12/15 114/135 1296/1485 19818/22275   12/12 12/30 12/42 12/66 12/108 

18     4/15 58/135 792/1485 13266/22275     18/30 18/42 18/66 18/108 

24     2/15 36/135 554/1485 9892/22275     24/30 24/42 24/66 24/108 

30     2/15 30/135 458/1485 8356/22275     30/30 30/42 30/66 30/108 

36       8/135 188/1485 4126/22275       36/42 36/66 36/108 

42       4/135 128/1485 3104/22275       42/42 42/66 42/108 

48         44/1485 1388/22275         48/66 48/108 

54         24/1485 914/22275         54/66 54/108 

60         24/1485 874/22275         60/66 60/108 

66         12/1485 494/22275         66/66 66/108 

72           208/22275           72/108 

78           144/22275           78/108 

84           78/22275           84/108 

90           66/22275           90/108 

96           42/22275           96/108 

102           20/22275           102/108 

108           20/22275           108/108 
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This table reads more easily using the following graph : 

 

Graph 23 

 

  
 

We have represented (without proof nevertheless) the asymptotic trend of the percentage of spacings having significant 

value compared to the maximum spacing. This percentage (a priori) drops to zero by observing the trend of the first steps i 

(resulting in the orange curve). In other words, it is less and less likely that the maximum spacing be significantly greater 

than 2∑i pk when pi diverges. It should be noted that even if this was not the case, the result developed in paragraph 6.5.3 

would not be called into question. 

 

The reader will refer to appendix 11 for other developments related to the 2n = 2 gap. 

 

6.4.11. Futher horizons for spacings. Entities viewed with a telescope. 

 

The aim here is to expose the similarity of the spacings between pairs of numbers on one hand and isolated numbers on 

the other hand and to show the continuous path that can be followed from one to the other.   

 

We first studied the evolution of the quantities of spacings of amplitude Δ between sieved numbers. We got table 5.  

We then looked at the evolution of the amounts #S(j,i) of spacings Δ(j) between pairs of numbers. We got table 16.   

 

These latter quantities arise from the application of the Eratosthenes sieve and are determined simply by using the 

algorithm given in Appendix 14 (Direct evaluation method) where fac, expo, qtpr are adjustable parameters. The first two 

parameters fac and expo define the type of pairs studied using 2n = fac.2
expo

, fac being odd and qtpr being the current step, 

that is qtpr = 2, p = 3, qtpr = 3, p = 5, qtpr = 4, p = 7, qtpr = 5, p = 11, etc. 

 

We find the quantities of tables 34 and 5 at heads and ends in the following two tables in which we adjust the value of the 

“fac” parameter in two different ways. 

 

Table 61 

 

      fac 

Δ 

 1 3 15 105 1155  1 11 77 385 1155 

2  0 21 84 105 135 
 

0 0 0 0 135 

4  0 42 63 105 135 
 

0 0 0 0 135 

6  21 104 86 130 142 
 

21 36 90 135 142 

8  0 28 28 34 28 
 

0 0 0 0 28 

10  0 20 54 40 30 
 

0 0 0 0 30 

12  56 0 26 12 8 
 

56 54 13 71 8 

14  0 22 10 6 2 
 

0 0 0 0 2 

16  0 4 4 
   

0 0 0 0 
 

18  22 8 4 
   

22 22 45 28 
 

20  0 4 0 
   

0 0 0 0 
 

22  0 2 1 
   

0 0 0 0 
 

24  6 4 
    

6 19 26 6 
 

26  0 0 
    

0 0 0 
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      fac 

Δ 

 1 3 15 105 1155  1 11 77 385 1155 

28  0 8 
    

0 0 0 
  

30  22 2 
    

22 17 6 
  

32  0 1 
    

0 0 
   

34  0 
     

0 0 
   

36  4 
     

4 0 
   

38  0 
     

0 0 
   

40  0 
     

0 0 
   

42  4 
     

4 2 
   

 

What's going on here? 

 

For the first table, we determine the quantities of spacings of amplitude Δ for pairs that are at a distance of 2.1 = 2 (the 

almost twins) and then for the pairs at distance 2.3 = 6 (the almost sexy), then for the pairs at a distance 2.3.5 = 30, and 

then for the pairs at distance 2.3.5.7 = 210, then for pairs at a distance 2.3.5.7.11 = 2310. 

At this last step, as the cycles are of size 2.3.5.7.11, there is trivially, for a number in position x, another one in position x-

2.3.5.7.11 and therefore a pair (x, x+2.3.5.7.11) finds as many counterparts as desired (y, y+2.3.5.7.11). The table 

therefore reproduces, not the counting of constrained pairs, but rather that of isolated integers, hence the return to the 

populations of table 5. 

 

For the second table, the result is the same, starting with the biggest multiplier factors, namely 11, then 11.7, then 11.7.5, 

then 11.7.5.3. The interest in this case is to see that Δ’s that are non-dividers of 6 are only reached when factor 3 occurs at 

the last step (in the fac parameter). 

 

The title of the paragraph comes from the fact that when the algorithm is implemented, the observed paired pairs are at 

exponentially growing distances. 

 

Taking in account the last step, which meets a range of values Δ(j) equal to some 2pi (see paragraph 3.2.2), going 

backwards, additional amplitudes should be 2pk, k = 1 to i, thus a total of ∑ 2pk. 

 

Therefore another way to see the approximate amplitude ∑ 2pk of the largest spacing Δ is that it results thanks to some 

peculiar telescope from the maximum spacing observed at each of the previous steps. 

 

Appendix 13 gives the tables for i = 1 up to 7. Some populations are equal (or in a 2-ratio) systematically between 

elements of certain columns and lines (colour fonts in the previous table) from one table to another. However, these 

identifications do not lead to the possibility of a comprehensive study.  

 

Iterative formulas, as those proposed previously for the first and last columns of these tables, are also at work here giving 

the populations of the intermediate columns. We give a few more examples, in addition to the study below, in appendix 

13 already mentioned, some of which are sometimes weird.   

 

In the previous right-hand tables, the last column concerns the pseudo-primes. Let us move on to the penultimate column 

to the left of each of them. We then get : 

 

Table 62 

 

 i 1 2 3 4 5 6 7 8  

 pi 3 5 7 11 13 17 19 23  

 fac 1 5 35 385 5005 85085 1616615 37182145 … 

j Δ #SPD3(j,i) 

1 6 (1) 3 15 135 1485 22275 378675 7952175 … 

2 12 
 

(1) (7) 71 845 13315 235315 5084975 … 

3 18 
  

(2) (28) (394) 6812 128810 2918020 … 

4 24 
   

(6) (132) (2766) 59160 1451310 … 

5 30 
   

(0) (24) (816) (22488) 641424 … 

6 36 
     

(72) (3384) (124992) … 

7 42 
     

(24) (1392) (58536) … 

8 48 
      

(192) (12816) … 

9 54 
      

(24) (2952) … 

10 60 
       

(480) … 

 

Here the factor fac is simply divided by 3 compared to its populations’ evaluation for pseudo-primes.  At this stage, 

recursive formulas remain "classic": 

 



P 81/142                                                    

Table 63 

 

j Formulas 

1 
#SPD3(1,1) = 1 

#SPD3(1,i) = (pi-2).#SPD3(1,i-1) 

2 

x1(4) = 8 

x1(i) = (pi-1-3).x1(i-1) 

#SPD3(2,3) = 7 

#SPD3(2,i) = (pi-2).#SPD3(2,i-1)+x1(i) 

3 

x1(5) = 6 

x1(i) = (pi-2-4).x1(i-1) 

x2(4) = 10 

x2(i) = (pi-1-3).x2(i-1)+x1(i) 

#SPD3(3,3) = 2 

#SPD3(3,i) = (pi-2).#SPD3(3,i-1)+x2(i) 

4 

x1(6) = 126 

x1(i) = (pi-2-4).x1(i-1) 

x2(5) = 66 

x2(i) = (pi-1-3).x2(i-1)+x1(i) 

#SPD3(4,4) = 6 

#SPD3(4,i) = (pi-2).#SPD3(4,i-1)+x2(i) 

5 

x1(7) = 288 

x1(i) = (pi-3-5).x1(i-1) 

x2(6) = 216 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(5) = 24 

x3(i) = (pi-1-3).x3(i-1)+x2(i) 

#SPD3(5,4) = 0 

#SPD3(5,i) = (pi-2).#SPD3(5,i-1)+x3(i) 

6 ? 

… ... 

 

However, going a stage ahead, an interesting evolution manifests itself. The factor fac is now divided by 3*5 compared to 

the population’s evaluation for pseudo-primes.  

The populations’ table is as follows : 

 

Table 64 

 

 i 2 3 4 5 6 7 8  

 pi 5 7 11 13 17 19 23  

 fac 1 7 77 1001 17017 323323 7436429 … 

j Δ #SPD15(j,i) 

1 6 (1) 10 90 495 14850 252450 2650725 … 

2 12 (2) (1) 13 990 2945 54545 5301450 … 

3 18  (5) (45) 350 7425 126225 2434250 … 

4 24  (2) (26) 175 5890 109090 1217125 … 

5 30   (6) (132) (2766) 59160 1451310 … 

6 36 
  

 (6) (408) (11244) 160356 … 

7 42 
  

 (12) (24) (1152) (340788) … 

8 48 
  

  (204) (5622) (66276) … 

9 54 
  

  (48) (2256) (24612) … 

10 60 
  

   (312) (31380) … 

11 66      0 (3312)  

12 72      0 (3504)  

13 78      (24) ((384)  

14 84       (240)  

15 90       (48)  

 

Recursive formulas are no longer with unique initial values for the entire line. Distinctions, modulo the columns’ number 

(thus i), are to be taken into account. 
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Table 65 

 

j 
Formulas 

Columns i = 2 mod 3 

Formulas 

Columns i = or(0,1) mod 3 

1 
#SPD15(1,2) = 1 

#SPD15(1,i) = (pi-2).#SPD15(1,i-1) 

#SPD15(1,2) = 2 

#SPD15(1,i) = (pi-2).#SPD15(1,i-1) 

2 

x1(4) = 0 

x1(i) = 0 

#SPD15(2,3) = 10 

#SPD15(2,i) = (pi-2).#SPD15(2,i-1)+x1(i) 

x1(4) = 4 

x1(i) = 0 

x1(i) = (pi-1-3).x1(i-1) 

#SPD15(2,3) = 1 

#SPD15(2,i) = (pi-2).#SPD15(2,i-1)+x1(i) 

3 

x1(4) = 0 

x1(i) = 0 

#SPD15(2,3) = 5 

#SPD15(2,i) = (pi-2).#SPD15(2,i-1)+x1(i) 

x1(4) = 8 

x1(i) = (pi-1-3).x1(i-1) 

#SPD15(2,3) = 2 

#SPD15(2,i) = (pi-2).#SPD15(2,i-1)+x1(i) 

4 

x1(4) = 4 

x1(i) = (pi-1-3).x1(i-1) 

#SPD15(2,3) = 1 

#SPD15(2,i) = (pi-2).#SPD15(2,i-1)+x1(i) 

x1(4) = 8 

x1(i) = (pi-1-3).x1(i-1) 

#SPD15(2,3) = 2 

#SPD15(2,i) = (pi-2).#SPD15(2,i-1)+x1(i) 

5 

x1(6) = 126 

x1(i) = (pi-2-4).x1(i-1) 

x2(5) = 66 

x2(i) = (pi-1-3).x2(i-1)+x1(i) 

#SPD15(5,4) = 6 

#SPD15(5,i) = (pi-2).#SPD15(5,i-1)+x2(i) 

Same formula 

6 

x1(7) = 72 

x1(i) = (pi-3-5).x1(i-1) 

x2(6) = 54 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(5) = 6 

x3(i) = (pi-1-3).x3(i-1)+x2(i) 

#SPD15(5,4) = 0 

#SPD15(5,i) = (pi-2).#SPD3(5,i-1)+x3(i) 

x1(7) = 144 

x1(i) = (pi-3-5).x1(i-1) 

x2(6) = 108 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(5) = 12 

x3(i) = (pi-1-3).x3(i-1)+x2(i) 

#SPD15(5,4) = 0 

#SPD15(5,i) = (pi-2).#SPD3(5,i-1)+x3(i) 

… ... ... 

 

The previous table is still very simple to put together. It is likely that as the parameter fac evolves more (modulo) cases 

will occur. It should be noted, however, the economy on need of new initial values (e.g. ratios of 2 or reuse of values in 

different lines). 

 

6.5. Landscaping of spacings between relative integers. 

 

Let us focus now on to a comprehensive study of all gaps.   

 

Theorem 23  
 

At the given step i, the populations are identical for any gap 2n modulo pi#. 

 

Proof 
 

This is trivial, the cycles generated by the Eratosthenes sieve being of period pi. 

 

It is therefore sufficient to consider, at stage i, the even gaps 2n between 0 and pi#-2 to be exhaustive. We give the 

example of all the populations at step i = 2 below : 
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Table 66 

 

 
Δ 

2n 

2 4 6 8 10 12 14 16 18 

  #R(2n,Δ) 

Pseudo isolated 0 3 3 2 0 0 0 0 0 0 

Pseudo twins 2 0 0 1 0 0 2 0 0 0 

Pseudo cousins 4 0 0 2 0 0 0 0 0 1 

Pseudo sexys  6 1 2 2 1 0 0 0 0 0 

etc. 8 0 0 1 0 0 2 0 0 0 

 10 0 0 3 0 0 1 0 0 0 

 12 2 1 2 0 1 0 0 0 0 

 14 0 0 2 0 0 0 0 0 1 

 16 0 0 2 0 0 0 0 0 1 

 18 2 1 2 0 1 0 0 0 0 

 20 0 0 3 0 0 1 0 0 0 

 22 0 0 1 0 0 2 0 0 0 

 24 1 2 2 1 0 0 0 0 0 

 26 0 0 2 0 0 0 0 0 1 

 28 0 0 1 0 0 2 0 0 0 

 

The table’s exploitation is improved by sorting according to the increasing modulo pi# values of the square of the 2n-gap : 

 

Table 67 

 

2n mod 30 (2n)² mod 30            Δ 2 4 6 8 10 12 14 16 18 

  ∑Δ #R(2n,Δ) #R(2n,Δ) 

0 0 8 3 3 2 0 0 0 0 0 0 

2 4 3 0 0 1 0 0 2 0 0 0 

8 4 3 0 0 1 0 0 2 0 0 0 

22 4 3 0 0 1 0 0 2 0 0 0 

28 4 3 0 0 1 0 0 2 0 0 0 

6 6 6 1 2 2 1 0 0 0 0 0 

24 6 6 1 2 2 1 0 0 0 0 0 

10 10 4 0 0 3 0 0 1 0 0 0 

20 10 4 0 0 3 0 0 1 0 0 0 

4 16 3 0 0 2 0 0 0 0 0 1 

14 16 3 0 0 2 0 0 0 0 0 1 

16 16 3 0 0 2 0 0 0 0 0 1 

26 16 3 0 0 2 0 0 0 0 0 1 

12 24 6 2 1 2 0 1 0 0 0 0 

18 24 6 2 1 2 0 1 0 0 0 0 

 

Conjecture 5  
 

At the given step i and for 4n² modulo pi# set in advance, the populations are the same. Conversely, identical populations 

lead to constant 4n² modulo pi#. 

 

Let us rewrite the table in an ultimate form : 
 

Table 68 

 

Families 

2n mod 30 
Multiplicands (2n)² mod 30 Δ 2 4 6 8 10 12 14 16 18 

   ∑Δ #R(2n,Δ) #R(2n,Δ) 

(0) 1 0 8 3 3 2 0 0 0 0 0 0 

(6,24) 2 6 6 1 2 2 1 0 0 0 0 0 

(12,18) 2 24 6 2 1 2 0 1 0 0 0 0 

(10,20) 2 10 4 0 0 3 0 0 1 0 0 0 

(2,8,22,28) 4 4 3 0 0 1 0 0 2 0 0 0 

(4,16,14,26) 4 16 3 0 0 2 0 0 0 0 0 1 

 

We call « multiplicand » the number of solutions 2n with the same distribution of populations #R(2n,Δ). This word is 

chosen so because, as we will see below, its values can be anticipated (thus intervening in some way first in the 

multiplication). Several families can have multiplicands of equal value. 
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Conjecture 6  
 

A multiplicand is a power of 2. 

 

This last result is demonstrated by admitting that the expression (2n)² mod pi# is actually at work here.   

So we are going to study the latter and establish that result in that context. What we call families below is also understood 

in this context. 

 

Theorem 24  
 

At the given step i, the number of families nbf(m,i) of 2
m
 multiplicands is given by : 

 

nbf(0,i) = 1, i ≥ 0 

et 

nbf(m,i) = nbf(m,i-1)+((pi-1)/2).nbf(m-1,i-1) 

            (99) 

 

Numerical application  

 

Table 69 

 

  i 0 1 2 3 4 5 6 7 8 9 10 11 

  pi 2 3 5 7 11 13 17 19 23 29 31 37 

m 2
m

 (pi-1)/2  1 2 3 5 6 8 9 11 14 15 18 

   nbf(m,i) 

0 1 
 

1 1 1 1 1 1 1 1 1 1 1 1 

1 2 
 

 1 3 6 11 17 25 34 45 59 74 92 

2 4 
 

 
 

2 11 41 107 243 468 842 1472 2357 3689 

3 8 
 

 
  

6 61 307 1163 3350 8498 20286 42366 84792 

4 16 
 

 
   

30 396 2852 13319 50169 169141 473431 1236019 

5 32 
 

 
    

180 3348 29016 175525 877891 3415006 11936764 

6 64 
 

 
     

1440 31572 350748 2808098 15976463 77446571 

7 128 
 

 
      

12960 360252 5270724 47392194 334968528 

8 256 
 

 
       

142560 5186088 84246948 937306440 

9 512 
 

 
        

1995840 79787160 1596232224 

10 1024 
 

 
         

29937600 1466106480 

11 2048 
 

 
          

538876800 

 

Proof 
 

Let us first illustrate the subject by going back to Table 68 and analysing the groupings  of families 2n modulo 30 for 

which (2n)² modulo 30 leads to a given value that is indicated (in italics) under each column corresponding to a family 

below : 

 

Families 1 : Divisors 3 and 5 : 

Table 70 

 

0 

0 

 

Families 2 : Divisors 3 or 5 : 

Table 71 

 

6 12 10 

24 18 20 

6 24 10 

 

Families 2 : Divisors not 3, nor 5 : 

Table 72 

 

2 4 

8 16 

22 14 

28 26 

4 16 
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When we look at the next step modulo 210, we find : 

 

Family 1 : Divisors 3, 5 and 7 : 

Table 73 

 

0 

0 

 

Families 2 : Divisors (3 and 5) or (3 and 7) or (5 and 7) : 

 

Table 74 

 

30 60 120 42 84 70 

180 150 90 168 126 140 

60 30 120 84 126 70 

 

Families 3 : Divisors 3 or 5 or 7 : 

Table 75 

 

6 12 24 48 96 192 10 20 40 14 28 

36 72 144 78 156 102 80 160 110 56 112 

174 138 66 132 54 108 130 50 100 154 98 

204 198 186 162 114 18 200 190 170 196 182 

36 144 156 204 186 114 100 190 130 196 154 

 

Families 4 : Divisors not 3, nor 5, nor 7 : 

Table 76 

 

2 4 8 16 32 64 

58 116 22 44 88 176 

68 136 62 124 38 76 

82 164 118 26 52 104 

128 46 92 184 158 106 

142 74 148 86 172 134 

152 94 188 166 122 34 

208 206 202 194 178 146 

4 16 64 46 184 106 

 

These examples show in the first place that if a family 2nk has an invariant (2nk)² mod pi# = c mod pi#,(2nk)² mod pi# = c 

mod pi#, then the family 4nk has the invariant (4nk)² mod pi# = 4c mod pi#, which is trivial. The number of families 2nk of 

a given dividers characteristic is therefore equal to the period t of 2
t
.nki = 2nkj mod pi#, 2nki and 2nkj being one or the other 

of their representatives. For example, in the last table, the integers 2, 4, 8, 16, 32, 64 do not meet in two columns at once, 

but 128 ends up in the first column with integer 2 completing the cycle and the period t is equal to 6 for all table elements 

(such as 58, 116, 22, 44, 88, 176, 142, etc.). 

 

Let us see how to move from elements at step i to those at step i+1. The first table at each new step is 0 since the only 

even number between 0 to pi#-2 divisible by all prime numbers between 2 and pi. The n+1-table at the i+1 step is deduced, 

in part, from the n
th

 table at the i-step. Let us take, for example, the following two tables in correspondence: 

 

6 12 10 

24 18 20 

6 24 10 

 

6 = 6+0.30 12 = 12+0.30 24 48 96 192 10 = 10+0.30 20 40 14 28 

36 = 6+1.30 72 = 12+2.30 144 78 156 102 80 = 20+2.30 160 110 56 112 

174 = 24+5.30 138 = 18+4.30  66 132 54 108 130 = 10+4.30 50 100 154 98 

204= 24+6.30 198 = 18+6.30 186 162 114 18 200 = 20+6.30 190 170 196 182 

36 144 156 204 186 114 100 190 130 196 154 

 

Consider 2n and 2n+k.pi# mod pi+1# where k varies from 0 to pi+1-1. If 2n is not divisible by some prime number pk < pi+1 

then there is effectively some k, according to the Chinese theorem, such that 2n+k.pi# mod pi+1# is not divisible by the 

same pk. This proves the existence.  

 

An existing element creates two new elements systematically in a column because if 2n is present at the i-step then 
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2n+k.pi# is generated at the same time as pi+1# - (2n+k.pi#) in the same family. Indeed, they both admit the same prime 

dividers lower or equal to pi and one of them is necessarily larger than pi# and therefore absent in the same family at the 

previous rank. This proves the doubling of lines. 

 

Tables’ increasing is active evenly in all parts of themselves, i.e. systematically by multiplication by 2 from one column to 

another. By moving from step i to step i+1, the total number of items increases by a pi+1 factor, while the number of lines 

doubles. Thus, the number of columns of the parts of tables in correspondence necessarily increases by a factor close to 

pi+1/2, knowing however that new elements appear with divider pi+1. These are exactly at the number of pi+1#/pi+1, or also 

exactly (pi+1-1).pi# elements without the said pi+1 divider. The number of columns in each part of tables is hence 

multiplied by (pi+1-1)/2. 

 

Then let us focus on the new elements that appear, the divider of which is pi+1. They correspond to the multiplication by 

pi+1 from the n+1
st
 table of the previous step since this factor is introduced at stage i+1: 

 

2 4  14 28 

8 16 pi = 7 56 112 

22 14 → 154 98 

28 26  196 182 

4 16  196 154 

 

The two generation processes described above either leave the size of a family unchanged or double its size. Starting from 

the unit, the size of the families (the multiplicand) is therefore necessarily a power of 2.  

This completes the proof. 

 

Note 1  
 

Trivially, the sum of the products of multiplicands by the number of families is equal to the sum of the even numbers in a 

cycle, i.e. pi#/2 in step I : 

pi#/2 = ∑ 2
m
.nbf(m,i)             (100) 

 

Note 2  
 

A witty property of the previous triangular table is worth noting: The values on the lower edge grow multiplicatively at 

the same pace that the values of the m-1 line grow additively. 

 

Line m = 1 LS(i) 1 3 6 11 17 25 34 45 59 74 92 … 

Lower edge LI(i) 1 2 6 30 180 1440 12960 142560 1995840 29937600 538876800 … 

Difference LS(i)-LS(i-1) 1 2 3 5 6 8 9 11 14 15 18 (pi-1)/2 

Quotient LI(i)/LI(i-1) 1 2 3 5 6 8 9 11 14 15 18 (pi-1)/2 

 

Note 3  
 

The study is conducted here on 2n mod pi# and the square (2n)² mod pi#. The same exercise with n mod pi# and the square 

n² mod pi# ( n = 0 to pi-1) would give a table where nbf(m,i) would simply be replaced by 2.nbf(m,i), which is to keep the 

same formula nbf(m,i) = nbf(m,i)+((pi-1)/2).nbf(m-1,i-1) but adjusting the initial values nbf(0,i) = 2, i ≥ 0. Similarly, with 

n mod pi# and n
4
 mod pi# (n = 0 to pi-1), the formula is still unchanged, but requires the initial values nbf(0,i) = 2, i ≥ 1, 

nbf(1,1) = 2, nbf(1,2) = 2 nbf(2,2) = 2 and nbf(3,2) = 2. It is likely that the reuse of the same formula is appropriate for the 

transition to power n
2^r

 with appropriate initial values. More general problems will eventually lead to adjustments to the 

recursive formula.   

 

Having given a general view of the situation, let us now split our analysis. 

 

6.5.1. Periodicity of the entities. 

 

4.4.11.1 Periodicity focusing on even components. 

 

At paragraph 6.4.11, we have changed the "fac" parameter. We will proceed now on the "expo" parameter, i.e. we 

consider pairs whose gap 2n gradually doubles : 2n = 2, 4, 8, 16, etc. (fac = 1, expo = 1, 2, 3,4, etc.).   

 

The populations’ tables #S (j,i) of spacings of amplitude Δ as follows: 

 

Step 1, qtpr = 2, pi = 3.  

 

                 2n 

Δ 

 2 4 … 

6  1 1 … 

 



P 87/142                                                    

Step 2, qtpr = 3, pi = 5.  

 

                 2n 

Δ 

 2 4 8 … 

6  1 2 1 … 

12  2 0 2 … 

18  0 1 0 … 

 

Step 3, qtpr = 4, pi = 7.  

 

                 2n 

Δ 

 2 4 8 16 32 64 128 … 

6  3 6 4 6 3 8 3 … 

12  8 2 6 2 6 0 8 … 

18  2 4 2 3 4 3 2 … 

24  0 2 2 4 2 2 0 … 

30  2 1 1 0 0 2 2 … 

 

As there is no divider of 3 in 2n, the set of Δ’s contains multiples of 6. 

 

We observe that, when the “expo” parameter is incremented, at some stage, the same populations show up.  

The evolution of periodicity extends as follows for the parameter examined: 

 

Theorem 25  
 

The periodicity of the population of pairs of gaps 2n, power of 2, is half-value of the order of the monogenic group of  

generator 2 modulo the primorial pi# at step i.   

 

#ord2i = min(r/2) \ 2
r
  = 1 mod pi# , i > 0, r > 0            (101) 

 

Proof  
 

This is an immediate and trivial consequence of the periodicity of pi#-sized cycles produced the Eratosthenes algorithm. It 

gives an order equal to that of 2, modulo pi#, for the family 2n. As it is the squared values (2n)² mod pi# that must be 

taken into account for families, this order is therefore divided by 2.   

 

Note : 
 

The pi# factor increases exponentially with i. It would be interesting to be able to evaluate the order #ord2i from the 

modulo pi study instead. Let us note the order of 2 modulo pi as follows :  

 

#ordel2i = min(r) \ 2
r
  = 1 mod pi , i > 0, r > 0            (102) 

 

The order of a subgroup is an integer divider of a group. The order 2.#ord2i is therefore a divider of the product of orders 

#ordel2i , the multiplicative factor #fm2i (see table below) being a divider of this order, itself a divider of (pi-1). As only 

the even numbers are involved here, it is (pi-1)/2 that is to be taken into account. The evolution of periodicity shows as 

follows : 

 

Table 77 

 

Step pi 
Periodicity 

#ord2i 

#fm2i = 

multiplicative 

factor  

(pi-1)/2 
Factors 

accumulation 
Verification 

1 3 1 1 1 1 fully done 

2 5 2 2 2 2 fully done 

3 7 6 3 3 3 fully done 

4 11 30 5 5 2.3.5 fully done 

5 13 30 1 2.3 2.3.5 fully done 

6 17 60 2 2
3
 2

3
.3.5 fully done 

7 19 180 3 3
2
 2

3
.3

2
.5 fully done 

8 23 1980 11 11 2
3
.3

2
.5.11 fully done 

9 29 13860 7 2.7 2
3
.3

2
.5.7.11 fully done 

10 31 13860 1 3.5 2
3
.3

2
.5.7.11 by incomplete way 

11 37 13860 1 2.3
2
 2

3
.3

2
.5.7.11 by incomplete way 

12 41 13860 1 2
2
.5 2

3
.3

2
.5.7.11 by incomplete way 

13 43 13860 1 3.7 2
3
.3

2
.5.7.11 by incomplete way 

14 47 318780 23 23 2
3
.3

2
.5.7.11.23 by incomplete way 
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Step pi 
Periodicity 

#ord2i 

#fm2i = 

multiplicative 

factor  

(pi-1)/2 
Factors 

accumulation 
Verification 

15 53 4144140 13 2.13 2
3
.3

2
.5.7.11.13.23 by incomplete way 

16 59 120180060 29 29 2
3
.3

2
.5.7.11.13.23.29 by incomplete way 

17 61 120180060 1 2.3.5 2
3
.3

2
.5.7.11.13.23.29 by incomplete way 

18 67 120180060 1 3.11 2
3
.3

2
.5.7.11.13.23.29 by incomplete way 

19 71 120180060 1 5.7 2
3
.3

2
.5.7.11.13.23.29 by incomplete way 

… 
 

    
 

 

Due to the exponential growth of the calculations, a full verification of the results (on Pari GP) could only be carried out 

until stage 9 with populations as follows (verifying also that the periodicity is not 2.1980 = 3960): 

 

                 2n 

Δ 

2
1
 2

1+1.1980
 2

1+7.1980
 

6 17506125 17506125 17506125 

12 46683000 48550320 46683000 

18 27184430 26844090 27184430 

24 14178528 13478400 14178528 

30 39735054 39088254 39735054 

36 10497320 10534680 10497320 

42 22680468 21998100 22680468 

48 8256720 8178960 8256720 

54 2479200 2422518 2479200 

60 7815766 7686076 7815766 

66 5067262 5228158 5067262 

72 3197558 3388718 3197558 

78 3028200 2957192 3028200 

84 1026404 1149446 1026404 

90 1711068 1847620 1711068 

96 948278 1010116 948278 

102 264346 298490 264346 

108 1194016 1239080 1194016 

114 54546 61360 54546 

120 387506 392990 387506 

126 205068 236824 205068 

132 150588 145766 150588 

138 278558 282968 278558 

144 1180 1802 1180 

150 88548 85216 88548 

156 29724 32814 29724 

162 15172 16162 15172 

168 24418 25978 24418 

174 2054 1974 2054 

180 10862 11334 10862 

186 2090 2620 2090 

192 2764 2428 2764 

198 748 942 748 

204 548 426 548 

210 442 498 442 

216 38 38 38 

222 84 126 84 

228 22 50 22 

234 12 24 12 

240 8 30 8 

246 0 0 0 

252 0 4 0 

258 2 4 2 

264 
 

0 
 

270 
 

4 
 

 

The time required to calculate each column is in the order of one day. Beyond that the step, we have adopted another 

verification strategy, namely in the algorithm given in Appendix 14, we continue to increment qtpr, but the program 

sequences 
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if(Mod(ac, 3) <> 0, 

if(Mod(a, 3) <> 0, 

if(Mod(ac, 5) <> 0, 

if(Mod(a, 5) <> 0, 

…, 

…, 

if(Mod(ac, pi) <> 0, 

if(Mod(a, pi) <> 0, 

is limited to  

if(Mod(ac, 3) <> 0, 

if(Mod(a, 3) <> 0, 

if(Mod(ac, 5) <> 0, 

if(Mod(a, 5) <> 0, 

f(Mod(ac, 7) <> 0, 

if(Mod(a, 7) <> 0, 

if(Mod(ac, 11) <> 0, 

if(Mod(a, 11) <> 0, 

 

In this case, for steps 5 to 9, we find the periodicities already mentioned and we hypothesize that the behaviour is the 

same afterwards. The search is then extremely fast and could be extended well beyond the values given in Table 38. A 

second limit then occurs however, which are the sizes of the pairs considered (x, x+2
expo

) as the expo setting increases (on 

our version of Pari GP we are limited to expo = 120 180 060 by the memory stack). 

 

Conjecture 7  
 

The multiplicative factor is equal to the product of new factors in (pi-1)/2 compared to all factors previously contained in 

the (pj-1)/2, j = 1 to i, at their maximum powers.   

 

Note: By new factor, we mean if pk
n1

 is present in (pi-1)/2 and if pk
n2

 appears in one of the terms (pj-1)/2, j = 1 to i, then 

the multiplicative factor is equal to ∏ pk
si(n1-n2 ≥ 1, 1, 0)

, where the product deals with all the prime factors of (pi-1)/2. In 

particular, if pdi is a prime number, then #fm2i = (pi-1)/2. 

 

Examples: Factors 2 and 3 already present in stages 2 and 3 will be ignored in step 5. The integer pdi has factor 2
3
 at step 

7, with exponent larger than its power in the column cumulating maximum exponents at step 6 (difference for exponent 

equal to 3-1 = 2) and we have a multiplicative factor #fm2i = 2
1
 (and not 2

2
). 

 

4.4.11.2 Periodicity focusing on odd components. 

 

We were interested in the evolution of the populations #S(j,i) when 2n is replaced by 2n.2
expo

.  

What happens with the change from 2 to 2q
expo

, with odd q? 

 

Conjecture 8  

Case q prime number. 
 

The multiplicative factor #fm2i at step i is a divider of (pi-1)/2. The populations’ tables form classes function of 

modulo(q,pj), j = 1 to i. The populations #S(j,i) have amplitude Δ multiple of 6. 

 

Example : Step 3.  

 

q qd = (q-1)/2 Mod(qd,3) Mod(qd,5) Mod(qd,7) Class Periodicity 

73 36 0 1 1 1 6 

193 96 0 1 5 1 6 

157 78 0 3 1 1 6 

67 33 0 3 5 1 6 

353 176 2 1 1 1 6 

53 26 2 1 5 1 6 

17 8 2 3 1 1 6 

137 68 2 3 5 1 6 

103 51 0 1 2 2 6 

163 81 0 1 4 2 6 

397 198 0 3 2 2 6 

37 18 0 3 4 2 6 

173 86 2 1 2 2 6 

23 11 2 1 4 2 6 

47 23 2 3 2 2 6 

107 53 2 3 4 2 6 
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q qd = (q-1)/2 Mod(qd,3) Mod(qd,5) Mod(qd,7) Class Periodicity 

61 30 0 0 2 3 3 

331 165 0 0 4 3 3 

19 9 0 4 2 3 3 

79 39 0 4 4 3 3 

131 65 2 0 2 3 3 

191 95 2 0 4 3 3 

89 44 2 4 2 3 3 

149 74 2 4 4 3 3 

31 15 0 0 1 4 3 

151 75 0 0 5 4 3 

199 99 0 4 1 4 3 

109 54 0 4 5 4 3 

101 50 2 0 1 4 3 

11 5 2 0 5 4 3 

59 29 2 4 1 4 3 

179 89 2 4 5 4 3 

5 2 2 2 2 5 3 

7 3 0 3 3 6 2 

43 21 0 1 0 7 2 

13 6 0 1 6 7 2 

127 63 0 3 0 7 2 

97 48 0 3 6 7 2 

113 56 2 1 0 7 2 

83 41 2 1 6 7 2 

197 98 2 3 0 7 2 

167 83 2 3 6 7 2 

211 105 0 0 0 8 1 

181 90 0 0 6 8 1 

379 189 0 4 0 8 1 

139 69 0 4 6 8 1 

71 35 2 0 0 8 1 

41 20 2 0 6 8 1 

29 14 2 4 0 8 1 

419 209 2 4 6 8 1 

 

Population tables #S(j,i) are as follows : 

 

Class 1 : q = 17, 53, 67, 73,... Periodicity 6. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7) = or(1,5) 

 

8 3 6 4 6 3 

0 6 2 6 2 8 

3 4 3 2 4 2 

2 2 4 2 2 0 

2 0 0 1 1 2 

 

Class 2 : q = 23, 37, 47,... Periodicity 6. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7) = or(2,4) 

 

6 4 6 3 8 3 

2 6 2 6 0 8 

4 2 3 4 3 2 

2 2 4 2 2 0 

1 1 0 0 2 2 

 

Class 3 : q = 19, 61, 79, 89,... Periodicity 3. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = or(2,4) 
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3 4 3 

6 6 8 

4 2 2 

2 2 0 

0 1 2 

 

Class 4 : q = 11, 31, 59,... Periodicity 3. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = or(1,5) 

 

4 3 3 

6 6 8 

2 4 2 

2 2 0 

1 0 2 

 

Class 5 : q = 5. Periodicity 3. (unique as prime number) 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = or(2,4) 

 

9 12 9 

7 3 8 

4 3 2 

0 2 1 

 

Class 6 : q = 7. Periodicity 2. (unique as prime number) 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7) = 3 

 

10 5 

1 10 

5 2 

2 1 

 

Class 7 : q = 13, 43, 83, 97,... Periodicity 2. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7) = or(0,6) 

 

6 3 

2 8 

3 2 

4 0 

0 2 

 

Class 8: q = 1, 29, 41, 71,... Periodicity 1. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = or(0,6) 

Condition : q = 1 

 

3 

8 

2 

0 

2 

 

When q is not a prime number, the process is the same but new families are possible and have to be taken into account. 
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Class 9 : q = 25, 95, 115, 185,... Periodicity 3. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = or(1,5) 

 

12 9 9 

3 7 8 

3 4 2 

2 0 1 

 

Class 10: q = 55,... Periodicity 1. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = or(0,6) 

 

9 

8 

2 

1 

 

Class 11: q = 49, 91, 119, 161,... Periodicity 1. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = 3 

 

5 

10 

2 

1 

 

Class 12: q = 35, 175,... Periodicity 1. 

 

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = 3 

 

15 

7 

2 

 

We have only included here cases where q is not divisible by 3. Other classifications are then added on the same modulo 

pattern. The populations #S (j,i) have then Δ’s multiple of 2.   

 

What happens passing from 2p to 2p.q
expo

, p and q whatever integers? The same thing considering then the different 

families modulo qd.   

 

The number of cases increases exponentially with step i which quickly makes any comprehensive study extremely long 

and tedious. 

 

6.5.2. Sums of products. 

 

Let us go back to the 2n = 2
m
 case even though if what follows applies in a more general way.   

Let us have i a given depletion step. If k = 0 or k = 1, then we have seen that the expression (Δ(j))
k
.#S(j,i) is constant 

whatever choice of m, the different solutions for #S(j,i) forming a set of values that return periodically.   

The question here is whether the elements of #S(j,i) can be obtained in a unique way from the value of (Δ(j))
2
.#S(j,i), if 

not by adding (Δ(j))
3
.#S(j,i), and so on, in other words, if certain distributions #S(j,i) would not be some kind of 

Carmichael series where the initial data (Δ(j))
k
.#S(j,i), k = 2, k = 3, k = 4, ... would not allow to distinguish them by a 

backward evaluation.   

 

Here we give only a few examples to set ideas down on this subject. 

 



P 93/142                                                    

Step 2 : pi = 5 
               m       

k 
0 1 

0 3 3 

1 30 30 

2 324 396 

 

That is, a distinction that appears as early as k = 2. 

 

Step 3 : pi = 7 
               m       

k 
0 1 2 3 4 5 

0 15 15 15 15 15 15 

1 210 210 210 210 210 210 

2 3708 3852 3708 3780 3420 4212 

3 80136 82728 77544 77544 61992 100872 

 

That is a partial distinction as early as k = 2 and total one by adding k = 3.  

Equal values can be found in : 
k m 

2 (0,2) 

3 (2,3) 

 

Step 4 : pi = 11 

 
     m       

k 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 

1 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 

2 51444 52164 51444 55260 50868 56700 52020 51804 53460 53244 49716 57348 51732 56052 53172 

3 1389528 1371384 1381752 1633176 1368792 1685016 1441368 1345464 1511352 1482840 1296216 1755000 1423224 1695384 1511352 

 
     m       

k 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

0 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 

1 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 2310 

2 52668 51588 56988 53820 53460 51300 52524 49284 60012 55044 52020 51732 51948 50724 56556 

3 1446552 1503576 1726488 1615032 1508760 1358424 1415448 1249560 1923480 1729080 1366200 1397304 1366200 1348056 1672056 

 

Hence again a partial distinction as early as k = 2 and total one by adding k = 3.  

Equal values can be found in : 
k m 

2 (0,2), (6,25), (8,19), (12,26) 

3 (8,14), (25,27) 

Step 5 : pi = 13 

 

With a periodicity of 30 here, the equality of values can be found in : 

  
k m 

2 (8,14) 

3 / 

 

Step 6 : pi = 17 

 

With a periodicity of 30 here, the equality of values can be found in : 

  
k m 

2 (41,47) 

3 / 

 

Step 7 : pi = 19 

 

Although of periodicity 180, no equality is found : 
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k m 

2 / 

3 / 

 

Thus equality, although surprising, is not uncommon. However, more possibilities do not lead to more redundancies (see 

step 7). A priori, it must be very rare to have to lay down more than 2 sets of additional products’ sums (i.e. more than 

those for k = 2 and k = 3) to get all the different solutions within an eligible set (when m varies). 

 

6.5.3. Divergence of solutions. 

 

Theorem 26  
 

There are infinitely many twin prime numbers. 

 

Proof  
 

The sum 2∑i pk can be estimated elementarily with the PNT.  

We have ∑i pk ≈ ∑ k.ln(pk) < ln(pi).∑ k = ln(pi).i.(i+1)/2 ≈ (1/2).ln(pi).i². As the logarithm varies very slowly 

asymptotically, we have actually ∑ 2pk → ln(pi).i² ≈ pi²/ln(pi) when i diverges.   

The maximum spacing between pairs of numbers in Eras(i) is that of full cycle 1, i.e. pairs between pi+2 and pi+2+2.3…pi 

and thus of course also pairs between pi+2 and pi+1², a space with magnitude size pi² asymptotically, where only prime 

numbers can exist. Thus, even if all the spacings between integers happen to be  within this range to their maximum 

(which is far from being the case here), there would be at least the integer part of ln(pi) twin prime numbers actually 

present in the said interval.  

So, when i diverges neglecting pi in front of pi² (what is legitimate asymptotically), cardinal of the twin prime numbers 

below pi² diverges (in ln(pi) at least). 

 

Nota 1 
 

We might consider that a maximum spacing can hit another under the abscissa pi², giving a spacing of double size. This 

would still give room for ln(pi)/2 twin primes at the condition that the same type of unusual encounter realize repeatedly 

under pi². This would still not change the result of the divergence as, in addition, this type of accidents should then repeat 

continuously so to apply asymptotically (which is quite more unlikely than the existence of an infinite number of twin 

prime numbers). 

 

Nota 2 
 

The information on the order of magnitude of the cardinal of twin prime numbers is of course very pessimistic here. Only 

2 to 3 twin primes would show up at the increase of a decade of i. As we have seen earlier, this divergence is much faster 

in the real world. 

 

6.6. Comparison of families. 

 

The generalization of the case of twin numbers makes it possible to find interesting additional properties.  

Let us go back to Table 34. We have two relationships for 2n = 2: 

 

                       jmax   i 

  ∑ #S(j,i) =  ∏ (pk-2)                                         (103) 

                      j = jmin  k = 1 

 

                       jmax   i 

  ∑ Δ(j).#S(j,i) =  ∏ pk                                         (104) 

                      j = jmin  k = 1 

 

These two become in the general case: 

 

                       jmax    i 

  ∑ #S(j,i) = ∏ (pk-1)/(pk-2)  ∏ (pk-2)                                         (105) 

                      j = jmin pk \ n 

pk > 2 

 k = 1 

 

                       jmax   i 

  ∑ Δ(j).#S(j,i) =  ∏ pk                                         (106) 

                      j = jmin  k = 0 

 

When the dividers of two numbers are the same, the members are on the left are identical. So how many solutions to such 

equations?   

We can look for solutions in two different ways, either systematically or as solutions of the cases 2n = r.2
m
, m - 1, 2, 3, 
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etc. In the first case, a large number of solutions are found, far more than in the second way of proceeding where the 

following conjecture, with i fixed, is observed:  

The number of distinct solutions is 

 

 i-2 

nbs = 2 ∏ pk                                         (107) 

 k = 1 

 

and the quantities #S(j,i) show up with period nbs, that is identical for all 2n = r.2
m+nbs.x

, where x is any natural integer, r 

and m are given and nbs deducted by the previous formula.   

 

Let us take the case r =1 and therefore 2n = 2
m
.   

For i = 4, p0.p1.p2.p3.p4 = 2.3.5.7.11 = 2310, (p1-2).(p2-2).(p3-2).(p4-2)  = 1.3.5.9 = 135, p0.p1.p2 = 2.3.5 = 30.  

The table of 30 distinct results is here (column i = 4 of Table 34 and quantities in tables in correspondence): 

 
               2n 
Spacings 

Δ(j)      
21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 … 

6 21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 … 

12 56 16 42 14 48 6 56 16 42 20 42 6 56 14 48 18 42 6 56 18 42 18 42 0 64 16 42 18 42 6 56 … 

18 22 32 22 21 32 21 24 28 18 21 36 24 22 28 18 21 40 21 18 28 22 24 36 21 18 28 24 21 32 21 22 … 

24 6 20 16 30 14 24 6 26 16 32 20 18 6 20 14 36 18 22 6 26 18 30 18 18 0 28 16 32 18 22 6 … 

30 22 15 24 16 10 18 18 16 19 16 10 23 24 15 19 14 8 24 24 13 19 16 12 20 22 13 19 20 11 22 22 … 

36 4 10 0 2 4 6 4 6 0 0 2 4 2 6 2 2 0 2 2 6 2 2 2 4 4 6 0 0 2 4 4 … 

42 4  2 0 6 0 6 1 8 0 2 0 2 0 4 0 4 0 4 0 4 1 4 2 4 2 6 0 6 0 4 … 

48   0 2  4    4 2 2 2 2 2 0 0 2 0 0 
 

2 
 

6 0   2 
 

4  … 

54   1 2        2 
 

2 
 

2 0 2 0 2     0       … 

60                 2 
 

0      2       … 

66                   1             … 

 

The quantities for 2n = 2
31

 are the same for 2n = 2
1
, those of 2n = 2

32
 are the same for 2n = 2

2
, etc.   

In addition, each column is indeed distinct here.   

 

Two other examples are:  

 

Case 2n = 3.2
m
.  

The sum per column is equal to 270. 

 
             2n/3 

Spacings 

Δ(j)      
21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 … 

2 21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 21 … 

4 42 21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 … 

6 104 42 60 56 64 48 92 42 60 56 72 42 88 42 64 64 64 42 88 42 72 56 60 42 92 48 64 56 60 42 104 … 

8 28 22 21 26 24 30 28 18 21 28 21 32 28 22 24 20 21 30 28 24 21 26 21 32 32 18 21 20 21 36 28 … 

10 20 60 32 39 43 48 28 53 22 43 39 60 27 51 30 39 48 54 20 53 22 48 43 48 26 51 32 43 39 54 20 … 

12 0 30 16 48 12 32 8 28 20 48 8 26 8 36 18 52 8 24 10 36 18 54 8 28 8 40 18 48 14 28 0 … 

14 22 5 40 8 38 11 30 2 40 8 34 11 30 4 38 8 40 9 30 4 34 5 40 11 24 4 40 4 40 12 22 … 

16 4 4 4 5 4 8 2 8 4 4 4 7 4 8 4 2 2 7 6 8 4 2 8 9 4 4 2 4 4 7 4 … 

18 8 20 4 14 4 16 4 20 2 10 10 12 4 20 2 10 8 20 2 18 10 6 8 22 2 18 4 14 4 14 8 … 

20 4 2 4 0 3 3 0 2 6 0 2 8 0 1 5 2 0 4 2 0 2 2 0 4 4 0 4 4 2 2 4 … 

22 2 4 1 8 0 2 0 8 2 10 0 0 0 2 0 10 1 0 0 4 0 4 0  0 4 0 8 0 2 2 … 

24 4 0 4  4 2 2 0 4 
 

10 0 4 0 2  4 2 4 0 6 0 8  2 0 2  10 0 4 … 

26 0 4 4  0  0 4 4   2 0 2 2  4 0 0 2 4 0   0 4 4   1 0 … 

28 8    4  7      7 0 2   2 7 0  0   9 2 0   2 8 … 

30 2      6      2 0 0    4 2  2   4 0 2    2 … 

32 1      
 

     0 0 2       0         1 … 

34             2 0        0          … 

36             
 

2        2          … 

 

Here, there are not only multiple deviations of 6, but also intermediate even integers.   

Each column is still district following the conjecture.   

 

Case 2n = 15.2
m

 

The sum per column is equal to 360. 
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         2n/15 

Spacings 

Δ(j)      

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 … 

2 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 84 … 

4 63 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 … 

6 86 96 128 78 78 128 96 86 120 78 86 144 86 78 120 86 96 128 78 78 128 96 86 120 78 86 144 86 78 120 86 … 

8 28 39 30 20 43 32 20 43 22 27 48 22 26 39 32 28 39 30 20 43 32 20 43 22 27 48 22 26 39 32 28 … 

10 54 24 32 54 24 30 48 36 32 48 34 22 60 38 22 54 24 32 54 24 30 48 36 32 48 34 22 60 38 22 54 … 

12 26 34 32 20 30 28 28 28 32 30 26 20 18 26 30 26 34 32 20 30 28 28 28 32 30 26 20 18 26 30 26 … 

14 10 10 6 13 18 6 11 16 9 13 10 10 15 15 10 10 10 6 13 18 6 11 16 9 13 10 10 15 15 10 10 … 

16 4 4 2 10 4 4 4 2 4 4 5 6 2 4 7 4 4 2 10 4 4 4 2 4 4 5 6 2 4 7 4 … 

18 4 6 0 4 4 2 4 2 2 2 2 6 6 2 0 4 6 0 4 4 2 4 2 2 2 2 6 6 2 0 4 … 

20 0  0 0  0 0  0 0 2 0  0 0 0  0 0  0 0  0 0 2 0  0 0 0 … 

22 1  2 2  4 0  4 0  4  0 4 1  2 2  4 0  4 0  4  0 4 1 … 

24   0    2  
 

2    2    0    2  
 

2    2   … 

26   0               0              … 

28   0               0              … 

30   2               2              … 

 

Again, each column is distinct.  

We also note, by comparing the three examples, that the maximum spacings Δ(j) are reduced at least approximately in the 

inverse ratio to the characteristic ratio of related prime numbers:  

 

∏ (pk-2)/(pk-1) 

pk \ n 

pk > 2 

 

Note: In the case of systematic research, the extent of the spacings is much larger, with the largest of the spacing values 

being given by (i.e. asymptotically ∏pk) : 

 

  i    i 

6 + ∏ pk-6 ∏ (pk-1)/(pk-2)  ∏ (pk-2)                                         (108) 

 k = 0 pk \ n 

pk > 2 

 k = 1 

 

The quantities that appear are therefore very specific values and limited to a small domain. 

 

7. Theorem of density of prime numbers. 

 

Here we outline a process that can be applied to many Diophantine equations with asymptotic branches. It leads 

systematically for all the mathematical literature’s standards to their known Euler products (also called singular series). It 

enables also to find many more of these products as we have proposed in other articles. 

 

7.1. Equivalent of a prime number variable. 

 

We want to restore somehow the Euler product of Hardy-Littlewood formula.   

To do this, we seek to solve the problem by creating local equivalents (i.e. modulo p i) of global variables p and q (hence 

of the set of primes P) in the equation p-q = 2n. These equivalents then enable the Euler product evaluation. 

 

Theorem 27  
 

The Chebotariov density theorem extends the Dirichlet theorem on the infinite number of prime numbers in arithmetic 

progression by trivial application to a cyclotomic extension of Q. Thus, if c, a ≥ 1 are two relative prime integers, the 

natural density of the set of prime numbers p = c mod a is 1/φ(a), a some constant.  

 

Corollary on the variables of prime numbers 

 

Let us have p a prime number.  

We project the prime numbers set P on the classes of congruencies modulo p. 

 

 modulo    

P  → {0, 1, 2, …, p-1}                      (109)   

pi  pi mod p   

 

This application projects a unique number to 0. That is p. The other classes are images in same density of all the other 

prime numbers. By assigning a probability density to the quantities of numbers projected on each of the congruencies 0, 1, 

2, ..., p-1 and arbitrarily adding all densities up to p (i.e. an average density of 1 for each class), we obtain the following 

correspondence : 
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Congruencies 0 1 2 … p-1  

Normalized probability densities 

(∑ = 1) 
→ 0 → p/(p-1) → p/(p-1)  → p/(p-1)  

 

7.2. Reconstruction of De Polignac formula. 

 

We start with a formula such as #(p-q = 2n) = cn.x/ln²(x),  for n an even integer. Here, cn is an infinite product (so called 

also Euler product). 

 

To evaluate the solutions of a Diophantine equation q1-q2 = n, n a given integer (even or odd at this stage), q1 and q2 

variables representative of prime numbers, we transform the initial global problem in a series of local problems q1-q2 = n 

mod p, the generation of the infinite product being related to equality #(q1-q2 = n mod Π pi) = Π #(q1-q2 = n mod pi) issued 

from Chinese theorem. 

 

Heuristically, the independent variables of a Diophantine equation with asymptotic branches induce class instances in 

crossed charts based on {0
n
, 1

n
, 2

n
, …, (p-1)

n
} for variables x

n
 of natural integers and based on {1

n
, 2

n
, …, (p-1)

n
} for 

variables of prime numbers. Let us note that the “mechanics” of these crossed tables allows changing the problem of 

enumeration essentially into a product of matrices problem that we will not develop here. The interested reader can refer 

to our articles on asymptotic enumerations in hyperplanes on free access [7].  

 

Here q1-q2 = n, n being a given integer (even or odd at this stage), q1 and q2 the representative of the prime numbers 

variables, we look at the classes of congruence modulo p such as cq1-cq2 = n. For each variable, representative classes are 

locally : 
 

  cq2 mod p 

 cq1-cq2 mod p 1 2 … p-1 

cq
1
 m

o
d

 p
 1 0 p-1  2 

2 1 0  3 

… … …  … 

p-2 p-3 p-4  p-1 

p-1 p-2 p-3  0 

 

Thus we have for the classes collected inside the table : 

 

#{n = 0 mod p) = p-1  (principal diagonal) 

#{n ≠ 0 mod p) = p-2  (other diagonals) 

 

This gives the density, to a given factor, of the numbers n at the sequence p (including for p = 2).  

The overall proportion is then rendered by the product of these values for p = 2 to ∞.   

 

To obtain the Euler factor, one simply adjusts the average of the frequencies to 1. In the classes [0, 1, 2, p-1], one has the 

target 0 with cardinal #(0) and p-2 other targets with equal cardinal #{c≠0}. The adjustment factor f is then given using 

f.(1.#(0)+(p-1).#{c ≠ 0)) = p the number of elements, that is f.((p-1)+(p-1).(p-2)) = p, so that f = p/(p-1)².  

Hence : 

#adjusted(n = 0 mod p) = f.(p-1) = p/(p-1) = 1+1/(p-1) 

#adjusted(n ≠ 0 mod p) = f.(p-2) = p.(p-2)/(p-1)² = 1-1/(p-1)
2
 

 

The cardinals of the twin and distant relative prime numbers are then : 

 
 

π(p-q = 2n) = 
 

П (1- 
   1  

) 
 

П (1+ 
   1  

) 
x 

         (110) (p-1)
2
 (p-1) ln²(x) 

p ∤ n   p ∖ n    

 

This process is reproducible to many Diophantine equations with asymptotic branches (infinite number of solutions), as 

for example Iwaniec/Friedlander equation generalized to x
2
+x

4
 = p+c, c a given constant, but also an more complicated 

equation as for example p = x
3
+x

2
y+xy

2
+y

3
+5t

2
+9u

4
+c, giving their Euler products, parametrized in c, which seems 

impossible to achieve by any other means (indispensable complement in reference [7]). 
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APPENDIX 1 

 

Numeric example  
 

This example uses as reference axis pi and rounding to an integer for withdrawals. It shows that the coefficient c is close 

to 1. The value of c is less than 1 indicates a reduction in the number of solutions (when c is taken as equal to 1).  

 

M = 1260799, 10000
th

 twin prime number (with M-2). 

i = 1408, pi = 11731.  

c = 0,994575.  

Initial number of odd integers: 630398. Total number of withdrawals : 620398.   

 

List of withdrawals: 

 
pi nb removals pi nb removals pi nb removals pi nb removals 

2 -417984 157 -242 367 -78 683 à 691 -34 

3 -83596 163 -233 373 -77 701 à 709 -33 

5 -35827 167 -222 379 -76 719 à 733 -32 

7 -16285 173 -212 383 -74 739 à 751 -31 

11 -11274 179 -208 389 -72 757 à 769 -30 

13 -7295 181 -195 397 -71 773 à 787 -29 

17 -5759 191 -191 401 -69 797 à 811 -28 

19 -4256 193 -185 409 à 419 -67 821 à 829 -27 

23 -3082 197 -181 421 -65 839 à 859 -26 

29 -2684 199 -169 431 -64 863à 883 -25 

31 -2104 211 -158 433 -63 887 à 911 -24 

37 -1796 223 -154 439 -62 919 à947 -23 

41 -1629 227 -151 443 -61 953 à 977 -22 

43 -1421 229 -148 449 -60 983 à 1019 -21 

47 -1206 233 -143 457 -59 1021 à 1061 -20 

53 -1043 239 -140 461 à 463 -58 1063 à 1097 -19 

59 -974 241 -133 467 -56 1103 à 1151 -18 

61 -858 251 -129 479 -55 1153 à 1193 -17 

67 -785 257 -125 487 -54 1201 à 1249 -16 

71 -742 263 -122 491 -53 1259 à 1321 -15 

73 -667 269 -120 499 à 503 -52 1327 à 1399 -14 

79 -619 271 -116 509 à 521 -50 1409 à 1487 -13 

83 -563 277 -114 523 -48 1489 à 1579 -12 

89 -505 281 -112 541 -47 1583 à 1697 -11 

97 -475 283 -108 547 -46 1699 à 1823 -10 

101 -456 293 -102 557 à 569 -45 1831 à 1993 -9 

103 -431 307 -100 571 -44 1997 à 2161 -8 

107 -415 311 -99 577 -43 2179 à 2417 -7 

109 -393 313 -97 587 à 599 -42 2423 à 2741 -6 

113 -343 317 -92 601 -41 2749 à 3181 -5 

127 -328 331 -90 607 à 617 -40 3187 à 3797 -4 

131 -308 337 -87 619 -39 3803 à 4799 -3 

137 -300 347 -86 631 à 643 -38 4801 à 6661 -2 

139 -275 349 -84 647 à 653 -37 6673 à 11731 -1 

149 -268 353 -82 659 à 661 -36 
  151 -254 359 -80 673 à 677 -35 
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APPENDIX 2 

 

Numeric example 
 

This example uses as reference axis pi² (squared) and rounding to an integer for withdrawals. It shows that the coefficient 

c is close to 1. The value of c, less than 1, indicates a mark-up of the number of solutions (when c is taken equal to 1).  

 

M = 1260799, 10000
th

 twin prime number (with M-2). 

i = 183, pi = 1093.  

c = 1,00406412. 

Initial number of odd integers: 630398. Total number of withdrawals : 620398.   

 

List of withdrawals: 

 
pi nb removals pi nb removals pi nb removals pi nb removals 

2 -421972 149 -266 347 -78 563 -34 

3 -84393 151 -252 349 -77 569 -33 

5 -36168 157 -239 353 -75 571 -33 

7 -16439 163 -230 359 -73 577 -32 

11 -11380 167 -220 367 -71 587 -31 

13 -7363 173 -209 373 -69 593 à 599 -30 

17 -5812 179 -204 379 -68 601 à 607 -29 

19 -4296 181 -191 383 -66 613 à 619 -28 

23 -3110 191 -187 389 -64 631 à 641 -26 

29 -2708 193 -181 397 -63 643 à 647 -25 

31 -2122 197 -177 401 -61 653 à 659 -24 

37 -1811 199 -165 409 -59 661 à 673 -23 

41 -1642 211 -154 419 -58 677 à 683 -22 

43 -1432 223 -149 421 -56 691 -21 

47 -1216 227 -147 431 -55 701 à 709 -20 

53 -1050 229 -143 433 -54 719 à 727 -19 

59 -981 233 -138 439 -53 733 à 739 -18 

61 -863 239 -135 443 -52 743 à 751 -17 

67 -790 241 -129 449 -51 757 à 769 -16 

71 -746 251 -124 457 -50 773 -15 

73 -671 257 -120 461 -49 787 à 797 -14 

79 -622 263 -116 463 -48 809 à 821 -13 

83 -565 269 -114 467 -47 823 à 829 -12 

89 -507 271 -111 479 -45 839 à 857 -11 

97 -476 277 -108 487 -44 859 à 877 -10 

101 -457 281 -106 491 -43 881 à 887 -9 

103 -431 283 -102 499 -42 907 à 911 -8 

107 -415 293 -96 503 -41 919 à 941 -7 

109 -393 307 -93 509 -40 947 à 953 -6 

113 -343 311 -92 521 -39 967 à 983 -5 

127 -327 313 -90 523 -38 991 à 1009 -4 

131 -307 317 -86 541 -36 1013 à 1033 -3 

137 -298 331 -83 547 à -35 1039 à 1063 -2 

139 -274 337 -80 557 -35 1069 à 1093 -1 
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APPENDIX 3 

Research of the centres M1 and M2 of the maximal spacings in cycle 1. 

Code  

https ://pari.math.u-bordeaux.fr/ 

 

{infini = 49; pd = 1; 

for(c = 1, infini, q = primes(c)[c]; pd = pd*q; p1 = primes(c+1)[c+1] ; p2 = primes(c+2)[c+2] ; 

for(k1 = 1, p1*p2, M1 = pd*k1; 

if(Mod(M1-1, p1) == 0, if(Mod(M1+1, p2) == 0, print("i="c+1", pi="p2", M1="M1", k1="k1)))))} 

 

{nb = 49; pd = 1; 

for(c = 1, nb, q = primes(c)[c]; pd = pd*q; p1 = primes(c+1)[c+1] ; p2 = primes(c+2)[c+2] ; 

for(k2 = 1, p1*p2, M2 = pd*k2; 

if(Mod(M2+1, p1) == 0, if(Mod(M2-1, p2) == 0, print("i="c+1", pi="p2", M2="M2", k2="k2)))))} 

 

Note 1 :  

The code makes no distinction between pj and its multiples. For c = 1 and c = 2, it gives a result for M1, which is not to be 

taken literally. One has to take M1+2.3.5 and M1+2.3.5.7 respectively. 

 

Note 2 :  

M1+M2 = 2.3.5…pi and k1(i)+k2(i) = pi-1.pi. 

 

List of values 

 
i=2, pi=5, M1=4, k=2 

i=3, pi=7, M1=6, k=1 
i=4, pi=11, M1=120, k=4 

i=5, pi=13, M1=9450, k=45 

i=6, pi=17, M1=217140, k=94 
i=7, pi=19, M1=9639630, k=321 

i=8, pi=23, M1=193483290, k=379 

i=9, pi=29, M1=417086670, k=43 
i=10, pi=31, M1=125601285810, k=563 

i=11, pi=37, M1=2723740849830, k=421 

i=12, pi=41, M1=79622514581610, k=397 
i=13, pi=43, M1=6136950437487870, k=827 

i=14, pi=47, M1=223928193956026560, k=736 

i=15, pi=53, M1=9171015693500691030, k=701 
i=16, pi=59, M1=522656315200217698500, k=850 

i=17, pi=61, M1=102036655192082030049630, k=3131 

i=18, pi=67, M1=6235511815550111588504010, k=3243 
i=19, pi=71, M1=334506463637028681244286040, k=2852 

i=20, pi=73, M1=28478557301114887810505822160, k=3624 

i=21, pi=79, M1=2843824411155784604050916242830, k=5097 
i=22, pi=83, M1=113432160468908532259480385863950, k=2785 

i=23, pi=89, M1=5778890002143848542586755859217480, k=1796 

i=24, pi=97, M1=1846751125991342512124140084420142850, k=6915 
i=25, pi=101, M1=72708581460921039807419994522555070290, k=3059 

i=26, pi=103, M1=19286076018404261623059699462430139525550, k=8365 

i=27, pi=107, M1=1273757133040980564123346343336375275992900, k=5470 
i=28, pi=109, M1=249658028112582700049702183737147717646149890, k=10409 

i=29, pi=113, M1=27763056840142703665840289166348895092331376460, k=10818 

i=30, pi=127, M1=2574121440717901122712497241546767984629324510460, k=9202 
i=31, pi=131, M1=521439461348328858073243322985304256489059236587040, k=16496 

i=32, pi=137, M1=252912047177981279912949795538640843608690770606990, k=63 

i=33, pi=139, M1=6093562502782797632317885012678036834779379279873623810, k=11587 

i=34, pi=149, M1=1453924959777637809800980752494214319119803117277588055800, k=20180 

i=35, pi=151, M1=185841797895169170082768839224027937644547072159440436851130, k=18557 

i=36, pi=157, M1=28828963020146876463537479231418049444339320239475022727521200, k=19320 
i=37, pi=163, M1=53400729793063989026946985986271104320112383716878500949782670, k=237 

i=38, pi=167, M1=113837287385782898397165898489028712874401262344909947345379321660, k=3218 

i=39, pi=173, M1=10898027695754548635554660766785293839408575789495465344527970050900, k=1890 
i=40, pi=179, M1=10465312568558673319254891474413528976506683111428323703620691223122360, k=10868 

i=41, pi=181, M1=2369241611663339270034472811280446556401444807458310288031889069701655620, k=14222 
i=42, pi=191, M1=417146283370479756411453451561200103436398976421364095686315512522437521010, k=13989 

i=43, pi=193, M1=185997950596372051062321297330712955492060609613885887937790229233216471047690, k=34461 

i=44, pi=197, M1=154633971288879001274934133325351155649793577244938646278915007328041899408500, k=150 
i=45, pi=199, M1=1124535351365837428231627001733951688162654844183732621015376872891279422554470040, k=5652 

i=46, pi=211, M1=1397753868987306142966933112215213530937540972486183569110364980333095426588790932590, k=35661 

i=47, pi=223, M1=327237929336787946005016899306961011382568217323613576350433084450633532988253857782740, k=41954 
i=48, pi=227, M1=74323585153911701110138838476431277275629516291761360103564684125228077985344754490295600, k=45160 

i=49, pi=229, M1=5059963172703425132303431555239735128768826914715159286974528895210315566740930757864665910, k=13787 

i=50, pi=233, M1=1289740828461096065526510424806938353011005842383558531168140913517984567385117229070004837910, k=15481 

https://pari.math.u-bordeaux.fr/
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i=100, pi=547, 

M1=8041201683943410828109550634828854777505537263494423149748904095519141328685633724080930325791856058467753055190892349
56734453622440768828003276810450872878667303664912803073215811791086832515085642402645880727981673189250, k1=92325 

i=150, pi=877, 

M1=3075986181577799752875942769983071641666950609474230206853013920976122981515566899303884734659392028470682697772371102

06226823665813978521017941450656110160751327725869765114147397032794634098661821588521403000938757364825364072480520113675

35802492904042534164627876795442191138848011141606041097369544579245117181553387123860884412525715809794800030499661020149

540, k1=410114 
i=200, pi=1229, 

M1=5247111092270099479860215068871654127200413939904659193381294991942234709536976298410697812700332039354992824584474691

35410910054229104859816953141744038812142171389294016944645798427598566104633253218274792402904217960852232970977440669336
36889569384560356763970555049402253209837923179783332960608475211196527586449302888756228881667226924071140532962391832782

51601898699086385261563157563515562854370470702253725876479939179831864827127333293347472654157095704534791585990961382617

049958339935177090932805184440, k1=12972 
i=250, pi=1597, 

M1=1243316637742614657145737749273977499062750798039219171788207720512419392051948363568818972628860729132651005941651769

04678205706106466970445242592120829878315033595789312866953303779388327876531548881472479886557904421024907313146513725626
98998445907451955919314358312314128168677020966013279723380048541065143162326392804044309492885488072511301617245372213250

28211585609482008814810417864376320459257846095951125012230759826238475114493987667995795117964983080089211436148697391807

54845871712074593502429438986215227052480190788012786197061126144859526089177401917936763162851862468358769935070994443575
0816676421106155724678491059366186364291037610910485852183731401380, k1=156866 

i=300, pi=1993, 

M1=4736309836941162469839381709724705334939858575123475895266393516927073656235409732436839394651743287975858617079178428
16392075282518673873748572805773118847270973629002029648106043057939867420357323541209362551063643656277421202822569142552

66792649793726386652034464397369971920112821291460872267528663671599353204269433550438838091231314822764875102341857119520

21054229682837544112929850127166409326100247141245481779292042573581387687757476309713270010981524299583351385668939621764
02461352773837744847382729708164739993814639646355161932047889705160126459126416249223659247934872950989018379375730092324

57465802047724223116189378861844080963673286092187759307863991129374940131226231537328409043523047358089652747975690648635

363482029550290996733985324924044349872634006463918985909844347222074962243672124521331491765441365057078880, k1=2587472 
i=350, pi=2371, 

M1=3639153206754216293159858779234324793239910864276473132609059037199263233146833971405678790951542119441411922391175608

34816975344041244090117760727562315904655848546440836143279039530685714507801977539080687621353185511264219182845049846564
02226153369397935726879946191047846998875953023452063636569919512343930431931256213429006069823816771312285917254519811648

21001165495395870811637984910162703119034081094002256085552151885569166511762392380884500857506598764702657650083013232629

60196806850747988515270871853817434238208883774029504406653712447545777464660460407740191505328169913544639093135413027816
82655982120833194060477644706881273879627275667051190787355891357721494514563821807000491826238240069011566826575061590540

65489571778865297608405605410797524854920742167479042578258205874451522293629229743155251742460206370130490659215665318016

59288680143665757532193583153861257426926880119388592375417810762020951506977061543024629484453797016686408014824076372696
0143744182855521095602865958040, k1=3615004 

i=400, pi=2749, 
M1=2370062918561334691017203553498679311795303535434727082143133209075296262553986437839036253467462727613462540102393696

80801448206819824884519419492399183244042464504627515926224860293517444047696317322584749888104254930707510477813088431437

75582754558235040972555539373888527391325122142828238982531865002903260043094223316270923525763144356211361754510358234325
71662173693384720579032643270498827115051975613411881844973578775934973507589761096438509861011411931093684594135873403632

07267013976501298226435151115042842979654720976453891119748363942401564809944139130444881103254208306908822060765445469409

65501606851997056661394234852233782877652512222463093887898790946480418891712793052657257062827684399993127160647328588712
89163159894190151817053529298198761940671426620379012707905176849982335447921568099826926585769945835939886361479105787310

98240901576381218745841701654271348395752022493465093591806020810594642461094999822304833848806961321939410730334420881076

62525005848803576438035614385695241933703734526499747218103126478235456825408790933834522108297269842159385992675408078240
598238118897075694980283383243599250396291208654661034934703577898526143507420, k1=105238 

i=450, pi=3187, 

M1=2662203239007689844030721002449525055606122906526672490350296450134523274714685951068133605450495622081622648845758471
02589216756084098053926854521506004691664984765644931369839542647051377017700835514274667671363938256767509818365899103847

77215913977103713463955926806108334999780698920357965989565422838939793245423449292014742703484051262205387278307803388997

05828219153734447717426007195553584772892535472834592887202728679990541365598624975383761692517925270629022651754784879979
69748998852005270753718809524394971926831491364007174859293708358045154957092131905352737871951655713206750001262178474992

75149183595355149992676443521885689427674507464647504303745616855732288722324708743807690780624238475383233314540643792159

56043345181236137640033586619295749711236509217789552804709927749742830515005048529356930226929957313947864256065352321155
34528139558712936147039251274220694926227654181423870624999050583802199629741391307029379415665309117068723929412087691988

53608416393206082778364168860654580715064396650195791307252153523451860667303489720357407096554032225449031534883821363037

29258109928727522501198878639340619167555011625704840023029912634520631456726649583421552802595642283164505258883615677774
42177981830752660961593864951933334459687903325009718570637117049697613516393706461263217203356447219867752291493884022733

189296890, k1=4295639 

i=500, pi=3581, 
M1=3367154080684928676634699313141468074972535691694779144134807293880357055296304689516700435968515314007975424059990464

22451929878580235301943584542515127905561644066266724839909719432754722595914819587383927240410326684081167237975382859457

29385498617977882787409226490678812016741963414348395380580245753493122557596753072956354322451399516044739794559650462611
86545761129536730209872086347007488646670670964808626268863359345967615334055597626792344074362239003377461490725789586144

24630799849870712189229801433518600392715218462765017782069669424377354986120853878281757041852158180437072028125154435372

75808064270450152361534631519303107476711459703966304349090980088534167211369935600351805208678813046270741094337430866146
71857419874577269992401018954465943671182574847661261834216549535251473047769542888366682541048857668716087437591115587991

11538843658806482010882783973822267397302944279005362216858808808229006695880078219717066507907345049593091385387158519219

38159428858879004620737720591601492975791090997891315583428712558459933129149404973814995115282471917189977259420641249565
57064454019730115842558428900516304807811899222347976230982093169476877956115731882701824512493721984134489996993922476782

72241656430339667098867777419171094557978696610074943762170529562985024148824177515443605864588786135901382542328737652484

31313844039264564484163227175236052852374428221355120252820644148217696356632394890148304829238192169897709086272517330922
772369308068735560405150126614850232588419329008655773233580170, k1=2156443 

i=1000, pi=7927, 

M1=6313957365066382545080839999997371465322099698667541376694382425796795614672479962294904873335583685140543004930106905
30762937900529012430849450426057547405737502354970185040517235535061521588550946887886891312836549402631246979827534592817

70097644974332449603820712910427304420741638706395221460319285906081338323593290013660835231077721732580258252337057019627

51929280211864448356755926330697565889664802539316548133687695202017909533230787512100779957817357601664195350063618465813
53840884076853826502101504639469014192025425371216640286466388912969918989687009409133201426862481633757719513358193280468
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78338082742713589290017968788336996515192051454596654078637420919469991577722007522823224304841433194131485832822500483224

76769923465891928363599247515238949023550129000829865035273147757110741947328458145720116356908091818592407863204207545863
38649460169551701877850331934902852466733468709592897301090230391141141267605035084334307630544972060415729465192863366999

31255299778751058560783756283972255434206036401773635231997390001115369414811348577201013076445556877566630968018308545908

11501060149409196296578852780151513630422447571826114331961376977796616925522889150524491882767889275912775371890426773678

60248638204930500229821490828550299251096510866764936739976508896369893777271069613552163513180331404554517969662636125456

93194046226880141752710859796846442028992660845374076583019792900338320251838855631511128728886037571724652489897173584617

60469114415237159000595645281384547287750650122893794747278742978633425389376186536643792567035193813347380263440770086724
34404955300655874324954065163284247095707347315331282439579218894971341742803407102827592536982693551712342552926076860163

03497100156171529257759717363283129512470777433459723288286351089496730838240027286843577654661691070412109947409617227153

12766908773529948292577541241430253657213648437375394265866157740066048513934646568386469144342917813876992285352656060972
48583818668735897319253739930213145017062426546858661517997507976807310899984018961861338441599106233534526060809849640869

47505387145662371062155244788705279977864292196796264429661022435022450100369704208111106942412000136179361248202107883502

68338438347211933534108515542059474909893989490341499213563968993567599113033749656133463667057228284799526272476420772390
56137147338919484041392548632542755312520137141524588982651799223843216729489828147455718092082601867194153775212643030651

60882290389617218170083828837879363058103378065675107043353368046785331867807964990999686031839873145823236990422131799899

34133589639117151232705269505047084952458217579549237658588529558382633075289742371869776752019971273500302887324182497283
91780155386761154617560811517679512858784560554478851570982893798806050506868728786021101860262789983040978796337693101487

63259456002907721014847615946978384064523867945471150965137176008545667882215956804416193959157363638963263683707273140005

34529655119755577155266140205884602185741341556218202725538551031687409589834708029600649569317223848589926128216867590975
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95183333570732946553809470835704816651830927392443914247549656701074589917898594603728569269440974357326814777877516997659

6287398243799238011180625992422804415184010334246947520602554357744445427931046843172196174230080387372690, k1=7367823 
i=1500, pi=12569, 

M1=1427977103941219771545682558941678035565126267991322785640136161083903626589792829515924131607357421079038916820695575

74253627838047326772845283835441905035582204919343551253318308768819486317162291710835119621437127566574519563190889649848
82342633503140900333963469948115394947794021904359198997191355795211878374619306900018890118152526546967346340548937267404
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61842479591088739350710526333381855387202480258558789913498096159645892084612351016824506405099612503563598310523168071252

12479198866836699002169486586650092766822618876750688085828509101422172716753093434229725669822860955564457871377670487418
14005775429019007516034272201824417965696821718633371393644556785840942592384392398264261387177599447307391543954516056857
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75530946225814095598891200554236877313914630894476599900376109626614289340729093029469060446388262673380728043693030294845
02276592815153245124156364066583146108359000182219095491361000837427497330674140469218165478722618324485687249038446216503

04410524153804908864559742540942576638558208935936820607874122265777686007272137765486032773900182637756109561231952862344

10808014904255442578493569658087377329094761854361762170125607560646293097773327937538635118936937230355644391191318243428
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01918810945179130146276241576358838131061734024736446255472804856135197613295360506285591133800414473975860099588598323302

52171410511501363703358816982120896278704816953291280554055116099086688432141397878988665793946223325100256691778256998076

54693986822664478326987449181308897608023358340682624642967924371454706027841069804144927497963617015975754897136350791571
34464280062074769181387090898146045201234249893612583245358631832844083418542971638211146435404471984438262024470834353039

93034908385071960509028595231608599571653769231762990045755805590096830209273253447297788853794640338638796876692051400059

08541171685196302729043472716925952946509208486349871297079576085122359256754565772116504614943092096323483991453351826634
00475436986232863945249799508242095347440678996976978601165346101767096420895132513168383801404481355819267257652247235047

10606330114436575552993022333988312791573785375243791321430574701951802572560808489221389168660951821981466954202838432240

89903957630505301507117487372422061491741093166173941294473224167326700865409516056011462860556725589327240470884853258067
79667186657913436841584054232217140753826077672173273523977666116722002186298958820234049367335651254295744454438558111760

74006595803982999322806759002471251188232684053161966926792277994962547378741462317301482806471045521677384677445362320277

82118179381887912365869101395752886033180290324190420614785813617553744609392910873910591838253928788486940277794005343742
84199516203910390684853520594305693670277472484882699901634507246435201452911091992548746558811136404448986983198982380662

04731877186390003414639325273621092290181940142014042450114559212631364541896141582358621255470609628082823177169110050072

24693531773488869501953276815916191871590984216817312686487890203483649293212295196978639116705208094380837545659130767009
33586963704605405456525596633735796479923496194347337856290320152318481286942517256999330085661091577857391761736762046833

950171358396996661303942412709583250, k1=27427725 

 

The last number M1 contains 5400 digits that are distributed relatively evenly between the different values from 0 to 9 : 

 

Values 0 1 2 3 4 5 6 7 8 9 All 

Quantities 557 544 515 528 546 533 556 523 550 548 5400 

Percent 10,3% 10,1% 9,5% 9,8% 10,1% 9,9% 10,3% 9,7% 10,2% 10,1% 
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APPENDIX 4 

Bijection between related pairs. 

 

Beyond the problem of the bijection, we show here the random behaviour of the depletion which accredits heuristic 

calculations. 

We checked that when two gaps 2n and 2m have same divisors systematically, implementing the Eratosthenes sieve, at 

the same step i, the same number of elements exist between [pi+2+2n, pi+2+2n+2.3… pi] and [pi+2+2m, pi+2+2m+2.3… 

pi]. So, there is a bijection at every stage between these elements by matching the numbers in their appearing order. 

However, at each step’s increment, integers in correspondence do not stay the same. The bijection is not sustainable. It 

has to be redone at each stage.   

 

Let us observe cases 2n = 2 and 2m = 4 and clarify explicitly step i = 2, pi = 5. 

 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 

 
2 2 

  
2 

  
2 

     
2 

    
 2 

  
4 

 
4 

  
4 

  
4 

        
4  

 

We consider here only the entry and the cycle 1, bijection continuing next elementary up to infinity. In the entry, we do 

not care to have a strict bijection from beginning (5 has no match). Our focus is mainly on the evolution in the cycle 1. Of 

course, as more numbers are observed and stage i increases, it will match not only primes among these lists. On the 

contrary, these will become extreme minority. Nevertheless, even if we attest of this minority, we increment i up to 

infinity and analyse distances among construction. 

We are matched to start with the two cycles 1: 

 
 

 
2 

 

 
2 

 

    
2 

   
4 

  
4 

  
4 

        
 

This gives us an advance or a delay from one to the other, here: 

 

-4 -4 -10 

 

Classifying the differences in ascending order, we get for steps 1 through 3, the following results : 

 

2 

 

-10 -4 -4 

 

-28 -28 -22 -22 -16 -16 -10 -4 -4 2 2 2 8 8 8 

 

Beyond, a graphical representation is more meaningful and we clarify its construction : For i = 4, p i = 11, (3-1).(5-2).(7-

2).(11-2) = 135 gaps are identified, for example, as follows : 

 

Abscissa 

x’ 
1 2 3 4 5 6 7 … 129 130 131 132 133 134 135 

Ordinate 

y’ 
-70 -70 -70 -58 -58 -52 -52 … 26 26 38 38 44 50 56 

 

A new abscissa is chosen using x = -1+2.x’/∏(pi-2) in order to get x in the interval [-1,1]. Thus for ∏(pi-2) = 135 : 

 

Abscissa 

x 
-0,99 -0,97 -0,96 -0,94 -0,93 -0,91 -0,9 … 0,91 0,93 0,94 0,96 0,97 0,99 1 

Ordinate 

y 
-70 -70 -70 -58 -58 -52 -52 … 26 26 38 38 44 50 56 

 

Then we compare the results in ordinate with the following formula : 

 

y = α.((2/π).Arcsine(|x|
1/2

))
2
+β 

 

This is done by adjusting the coefficients α and β approximately. 
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Table 78 

 

i 4 5 6 

pi 11 13 17 

∏(pi-2) 135 1485 22275 

α 64 82 195 

β -10 -10 -10 

|max(ordinate)/α| 1,086 1,134 1,293 

 

Graphs 24, 25 and 26 

 

  
 

 
 

The coincidence of both these curves occurs within two "random" walk, namely that of the integers related by a distance 

of 2 on the one hand and the integers related by a margin of 4 on the other hand, and illustrates their independence, hence 

the square of the expression (2/π).Arcsine(|x|
1/2

), expression found on the occasion of one random walk only.  

The β factor here has only a minor role. It becomes negligible as i increases. Knowledge of the adjustment factor α would 

on the contrary be valuable, even if the assessment does not give a good approximation of the maximum and minimum 

values of ordinate (that is, distances at the extreme left and right of the curve), the ratio |max(ordinate)/α| showing here on 

the rise when we try to match the curves “at best”. Indeed, red curves do not follow correctly the blue when the slope 

increases quickly at the extremes, the maximum distances being superior to expected values for random walks. 

 

What is the meaning of this type of curves? That the cardinal of small and medium distances is of the same order of 

magnitude (curve close to a straight line) and that large distances are few (slope towards a vertical). Of course, this is 

expected! 

 

But now, let us go back to another feature of random walks : If actually, both sets follow such a walk, it is not surprising 

that one will exceed the other most of the time. Let us check that numerically by recovering the two lists of the twin prime 

numbers on one side and the cousin prime numbers of the other hand. When we then compare their differences, we find 

that after many differences’ returns to 0 the twin primes seem to prevail starting at j = 7790 (p4k-p2k > 0 until at least k = 

120000) as the theory of games so provides (cf. [6] p21) : “between two players to equal fortune, one of the two players 

will stay ahead much longer than the other; in fact, there will be one winning most of the time”. The cousin prime integers 

are slightly rarer (0.27%) than twin primes in this interval, the p4k-p2k differences, k
th

 primes cousin and twin 

respectively, being of the order of magnitude of k between the origin and the last evaluation here. 
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Graphs 27 and 28 

 

  
 

The probability of return to the 0 distance being proportional to 1/(π.k)
1/2

 (cf. [6] p18) and so becomes increasingly 

smaller as the random walk progresses. Of course, we are unable to verify this far beyond what is presented here despite 

our already performing computing resources (Pari GP). Neither are we able to verify that (p4k-p2k) will vary by an order 

of magnitude of k ≈ p2k/ln²(p2k) up to infinity.   

 

Note: We could also choose to compare the positions of the remaining numbers (either twins or cousins) from their 

positions if they were all equidistant. Here, we would still have distances in arcsine distribution prompting again to favour 

simple heuristic calculations. 
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APPENDIX 5 

Table of the quantity of spacings Δ in cycle 1 for given 2n. 

 

Case 2n = 4. 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

6 1 2 6 42 378 4914 73710 

12   2 16 154 2072 31850 

18  1 4 32 288 3744 56160 

24   2 20 252 3780 62244 

30   1 15 214 3636 62988 

36    10 126 1934 34010 

42     27 601 13572 

48     8 224 6160 

54     22 528 12624 

60     12 544 14308 

66     2 160 5146 

72     0 4 248 

78     0 32 1489 

84     2 72 2384 

90      12 572 

96      18 644 

102       158 

108       94 

114       148 

120       120 

126       42 

132       0 

138       0 

144       2 

150       2 

Number of 

spacings 
1 3 15 135 1485 22275 378675 

Ratio to the 

previous 
 3 5 9 11 15 17 

 

 

Case 2n = 8. 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

6 1 1 4 28 252 3276 49140 

12  2 6 42 378 4914 73710 

18   2 22 260 3700 59020 

24   2 16 154 2072 31850 

30   1 24 288 4464 79344 

36    0 16 492 10020 

42    2 90 1932 35268 

48    0 16 494 11836 

54    1 19 337 7263 

60     4 276 9440 

66     2 46 1594 

72     4 126 3538 

78     2 60 2172 

84      44 1782 

90      40 1618 

96      0 194 

102      0 284 

108      0 86 
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Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

114      2 210 

120       200 

126       12 

132       42 

138       12 

144       2 

150       10 

156       10 

162       14 

168       2 

174       0 

180       0 

186       0 

192       0 

198       2 

Number of 

spacings 
1 3 15 135 1485 22275 378675 

Ratio to the 

previous 
 3 5 9 11 15 17 

 

Case 2n = 16. 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

6 1 2 6 48 432 5616 84240 

12  0 2 14 154 2198 35126 

18  1 3 21 189 2646 39690 

24   4 30 294 3906 60606 

30    16 260 4112 72112 

36    2 44 1036 21268 

42    0 14 418 9782 

48    2 44 722 13640 

54    2 44 988 21960 

60     6 320 9168 

66     0 92 2974 

72     0 8 484 

78     4 165 3793 

84      34 2264 

90      12 730 

96      2 330 

102       18 

108       190 

114       196 

120       42 

126       18 

132       8 

138       0 

144       4 

150       18 

156       6 
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Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

162       0 

168       4 

174       0 

180       0 

186       0 

192       0 

198       4 

Number of 

spacings 
1 3 15 135 1485 22275 378675 

Ratio to the 

previous 
 3 5 9 11 15 17 

 

Case 2n = 32. 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

6 1 1 3 21 210 2730 43680 

12  2 6 48 432 5616 84240 

18   4 32 312 4440 68712 

24   2 14 154 2198 35126 

30    10 161 2725 47597 

36    4 52 906 15630 

42    6 110 2006 38666 

48     22 578 12270 

54     4 128 3636 

60     28 708 18024 

66      68 2596 

72      50 2312 

78      36 2424 

84      68 2178 

90      10 786 

96      2 120 

102      6 418 

108       98 

114       4 

120       86 

126       12 

132       52 

138       4 

144       4 

Number of 

spacings 
1 3 15 135 1485 22275 378675 

Ratio to the 

previous 
 3 5 9 11 15 17 

 

Case 2n = 64. 
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Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

6 1 2 8 56 504 6552 98280 

12  0 0 6 90 1410 25200 

18  1 3 21 189 2457 36855 

24   2 24 264 3768 60216 

30   2 18 224 3676 61724 

36    6 92 1504 27992 

42    0 16 422 9194 

48    4 64 1018 18786 

54     32 786 16894 

60     4 362 10646 

66     2 96 3896 

72     0 6 376 

78     4 132 4316 

84      60 2588 

90      26 1382 

96       48 

102       28 

108       52 

114       64 

120       84 

126       16 

132       0 

138       16 

144       4 

150       12 

156       0 

162       0 

168       6 

Number of 

spacings 
1 3 15 135 1485 22275 378675 

Ratio to the 

previous 
 3 5 9 11 15 17 

 

Case 2n = 6. 

 

Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

2 1 1 3 21 189 2457 36855 

4 1 2 6 42 378 4914 73710 

6  2 12 104 1088 15616 254464 

8  1 4 28 252 3276 49140 

10   2 20 218 3148 51058 

12   0 0 0 0 0 

14   2 22 246 3582 58338 

16   0 4 68 1164 20988 

18   0 8 124 2024 35180 

20   0 4 88 1672 32088 

22   0 2 38 682 12682 

24   0 4 80 1540 30092 

26   0 0 8 248 6072 

28   1 8 92 1548 27128 

30    2 56 1138 25122 

32    1 14 310 6440 

34     4 182 5422 

36     8 278 7446 

38     4 130 3726 

40     9 214 5778 
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Steps i 1 2 3 4 5 6 7 

pi 3 5 7 11 13 17 19 

Cycle 1 sizes 6 30 210 2310 30030 510510 9699690 

Spacings Δ Quantity of spacings Δ in cycle 1 

42     0 86 2612 

44     4 132 3686 

46     0 16 906 

48     0 62 2706 

50     0 44 1524 

52     0 11 401 

54     0 4 568 

56     2 30 820 

58      2 364 

60      32 1096 

62      0 40 

64      0 226 

66      2 152 

68      2 96 

70      2 184 

72      0 16 

74      0 28 

76      0 16 

78      2 84 

80       14 

82       8 

84       44 

86       4 

88       6 

90       10 

92       2 

94       0 

96       2 

98       2 

100       0 

102       0 

104       2 

106       0 

108       0 

110       0 

112       0 

114       2 

Number of 

spacings 

2 6 30 270 2970 44550 757350 

Ratio to the 

previous 
 3 5 9 11 15 17 
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APPENDIX 6 

Evaluation of #S(j,i). 

Examples of iterative relationships’ systems. 

 

Let us remind that the iterative relationships’ systems given below are questionable. We recall that these recursive 

relationship systems are given for information and have yet to be demonstrated. 

 

Example 2n = 4 : 

Table 79 

 

j Δ Formulas Conditions 

1 6 #S(1,i) = (pi-4).#S(1,i-1) i ≥ 2 

2 12 

x1(3) = 2 

x1(i) = (pi-1-6).x1(i-1) 

#S(2,2) = 0 

#S(2,i) = (pi-4).#S(2,i-1)+x1(i) 

i ≥ 3 

3 18 #S(3,i) = (pi-4).#S(3,i-1) i ≥ 5 

4 24 

x1(5) = 72 

x1(i) = (pi-1-6).x1(i-1) 

#S(4,4) = 20 

#S(4,i) = (pi-4).#S(4,i-1)+x1(i) 

i ≥ 5 

 

The values below have been checked up to rank i = 8. Beyond that, the values are speculative. 

In the table below and thereafter, the values of #S(j,i) in parentheses do not deduce from the iterative formulas. 

 

i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) 

1 3 (1) 
   

2 5 2 (0) (1) 
 

3 7 6 2 (4) (2) 

4 11 42 16 (32) (20) 

5 13 378 154 288 252 

6 17 4914 2072 3744 3780 

7 19 73710 31850 56160 62244 

8 23 1400490 615160 1067040 1254708 

9 29 35012250 15549170 26676000 32592924 

10 31 945330750 423741500 720252000 908189100 

11 37 31195914750 14081317250 23768316000 30674744100 

12 41 1154248845750 524042018500 879427692000 1156805149500 

13 43 45015704984250 20543803530250 34297679988000 45879787453500 

 

Example 2n = 8 : 

Table 80 

 

j Δ Formulas Conditions 

1 6 #S(1,i) = (pi-4).#S(1,i-1) i ≥ 4 

2 12 #S(2,i) = (pi-4).#S(2,i-1) i ≥ 3 

3 18 

x1(6) = 320 

x1(i) = (pi-1-6).x1(i-1) 

#S(3,5) = 260 

#S(3,i) = (pi-4).#S(3,i-1)+x1(i) 

i ≥ 6 

4 24 

x1(3) = 2 

x1(i) = (pi-1-6).x1(i-1) 

#S(4,2) = 0 

#S(4,i) = (pi-4).#S(4,i-1)+x1(i) 

i ≥ 3 

 

The values below have been checked up to rank i = 8. Beyond that, the values are speculative. 

 

i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) 

1 3   
 

 

2 5 (1) (2) 
 

(0) 

3 7 (4) 6 (2) 2 

4 11 28 42 (22) 16 

5 13 252 378 (260) 154 

6 17 3276 4914 3700 2072 

7 19 49140 73710 59020 31850 
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i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) 

8 23 933660 1400490 1167140 615160 

9 29 23341500 35012250 29956420 15549170 

10 31 630220500 945330750 826715500 423741500 

11 37 20797276500 31195914750 27728915500 14081317250 

12 41 769499230500 1154248845750 1039836297500 524042018500 

13 43 30010469989500 45015704984250 41038940442500 20543803530250 

 

Example 2n = 6 : 

Table 81 

 

j Δ Formulas Conditions 

1 2 #S(1,i) = (pi-4).#S(1,i-1) i ≥ 2 

2 4 #S(2,i) = (pi-4).#S(2,i-1) i ≥ 3 

3 6 

x1(4) = 8 

x1(i) = (pi-2-3).x1(i-1) 

x2(3) = 6 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#S(3,2) = 2 

#S(3,i) = (pi-4).#S(3,i-1)+x2(i) 

i ≥ 3 

4 8 #S(4,i) = (pi-4).#S(4,i-1) i ≥ 4 

5 10 

x1(4) = 2 

x1(i) = (pi-2-6).x1(i-1) 

x2(3) = 2 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#S(5,2) = 0 

#S(5,i) = (pi-4).#S(5,i-1)+x2(i) 

i ≥ 3 

6 12 #S(6,i) = 0  

7 14 

x1(4) = 8 

x1(i) = (pi-1-5).x1(i-1) 

#S(7,3) = 2 

#S(7,i) = (pi-4).#S(7,i-1)+x1(i) 

i ≥ 4 

 

The values below have been checked up to rank i = 8. Beyond that, the values are speculative. 

 

i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) #S(5,i) #S(6,i) #S(7,i) 

1 3 (1) (1) 
 

   
 

2 5 1 (2) (2) (1) (0)  
 

3 7 3 6 12 (4) 2 0 (2) 

4 11 21 42 104 28 20 0 22 

5 13 189 378 1088 252 218 0 246 

6 17 2457 4914 15616 3276 3148 0 3582 

7 19 36855 73710 254464 49140 51058 0 58338 

8 23 700245 1400490 5153792 933660 1024604 0 1172934 

9 29 17506125 35012250 135159808 23341500 26606146  30484566 

10 31 472665375 945330750 3812343808 630220500 742321216  850952466 

11 37 15597957375 31195914750 130344288256 20797276500 25123351162  28806030162 

12 41 577124422875 1154248845750 4976270114816 769499230500 949717873832  1089010277082 

13 43 22507852492125 45015704984250 199885542391808 30010469989500 37767570069866  43306138605366 

 

It becomes difficult to predict lines with n formulas, n given, even if we find the systems here for a larger number of lines 

than in the case of 2n = 2. 

 

Example 2n = 12 : 

Table 82 

 

j Δ Formulas Conditions 

1 2 #S(1,i) = (pi-4).#S(1,i-1) i ≥ 4 

2 4 #S(2,i) = (pi-4).#S(2,i-1) i ≥ 2 

3 6 #S(3,i) = (pi-4).#S(3,i-1) i ≥ 3 

4 8 

x1(3) = 8 

x1(i) = (pi-1-6).x1(i-1) 

#S(4,3) = 2 

#S(4,i) = (pi-4).#S(4,i-1)+x1(i) 

i ≥ 4 



P 114/142                                                    

j Δ Formulas Conditions 

5 10 

x1(5) = 24 

x1(i) = (pi-1-6).x1(i-1) 

#S(5,4) = 60 

#S(5,i) = (pi-4).#S(5,i-1)+x1(i) 

i ≥ 5 

6 12 ?  

7 14 

x1(7) = 288 

x1(i) = (pi-2-6).x1(i-1) 

x2(6) = 144 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#S(7,5) = 62 

#S(7,i) = (pi-4).#S(7,i-1)+x2(i) 

i ≥ 6 

8 16 

x1(5) = 48 

x1(i) = (pi-1-6).x1(i-1) 

#S(8,4) = 4 

#S(8,i) = (pi-4).#S(8,i-1)+x1(i) 

i ≥ 5 

... ... …  

12 24 #S(12,i) = 0  

 

The values below have been checked up to rank i = 8. Beyond that, the values are speculative. 

 

i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) #S(5,i) #S(6,i) #S(7,i) #S(8,i) 

1 3 (1) (1) 
 

     

2 5 (2) 1 (2)  (1)    

3 7 (8) 3 6 (2) (7) (2)   

4 11 56 21 42 22 (60) (30) (5) (4) 

5 13 504 189 378 238 564 (476) (62) 84 

6 17 6552 2457 4914 3374 7500 (8152) 950 1428 

7 19 98280 36855 73710 53690 114348 (148768) 16266 25116 

8 23 1867320 700245 1400490 1060150 2196636 (3236864) 340446 525252 

9 29 46683000 17506125 35012250 27184430 55324308 ? 9117390 13948116 

10 31 1260441000 472665375 945330750 749635250 1503149700 ? 261419418 395385900 

11 37 41594553000 15597957375 31195914750 25129354250 49838774700 ? 9039440826 13517403900 

12 41 1538998461000 577124422875 1154248845750 941919228250 1851314536500 ? 348065085186 514703689500 

13 43 60020939979000 22507852492125 45015704984250 37159509136750 72456062464500 ? 14076825990318 20583034972500 
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APPENDIX 7 

Table of pairs of maximum spacings at step pi = 17. 

 

Some series are presented in descending order for the "coherence" of the shadows with the other ones. 

 

  



P 116/142                                                    
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P 118/142                                                    

  



P 119/142                                                    

  
 

  



P 120/142                                                    

APPENDIX 8 

Preparatory table to links at step pi = 11. 
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APPENDIX 9 

Table of positive progressions configurations at step pi = 11. 

 
pi 3 5 7 11 

 
pi 3 5 7 11 

 
pi 3 5 7 11 

 
pi 3 5 7 11 

 
pi 3 5 7 11 

 

pi 3 5 7 11 

6 0 0 0 5 
 

6 0 0 0 5 
 

6 0 0 0 5 
 

6 0 0 0 5 
 

6 0 0 0 0 

 

6 0 0 0 0 

+ 0 1 1 1 
 

+ 0 1 1 1 
 

+ 0 1 1 1 
 

+ 0 1 1 1 
 

+ 0 1 2 0 

 

+ 0 1 1 1 

12 0 1 1 6 
 

12 0 1 1 6 
 

12 0 1 1 6 
 

12 0 1 1 6 
 

12 0 1 2 0 

 

12 0 1 1 1 

+ 0 0 3 0 
 

+ 0 0 3 0 
 

+ 0 0 3 0 
 

+ 0 0 3 0 
 

+ 0 0 2 1 

 

+ 0 0 3 0 

18 0 1 4 6 
 

18 0 1 4 6 
 

18 0 1 4 6 
 

18 0 1 4 6 
 

18 0 1 4 1 

 

18 0 1 4 1 

+ 0 2 1 0 
 

+ 0 2 1 0 
 

+ 0 2 1 0 
 

+ 0 2 1 0 
 

+ 0 3 0 0 

 

+ 0 3 0 0 

24 0 3 5 6 
 

24 0 3 5 6 
 

24 0 3 5 6 
 

24 0 3 5 6 
 

24 0 4 4 1 

 

24 0 4 4 1 

+ 0 1 1 1 
 

+ 0 2 1 0 
 

+ 0 1 1 1 
 

+ 0 2 1 0 
 

+ 0 1 1 1 

 

+ 0 1 1 1 

30 0 4 6 7 
 

30 0 0 6 6 
 

30 0 4 6 7 
 

30 0 0 6 6 
 

30 0 0 5 2 

 

30 0 0 5 2 

+ 0 1 0 2 
 

+ 0 0 0 3 
 

+ 0 1 0 2 
 

+ 0 0 0 3 
 

+ 0 1 0 2 

 

+ 0 1 0 2 

36 0 0 6 9 
 

36 0 0 6 9 
 

36 0 0 6 9 
 

36 0 0 6 9 
 

36 0 1 5 4 

 

36 0 1 5 4 

+ 0 0 0 3 
 

+ 0 0 0 3 
 

+ 0 0 2 1 
 

+ 0 0 2 1 
 

+ 0 0 0 3 

 

+ 0 0 0 3 

42 0 0 6 1 
 

42 0 0 6 1 
 

42 0 0 1 10 
 

42 0 0 1 10 
 

42 0 1 5 7 

 

42 0 1 5 7 

∑ +0 +5 +6 +7 
 

∑ +0 +5 +6 +7 
 

∑ +0 +5 +8 +5 
 

∑ +0 +5 +8 +5 
 

∑ +0 +6 +5 +7 

 

∑ +0 +6 +5 +7 

     
 

     
 

     
 

     
      

 
     

pi 3 5 7 11 
 

pi 3 5 7 11 
 

pi 3 5 7 11 

 

pi 3 5 7 11 

 

pi 3 5 7 11 

 

pi 3 5 7 11 

6 0 0 0 5 
 

6 0 0 0 5 
 

6 0 0 0 0 

 

6 0 0 0 0 

 

6 0 0 0 0 

 

6 0 0 0 0 

+ 0 1 1 1 
 

+ 0 1 1 1 
 

+ 0 1 2 0 

 

+ 0 1 1 1 

 

+ 0 1 2 0 

 

+ 0 1 1 1 

12 0 1 1 6 
 

12 0 1 1 6 
 

12 0 1 2 0 

 

12 0 1 1 1 

 

12 0 1 2 0 

 

12 0 1 1 1 

+ 0 0 3 0 
 

+ 0 0 3 0 
 

+ 0 0 2 1 

 

+ 0 0 3 0 

 

+ 0 0 2 1 

 

+ 0 0 3 0 

18 0 1 4 6 
 

18 0 1 4 6 
 

18 0 1 4 1 

 

18 0 1 4 1 

 

18 0 1 4 1 

 

18 0 1 4 1 

+ 0 2 1 0 
 

+ 0 2 1 0 
 

+ 0 3 0 0 

 

+ 0 3 0 0 

 

+ 0 3 0 0 

 

+ 0 3 0 0 

24 0 3 5 6 
 

24 0 3 5 6 
 

24 0 4 4 1 

 

24 0 4 4 1 

 

24 0 4 4 1 

 

24 0 4 4 1 

+ 0 1 1 1 
 

+ 0 2 1 0 
 

+ 0 1 1 1 

 

+ 0 1 1 1 

 

+ 0 1 1 1 

 

+ 0 1 1 1 

30 0 4 6 7 
 

30 0 0 6 6 
 

30 0 0 5 2 

 

30 0 0 5 2 

 

30 0 0 5 2 

 

30 0 0 5 2 

+ 0 1 0 2 
 

+ 0 0 0 3 
 

+ 0 1 0 2 

 

+ 0 1 0 2 

 

+ 0 1 0 2 

 

+ 0 1 0 2 

36 0 0 6 9 
 

36 0 0 6 9 
 

36 0 1 5 4 

 

36 0 1 5 4 

 

36 0 1 5 4 

 

36 0 1 5 4 

+ 0 1 0 2 
 

+ 0 1 0 2 
 

+ 0 0 2 1 

 

+ 0 0 2 1 

 

+ 0 1 0 2 

 

+ 0 1 0 2 

42 0 1 6 0 
 

42 0 1 6 0 
 

42 0 1 0 5 

 

42 0 1 0 5 

 

42 0 2 5 6 

 

42 0 2 5 6 

∑ +0 +6 +6 +6 
 

∑ +0 +6 +6 +6 
 

∑ +0 +6 +7 +5 

 

∑ +0 +6 +7 +5 

 

∑ +0 +7 +5 +6 

 

∑ +0 +7 +5 +6 
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APPENDIX 10 

Table of positive progressions configurations at step pi = 13. 

 

All of 3341 configurations are not represented here but only that, almost ideal, where the column guides is not reached 

except for guide 5. 

 
pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

+ 0 2 1 0 0 

 

+ 0 2 1 0 0 

 

+ 0 2 1 0 0 

 

+ 0 2 1 0 0 

12 0 2 1 7 3 

 

12 0 2 1 7 3 

 

12 0 2 1 7 3 

 

12 0 2 1 7 3 

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

+ 0 2 1 0 0 

 

+ 0 2 0 0 1 

 

+ 0 2 0 0 1 

 

+ 0 2 0 0 1 

30 0 4 2 1 4 

 

30 0 4 1 1 5 

 

30 0 4 1 1 5 

 

30 0 4 1 1 5 

+ 0 0 0 0 3 

 

+ 0 0 1 0 2 

 

+ 0 0 0 0 3 

 

+ 0 0 0 0 3 

36 0 4 2 1 7 

 

36 0 4 2 1 7 

 

36 0 4 1 1 8 

 

36 0 4 1 1 8 

+ 0 0 2 1 0 

 

+ 0 0 2 1 0 

 

+ 0 0 0 1 2 

 

+ 0 0 0 0 3 

42 0 4 4 2 7 

 

42 0 4 4 2 7 

 

42 0 4 1 2 10 

 

42 0 4 1 1 11 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 0 0 2 

 

+ 0 1 0 1 1 

48 0 0 5 2 8 

 

48 0 0 5 2 8 

 

48 0 0 1 2 12 

 

48 0 0 1 2 12 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 4 1 1 

 

+ 0 0 4 1 1 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

                           

       

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

       

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

       

+ 0 2 1 0 0 

 

+ 0 2 1 0 0 

 

+ 0 2 1 0 0 

       

12 0 2 1 7 3 

 

12 0 2 1 7 3 

 

12 0 2 1 7 3 

       

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

       

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

       

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

       

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

       

+ 0 1 0 1 1 

 

+ 0 0 2 0 1 

 

+ 0 0 2 0 1 

       

30 0 3 1 2 5 

 

30 0 2 3 1 5 

 

30 0 2 3 1 5 

       

+ 0 0 2 0 1 

 

+ 0 1 0 1 1 

 

+ 0 1 0 0 2 

       

36 0 3 3 2 6 

 

36 0 3 3 2 6 

 

36 0 3 3 1 7 

       

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 1 0 

       

42 0 4 4 2 7 

 

42 0 4 4 2 7 

 

42 0 4 4 2 7 

       

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

       

48 0 0 5 2 8 

 

48 0 0 5 2 8 

 

48 0 0 5 2 8 

       

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

       

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

       

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

       

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

       

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

                           pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

+ 0 1 1 1 0 

 

+ 0 1 1 1 0 

 

+ 0 1 1 1 0 

 

+ 0 1 1 1 0 

12 0 1 1 8 3 

 

12 0 1 1 8 3 

 

12 0 1 1 8 3 

 

12 0 1 1 8 3 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

+ 0 2 1 0 0 

 

+ 0 2 0 0 1 

 

+ 0 2 0 0 1 

 

+ 0 2 0 0 1 

30 0 4 2 1 4 

 

30 0 4 1 1 5 

 

30 0 4 1 1 5 

 

30 0 4 1 1 5 

+ 0 0 0 0 3 

 

+ 0 0 1 0 2 

 

+ 0 0 0 0 3 

 

+ 0 0 0 0 3 

36 0 4 2 1 7 

 

36 0 4 2 1 7 

 

36 0 4 1 1 8 

 

36 0 4 1 1 8 

+ 0 0 2 1 0 

 

+ 0 0 2 1 0 

 

+ 0 0 0 1 2 

 

+ 0 0 0 0 3 

42 0 4 4 2 7 

 

42 0 4 4 2 7 

 

42 0 4 1 2 10 

 

42 0 4 1 1 11 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 0 0 2 

 

+ 0 1 0 1 1 

48 0 0 5 2 8 

 

48 0 0 5 2 8 

 

48 0 0 1 2 12 

 

48 0 0 1 2 12 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 4 1 1 

 

+ 0 0 4 1 1 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 
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pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

       

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

       

+ 0 1 1 1 0 

 

+ 0 1 1 1 0 

 

+ 0 1 1 1 0 

       

12 0 1 1 8 3 

 

12 0 1 1 8 3 

 

12 0 1 1 8 3 

       

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

       

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

       

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

       

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

       

+ 0 1 0 1 1 

 

+ 0 0 2 0 1 

 

+ 0 0 2 0 1 

       

30 0 3 1 2 5 

 

30 0 2 3 1 5 

 

30 0 2 3 1 5 

       

+ 0 0 2 0 1 

 

+ 0 1 0 1 1 

 

+ 0 1 0 0 2 

       

36 0 3 3 2 6 

 

36 0 3 3 2 6 

 

36 0 3 3 1 7 

       

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 1 0 

       

42 0 4 4 2 7 

 

42 0 4 4 2 7 

 

42 0 4 4 2 7 

       

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

       

48 0 0 5 2 8 

 

48 0 0 5 2 8 

 

48 0 0 5 2 8 

       

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

       

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

       

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

       

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

       

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

                           pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

12 0 2 0 8 3 

 

12 0 2 0 8 3 

 

12 0 2 0 8 3 

 

12 0 2 0 8 3 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

+ 0 2 1 0 0 

 

+ 0 2 0 0 1 

 

+ 0 2 0 0 1 

 

+ 0 2 0 0 1 

30 0 4 2 1 4 

 

30 0 4 1 1 5 

 

30 0 4 1 1 5 

 

30 0 4 1 1 5 

+ 0 0 0 0 3 

 

+ 0 0 1 0 2 

 

+ 0 0 0 0 3 

 

+ 0 0 0 0 3 

36 0 4 2 1 7 

 

36 0 4 2 1 7 

 

36 0 4 1 1 8 

 

36 0 4 1 1 8 

+ 0 0 2 1 0 

 

+ 0 0 2 1 0 

 

+ 0 0 0 1 2 

 

+ 0 0 0 0 3 

42 0 4 4 2 7 

 

42 0 4 4 2 7 

 

42 0 4 1 2 10 

 

42 0 4 1 1 11 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 0 0 2 

 

+ 0 1 0 1 1 

48 0 0 5 2 8 

 

48 0 0 5 2 8 

 

48 0 0 1 2 12 

 

48 0 0 1 2 12 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 4 1 1 

 

+ 0 0 4 1 1 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

                           

       

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

       

6 0 0 0 7 3 

 

6 0 0 0 7 3 

 

6 0 0 0 7 3 

       

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

       

12 0 2 0 8 3 

 

12 0 2 0 8 3 

 

12 0 2 0 8 3 

       

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

       

18 0 2 1 10 3 

 

18 0 2 1 10 3 

 

18 0 2 1 10 3 

       

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

       

24 0 2 1 1 4 

 

24 0 2 1 1 4 

 

24 0 2 1 1 4 

       

+ 0 1 0 1 1 

 

+ 0 0 2 0 1 

 

+ 0 0 2 0 1 

       

30 0 3 1 2 5 

 

30 0 2 3 1 5 

 

30 0 2 3 1 5 

       

+ 0 0 2 0 1 

 

+ 0 1 0 0 2 

 

+ 0 1 0 1 1 

       

36 0 3 3 2 6 

 

36 0 3 3 1 7 

 

36 0 3 3 2 6 

       

+ 0 1 1 0 1 

 

+ 0 1 1 1 0 

 

+ 0 1 1 0 1 

       

42 0 4 4 2 7 

 

42 0 4 4 2 7 

 

42 0 4 4 2 7 

       

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

       

48 0 0 5 2 8 

 

48 0 0 5 2 8 

 

48 0 0 5 2 8 

       

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

       

60 0 0 5 3 0 

 

60 0 0 5 3 0 

 

60 0 0 5 3 0 

       

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

       

66 0 0 6 5 0 

 

66 0 0 6 5 0 

 

66 0 0 6 5 0 

       

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 

 

∑ 0 5 6 9 10 
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pi 3 5 7 11 13 
 

pi 3 5 7 11 13 
 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

6 0 0 0 6 3 
 

6 0 0 0 6 3 
 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

+ 0 2 0 1 0 
 

+ 0 2 0 1 0 
 

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

12 0 2 0 7 3 
 

12 0 2 0 7 3 
 

12 0 2 0 7 3 

 

12 0 2 0 7 3 

+ 0 0 0 3 0 
 

+ 0 0 0 3 0 
 

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

18 0 2 0 10 3 
 

18 0 2 0 10 3 
 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

+ 0 0 0 2 1 
 

+ 0 0 0 2 1 
 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

24 0 2 0 1 4 
 

24 0 2 0 1 4 
 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

+ 0 1 1 0 1 
 

+ 0 1 1 0 1 
 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

30 0 3 1 1 5 
 

30 0 3 1 1 5 
 

30 0 3 1 1 5 

 

30 0 3 1 1 5 

+ 0 0 2 0 1 
 

+ 0 0 2 0 1 
 

+ 0 0 1 0 2 

 

+ 0 0 1 0 2 

36 0 3 3 1 6 
 

36 0 3 3 1 6 
 

36 0 3 2 1 7 

 

36 0 3 2 1 7 

+ 0 1 1 0 1 
 

+ 0 0 1 1 1 
 

+ 0 1 2 0 0 

 

+ 0 0 2 1 0 

42 0 4 4 1 7 
 

42 0 3 4 2 7 
 

42 0 4 4 1 7 

 

42 0 3 4 2 7 

+ 0 1 1 1 0 
 

+ 0 2 1 0 0 
 

+ 0 1 1 1 0 

 

+ 0 2 1 0 0 

48 0 0 5 2 7 
 

48 0 0 5 2 7 
 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

+ 0 0 0 1 5 
 

+ 0 0 0 1 5 
 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

60 0 0 5 3 12 
 

60 0 0 5 3 12 
 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

+ 0 0 1 2 0 
 

+ 0 0 1 2 0 
 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

66 0 0 6 5 12 
 

66 0 0 6 5 12 
 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

∑ 0 5 6 10 9 
 

∑ 0 5 6 10 9 
 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 

 
     

                     
pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

+ 0 2 0 1 0 

 

+ 0 2 0 1 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

12 0 2 0 7 3 

 

12 0 2 0 7 3 

 

12 0 1 0 8 3 

 

12 0 1 0 8 3 

+ 0 0 0 3 0 

 

+ 0 0 0 3 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

+ 0 0 3 0 0 

 

+ 0 0 3 0 0 

 

+ 0 0 3 0 0 

 

+ 0 0 3 0 0 

30 0 2 3 1 4 

 

30 0 2 3 1 4 

 

30 0 2 3 1 4 

 

30 0 2 3 1 4 

+ 0 1 0 0 2 

 

+ 0 1 0 0 2 

 

+ 0 1 0 0 2 

 

+ 0 1 0 0 2 

36 0 3 3 1 6 

 

36 0 3 3 1 6 

 

36 0 3 3 1 6 

 

36 0 3 3 1 6 

+ 0 1 1 0 1 

 

+ 0 0 1 1 1 

 

+ 0 1 1 0 1 

 

+ 0 0 1 1 1 

42 0 4 4 1 7 

 

42 0 3 4 2 7 

 

42 0 4 4 1 7 

 

42 0 3 4 2 7 

+ 0 1 1 1 0 

 

+ 0 2 1 0 0 

 

+ 0 1 1 1 0 

 

+ 0 2 1 0 0 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 

      
        

             pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

 

pi 3 5 7 11 13 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

 

6 0 0 0 6 3 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

12 0 1 0 8 3 

 

12 0 1 0 8 3 

 

12 0 1 0 8 3 

 

12 0 1 0 8 3 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

 

+ 0 1 0 2 0 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

 

18 0 2 0 10 3 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

 

+ 0 0 0 2 1 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

 

24 0 2 0 1 4 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

 

+ 0 1 1 0 1 

30 0 3 1 1 5 

 

30 0 3 1 1 5 

 

30 0 3 1 1 5 

 

30 0 3 1 1 5 

+ 0 0 2 0 1 

 

+ 0 0 2 0 1 

 

+ 0 0 1 0 2 

 

+ 0 0 1 0 2 

36 0 3 3 1 6 

 

36 0 3 3 1 6 

 

36 0 3 2 1 7 

 

36 0 3 2 1 7 

+ 0 1 1 0 1 

 

+ 0 0 1 1 1 

 

+ 0 1 2 0 0 

 

+ 0 0 2 1 0 

42 0 4 4 1 7 

 

42 0 3 4 2 7 

 

42 0 4 4 1 7 

 

42 0 3 4 2 7 

+ 0 1 1 1 0 

 

+ 0 2 1 0 0 

 

+ 0 1 1 1 0 

 

+ 0 2 1 0 0 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

 

48 0 0 5 2 7 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

 

+ 0 0 0 1 5 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

 

60 0 0 5 3 12 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

 

+ 0 0 1 2 0 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

 

66 0 0 6 5 12 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 

 

∑ 0 5 6 10 9 
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APPENDIX 11 

Diverse arguments upon gap 2n = 2. 

 

Additional argument in favour of a proof 
 

Let us come back to table 34. We got three relations :  

 

                       jmax   i 

  ∑ #S(j,i) =  ∏ (pk-2)                                         (111) 

                      j = jmin  k = 1 

 

                       jmax   i 

  ∑ Δ(j).#S(j,i) =  ∏ pk                                         (112) 

                      j = jmin  k = 1 

 

                           

  #R(j,i)   ≥ pi-4                                                 (113) 

                         

 

The first two relationships confine #S(j,i) statistically in a tunnel of values all the more limited since these values must be 

integers and consistent with the third relationship. Examples of compatible results are easily obtained by taking 2n = 4, 2n 

= 8, 2n = 16, etc. instead of the twin prime numbers case 2n = 2.   

What we are concerned about here is to demonstrate that #S(j,i) becomes zero around an approximate value Δ(j) greater 

than ∑i 2pk. 

 

We propose to evaluate the expression #S(j,i) assuming that the values of that expression roughly espouse the form of 

certain functions when j (and i) vary. Examples of functions examined are constant function, monomial function (the 

previous of which is a sub-case) and exponential function. Beyond a certain value j, which we note jmax(i), #S(j,i) 

becomes zero. For values regularly spaced out by a j value, #S(j,i) is supposed to follow the function taken as an example. 

The rest of the argument is in no way affected by assuming the 1 spaced j for our modelling. 

 

Case 1 : #S(j,i) = if(j = 1 to jmax(i), c(i), 0), c(i) constant versus j.  

Then ∑#S(j,i) = ∏(pk-2) = jmax.c(i) and ∑Δ(j).#S(j,i) = ∑ j.#S(j,i) = (1/2).jmax².c(i) = ∏ pk.  

We deduce from the relationship 4 for the first equation below : 

 

                          i 

  jmax(i) = 2   ∏ pk/(pk-2)  → ≈ 2.(1/c2).e
2γ

.ln
2
(pi)                                         (114) 

                        k = 1 

and 

                          i 

  c(i)  = (1/2)  ∏ (pk-2)²/pk                                          (115) 

                        k = 1 

 

Thus asymptotically using ln(pi+1)-ln(pi) = ln(pi+1/pi) → ln(1) = 0 : 

 

jmax(i+1)-jmax(i) → 2.(1/c2).e
2γ

.(ln
2
(pi+1)-ln

2
(pi)) ≈ 2.(1/c2).e

2γ
.(ln(pi+1)-ln(pi)).2.ln(pi) << 2.ln(pi) << 2.pi 

 

This shows that with such a model the increase of jmax(i) with i is much slower than that observed in the facts remaining 

thus consistent with the needs of the previous demonstration (only a growth faster than 2pi is detrimental).  

It remains to be noted in simple remark that asymptotically c(i+1)/c(i) → (pi+1-2)²/pi+1 → pi+1-4 which is the order of 

magnitude in relation 113. 

 

Case 2 : #S(j,i) = a.j
-b

 where a = a(i) and b = b(i) constant versus j (and one supposes b ≠ 1, b ≠ 2).  

Then 

∑#S(j,i) = ∏(pk-2) = ∑ a.j
-b

 ≈ ∫ a.j
-b

 ≈  a/(-b+1).jmax
(-b+1) 

and  

∑Δ(j).#S(j,i) = ∏ pk = = ∑ a.j
-b+1

 ≈ ∫ a.j
-b+1

 ≈  a/(-b+2).jmax
(-b+2)

 

 

We deduce (according to relation 4) : 

 

                          i 

  jmax(i) = (-b+2)/(-b+1)   ∏ pk/(pk-2)  → ≈ (-b+2)/(-b+1).(1/c2).e
2γ

.ln
2
(pi)                         (116) 

                        k = 1 

 

Thus asymptotically using ln(pi+1)-ln(pi) = ln(pi+1/pi) → ln(1) = 0, we get : 

 

jmax(i+1)-jmax(i) →  
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(-b+2)/(-b+1).(1/c2).e
2γ

.(ln
2
(pi+1)-ln

2
(pi))  

≈ (-b+2)/(-b+1).(1/c2).e
2γ

.(ln(pi+1)-ln(pi)).2.ln(pi)  

<< 2.ln(pi) 

<< 2.pi 

 

 

For b ≠ 1, the result is again in line with our need. For b = 1, it results in 

 

jmax(i+1)/ln(jmax(i+1))-jmax(i)/ln(jmax(i) →  

≈ (1/c2).e
2γ

.(ln(pi+1)-ln(pi)).2.ln(pi)  

 

thus again using ln(jmax(i+1)) ≈ ln(jmax(i))  

   

jmax(i+1)-jmax(i) →  

≈ (1/c2).e
2γ

.ln(jmax(i).(ln(pi+1)-ln(pi)).2.ln(pi) << 2.pi 

 

Hence again the same conclusion. 

 

Case 3 : #S(j,i) = a.e
-bj

 where a = a(i) = ai and b = b(i) = bi positive constants versus j.  

The first two cases are very far from the actual case and the condition << 2.pi is easily met. Here we are much better 

configured.   

At the origin (j = 1 or rather j = 0), the value of #S(j,i) is ∏(pk-4), thus  

 

                          i 

  a(i)  =   ∏ (pk-4)                                          (117) 

                        k = 1 

 

With this type of profile, #S(j,i) takes a priori zero values after reaching #S(j,i) = 1 (and therefore j = jmax here). This is 

the case when a.e
-bjmax

 = 1, that is jmax = (1/b).ln(a).   

Moving from i to i-1, we get: 

 

jmax(i+1)-jmax(i)  

≈  

(1/bi+1).ln(ai+1)-(1/bi).ln(ai)  

= (1/bi+1).ln(ai+1)-(1/bi+1).ln(ai)+(1/bi+1).ln(ai)-(1/bi).ln(ai)  

= (1/bi+1).ln(ai+1/ai)+(1/bi+1-1/bi).ln(ai)  

= (1/bi+1).ln(pi+1-4)+(1/bi+1-1/bi).∑k ln(pk-4) 

 

Here the last sum is on k = 1 to k = i.   

Now, according to the fundamental theorem of prime numbers, on average the distance between prime numbers is ln(pk). . 

An asymptotic approximate value of pi is therefore ∑k ln(pk), k describing 1 to i, and besides asymptotically ln(pk-4) ≈ 

ln(pk). 

Therefore : 

jmax(i+1)-jmax(i)  

≈< (1/bi+1).ln(pi+1-4)+(1/bi+1-1/bi).pi 

≈ (1/bi+1).ln(pi+1)+(1/bi+1-1/bi).pi 

= if(bi = bi+1, (1/bi+1).ln(pi+1), (1/bi+1-1/bi).pi) 

 

This corresponds effectively to the increase of jmax(i) that matters to us. In fact, in the bi = bi+1 case, the result 

(1/bi+1).ln(pi+1) << 2.pi is trivial asymptotically (bi+1 can be considered a constant), otherwise the values of bi and bi+1 

being close, we still have (1/bi+1-1/bi).pi < 2.pi. 

 

Case 4 : #S(j,i) = a.e
-b.(j^r)

 where a = a(i) = ai and b = b(i) = bi , r = r(i) = ri, positive constants versus j.  

This is the case that is closest to the real case. Asymptotically, the r value varies little between i and i+1 and we repeat the 

previous calculations assuming r(i+1) ≈ r(i) ≈ r when i increases and besides r > 1.  

At the origin (for j = 0), the value of #S(j,i) is ∏(pk-4), then a.e
-b.(jmax^r)

 = 1 gives jmax
r
 = (1/b).ln(a).   

Moving from i to i+1, we get: 

jmax(i+1)-jmax(i)  

≈  

(1/bi+1)
1/r

.ln
1/r

(ai+1)-(1/bi)
1/r

.ln
1/r

(ai)  

= (1/bi+1)
1/r

.ln
1/r

(ai+1)-(1/bi+1)
1/r

.ln
1/r

(ai)+(1/bi+1)
1/r

.ln
1/r

(ai)-(1/bi)
1/r

.ln
1/r

(ai)  

= (1/bi+1)
1/r

.ln
1/r

(ai+1/ai)+((1/bi+1)
1/r

 –(1/bi)
1/r

).(ln(ai))
1/r

  

= (1/bi+1)
1/r

.ln
1/r

(pi+1-4)+((1/bi+1)
1/r

 –(1/bi)
1/r

).(∑k ln(pk-4))
1/r

 

Then : 

jmax(i+1)-jmax(i)  

≈ if(bi = bi+1, (1/bi+1)
1/r

.ln
1/r

(pi+1), ((1/bi+1)
1/r

 –(1/bi)
1/r

).pi
1/r

) 
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This corresponds effectively to the increase of jmax(i) that matters to us. Indeed, in the bi = bi+1 case, the result 

(1/bi+1)
1/r

.ln
1/r

(pi+1) << 2.pi is trivial asymptotically, otherwise the values of bi and bi+1 being close and r > 1, one still has 

((1/bi+1)
1/r

 –(1/bi)
1/r

).pi
1/r

 < 2.pi asymptotically.   

 

Note: It is the condition #R(j,i) ≥ pi-4 that is certainly the source of the value r > 1 that neighbours the said coefficient on 

graphic trend curves. 

 Here a(i) ≈ 1,57.∏k (pk-4), b(i) ≈ 0,001 and r(i) according to the following table: 

 

pi 3 5 7 11 13 17 19 23 29 

 
r(i) 3,5 3 2,2 2,05 1,99 1,9 1,82 1,78 1,76 

 

  
 

All cases show that it is very difficult (if not impossible) to find a non-discrete simulation leading to a range of values as 

large as that really observed.  

Which goes again in favour of the theorem. 

 

Argument against the proof 
 

To remain impartial, we propose a counter-example in the form of a discrete simulation. The construction is relatively 

trivial and Δmax/2∑i pk →+∞ while responding to the known constraints for the problem.   

Let us give this counter-example first. 

 

Steps i 1 2 3 4 5 6 

pi 3 5 7 11 13 17 

Ranges of cycle 1 6 30 210 2310 30030 510510 

Numbers of 

spacings 1 3 15 135 1485 22275 

Spacings Δ(j) Quantities #Sn(j,i) of spacings Δ(j) in the cycle 1 

6 1 1 3 21 189 2457 

12  2 8 56 504 6552 

18   0 12 192 3252 

24   4 38 412 5986 

30    0 0 0 

36    0 24 696 

42    0 0 0 

48    8 148 2748 

54     0 0 

60     0 0 

66     0 0 

72     0 48 

78     0 0 

84     0 0 

90     0 0 

96     16 504 

102      0 

108      0 
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114      0 

120      0 

126      0 

132      0 

138      0 

144      0 

150      0 

156      0 

162      0 

168      0 

174      0 

180      0 

186      0 

192      32 

 

The algorithm from step i-1 to step i is as follows (from i = 4 on): 

 

j Δ(j) Ti-1(j) 

Mi(j)  

=  

Ti-1(j).(pi-4) 

Ni(2j-1) = 0  

and 

Ni(2j) = 2.Ti-1(2j-1) 

Pi(2) = -Ni(2)  

and  

Pi(3) = 2Ni(2)  

and  

Pi(4) = -Ni(2)  

Ti(j)  

=  

Mi-1(j)+Ni-1(j)+Pi-1(j) 

1 6 21 189 
  

189 

2 12 56 504 42 -42 504 

3 18 12 108 
 

84 192 

4 24 38 342 112 -42 412 

5 30 0 0 
  

0 

6 36 0 0 24 
 

24 

7 42 0 0 
  

0 

8 48 8 72 76 
 

148 

9 54 
 

 
  

0 

10 60 
 

 0 
 

0 

11 66 
    

0 

12 72 
  

0 
 

0 

13 78 
    

0 

14 84 
  

0 
 

0 

15 90 
     

16 96 
  

16 
 

16 

 

In addition to respecting the total number of spacings, the size of cycle 1, the three relationships (two ties and one 

inequality), the table is also consistent for these first two lines in Table 34 (i.e. Δ(1) = 6 and Δ(2) = 12). 

 

Nevertheless, we have:  

 

Steps i 1 2 3 4 5 6 7 8 9 10 … i 

pi 3 5 7 11 13 17 19 23 29 31 … pi 

3.2
i
 6 12 24 48 96 192 384 768 1536 3072 … 3.2

i
 

2∑i pk 6 16 30 52 78 112 150 196 254 316 … 2∑i pk 

3.2
i
/2∑i pk 1,00 0,75 0,80 0,92 1,23 1,71 2,56 3,92 6,05 9,72  → 3.2

i
/(ln(pi).i

2
) → +∞ 

 

If this discrepancy were effective, it would not be able to respond to the desired theorem. 

 

As a final note, however, we note that the iterative formulas at work here are not in the mould observed for the effective 

tables of populations. They have the property of being all based on multiplication pi-4 and not pi-4, pi-6, pi-8, pi-10, pi-12, 

and so on. The initial data are those which follows. The only non-zero lines j(n) are such that j(n) = j(n-1)+2
ent((k-3)/2)

 for n 

≥ 3, k being incremented starting from k = 3 and n = 3. 
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   i 1 2 3 4 5 6 7 8 9 10 … 

   pi 3 5 7 11 13 17 19 23 29 31 … 

k j(n) Δ(j) Dif Δ(j)            

1 1 6  1 
     

   
 

… 

2 2 12 3.2
1
 

 
(2) 8 

   
   

 
… 

3 3 18 3.2
1
 

  
0 12 

  
   

 
… 

4 4 24 3.2
1
 

  
(4) 38 70 

 
   

 
… 

5 6 36 3.2
2
 

    
24 168    

 
… 

6 8 48 3.2
2
 

   
8 76 140    

 
… 

7 12 72 3.2
3
 

     
48 336   

 
… 

8 16 96 3.2
3
 

    
16 152 280   

 
… 

9 24 144 3.2
4
 

      
96 672  

 
… 

10 32 192 3.2
4
 

     
32 304 560  

 
… 

11 48 288 3.2
5
 

      
 192 1344 

 
… 

12 64 384 3.2
5
 

      
64 608 1120 

 
… 

13 96 576 3.2
6
 

      
  384 2688 … 

14 128 768 3.2
6
 

      
 128 1216 2240 … 

… … … … … … … … … … … … … … … 

 

Starting from j(n) ≥ 3, the number of initial values, excluding the initial values at 0, alternates between 2 and 3 values, 

values which double by pairs of k (8 = 2.4, 76 = 2.38 = 140 = 2.70, 48 = 2.24, 336 = 2.168, etc.), while the number of 

recursive equations increases by one equation after each pair. The following table, which gives the first samples, is to be 

read with the k index instead of j in #Sn(k,i). 

 

k Formulas 

1 
#Sn(1,1) = 1 

#Sn(1,i) = (pi-4).#Sn(1,i-1) 

2 
#Sn(2,3) = 8  

#Sn(2,i) = (pi-4).#Sn(2,i-1) 

3 

x1(4) = 12 

x1(i) = (pi-1-4).x1(i-1) 

#Sn(3,3) = 0 

#Sn(3,i) = (pi-4).#Sn(3,i-1)+x1(i) 

4 

x1(5) = 70 

x1(i) = (pi-1-4).x1(i-1) 

#Sn(4,4) = 38 

#Sn(4,i) = (pi-4).#Sn(4,i-1)+x1(i) 

5 

x1(6) = 168 

x1(i) = (pi-2-4).x1(i-1) 

x2(5) = 24 

x2(i) = (pi-1-4).x2(i-1)+x1(i) 

#Sn(5,4) = 0 

#Sn(5,i) = (pi-4).#Sn(5,i-1)+x2(i) 

6 

x1(6) = 140 

x1(i) = (pi-2-4).x1(i-1) 

x2(5) = 76 

x2(i) = (pi-1-4).x2(i-1)+x1(i) 

#Sn(6,4) = 8 

#Sn(6,i) = (pi-4).#Sn(6,i-1)+x2(i) 

7 

x1(7) = 336 

x1(i) = (pi-3-4).x1(i-1) 

x2(6) = 46 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(5) = 0 

x3(i) = (pi-1-4).x3(i-1)+x2(i) 

#Sn(7,4) = 0 

#Sn(7,i) = (pi-4).#Sn(7,i-1)+x3(i) 

8 

x1(7) = 280 

x1(i) = (pi-3-4).x1(i-1) 

x2(6) = 152 

x2(i) = (pi-2-4).x2(i-1)+x1(i) 

x3(5) = 16 

x3(i) = (pi-1-4).x3(i-1)+x2(i) 

#Sn(8,4) = 0 

#Sn(8,i) = (pi-4).#Sn(8,i-1)+x3(i) 
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9 

x1(8) = 672 

x1(i) = (pi-4-4).x1(i-1) 

x2(7) = 96 

x2(i) = (pi-3-4).x2(i-1) +x1(i) 

x3(6) = 0 

x3(i) = (pi-2-4).x3(i-1) +x2(i) 

x4(5) = 0 

x4(i) = (pi-1-4).x4(i-1) +x3(i) 

#Sn(9,4) = 0 

#Sn(9,i) = (pi-4).#Sn(9,i-1)+x4(i) 

10 

x1(8) = 560 

x1(i) = (pi-4-4).x1(i-1) 

x2(7) = 304 

x2(i) = (pi-3-4).x2(i-1) +x1(i) 

x3(6) = 32 

x3(i) = (pi-2-4).x3(i-1) +x2(i) 

x4(5) = 0 

x4(i) = (pi-1-4).x4(i-1) +x3(i) 

#Sn(10,4) = 0 

#Sn(10,i) = (pi-4).#Sn(10,i-1)+x4(i) 

… ... 
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APPENDIX 12 

Table of 2
m
-gaps’ enumeration for.  

 

Step 4 : pi = 11. Periodicity = 30. 

 
2n 

Δ 

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 … 

6 21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 … 
12 56 16 42 14 48 6 56 16 42 20 42 6 56 14 48 18 42 6 56 18 42 18 42 0 64 16 42 18 42 6 56 … 
18 22 32 22 21 32 21 24 28 18 21 36 24 22 28 18 21 40 21 18 28 22 24 36 21 18 28 24 21 32 21 22 … 
24 6 20 16 30 14 24 6 26 16 32 20 18 6 20 14 36 18 22 6 26 18 30 18 18 0 28 16 32 18 22 6 … 
30 22 15 24 16 10 18 18 16 19 16 10 23 24 15 19 14 8 24 24 13 19 16 12 20 22 13 19 20 11 22 22 … 
36 4 10 0 2 4 6 4 6 0 0 2 4 2 6 2 2 0 2 2 6 2 2 2 4 4 6 0 0 2 4 4 … 
42 4 0 2 0 6 0 6 1 8 0 2 0 2 0 4 0 4 0 4 0 4 1 4 2 4 2 6 0 6 0 4 … 
48 0 0 0 2 0 4 0 0 0 4 2 2 2 2 2 0 0 2 0 0 0 2 0 6 0 0 0 2 0 4 0 … 
54 0 0 1 2 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 … 
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 … 
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 … 

 

Step 5 : pi = 13. Periodicity = 30. 

 
2n 

Δ 

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 … 

6 189 378 252 432 210 504 189 378 288 378 210 504 189 432 252 378 210 504 216 378 252 378 210 576 189 378 252 378 240 504 189 … 

12 504 154 378 154 432 90 504 154 378 204 378 90 504 140 432 182 378 90 504 174 378 182 378 42 576 154 378 182 378 96 504 … 

18 238 288 260 189 312 189 264 252 228 189 344 216 238 252 228 189 384 189 210 252 260 216 344 189 210 252 288 189 312 189 238 … 

24 96 252 154 294 154 264 90 294 154 308 204 210 90 252 140 348 182 238 90 294 174 294 182 210 42 324 154 308 182 238 96 … 

30 270 214 288 260 161 224 238 240 239 264 161 259 304 206 235 250 149 284 280 202 239 264 192 236 262 194 235 316 167 254 270 … 

36 60 126 16 44 52 92 56 100 16 40 40 88 48 94 38 52 22 64 44 98 34 60 38 76 60 98 16 32 36 80 60 … 

42 84 27 90 14 110 16 94 21 138 4 100 12 60 21 102 14 106 8 92 19 108 16 98 26 80 38 114 8 130 8 84 … 

48 20 8 16 44 22 64 20 8 20 54 24 58 24 28 30 30 12 54 16 14 20 38 14 82 20 8 16 36 8 72 20 … 

54 0 22 19 44 4 32 4 12 12 40 0 30 2 38 8 30 4 38 0 36 6 30 5 28 4 18 16 24 0 32 0 … 

60 12 12 4 6 28 4 14 22 4 4 14 14 10 20 12 6 28 12 16 18 10 6 22 16 26 16 8 8 32 12 12 … 

66 12 2 2 0 0 2 8 2 0 0 8 0 8 2 0 2 2 2 13 0 0 0 0 0 12 4 0 0 0 0 12 … 

72 0 0 4 0 0 0 4 0 8 0 0 0 4 0 8 0 2 0 0 0 2 0 0 0 4 0 8 0 0 0 0 … 

78 0 0 2 4 0 4 0 2 0 0 2 4 0 0 0 4 2 2 4 0 0 1 0 4 0 1 0 4 0 0 0 … 

84 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2 0 2 0 0 0 0 0 0 0 0 … 

90 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

 

Step 6 : pi = 17. Periodicity = 60. 

 
2n 

Δ 

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 

6 2457 4914 3276 5616 2730 6552 2457 4914 3744 4914 2730 6552 2457 5616 3276 4914 2730 6552 2808 4914 3276 4914 2730 7488 2457 4914 3276 4914 3120 6552 

12 6552 2072 4914 2198 5616 1410 6552 2072 4914 2820 4914 1410 6552 1918 5616 2506 4914 1410 6552 2346 4914 2506 4914 882 7488 2072 4914 2506 4914 1536 

18 3374 3744 3700 2646 4440 2457 3768 3528 3348 2457 4792 3024 3374 3276 3348 2646 5376 2457 3066 3528 3700 2808 4792 2646 3066 3276 4128 2646 4440 2457 

24 1536 3780 2072 3906 2198 3768 1410 4032 2072 4144 2820 2898 1410 3780 1918 4608 2506 3374 1410 4032 2346 3990 2506 2898 882 4716 2072 4074 2506 3374 

30 4230 3636 4464 4112 2725 3676 3838 3792 3763 4600 2773 3819 4800 3492 3719 4012 2617 4568 4320 3206 3763 4600 3264 3565 4054 3372 3719 4912 2827 4056 

36 1022 1934 492 1036 906 1504 906 1904 484 864 746 1712 900 1550 750 1172 522 1152 770 1786 748 1096 730 1452 1030 1626 480 988 714 1356 

42 1716 601 1932 418 2006 422 1860 479 2442 196 2136 408 1332 495 2052 484 2010 244 1904 535 2172 404 1980 494 1544 718 2244 306 2322 260 

48 474 224 494 722 578 1018 468 216 580 832 468 968 472 472 652 568 428 890 396 334 556 654 386 1226 492 224 488 606 364 1126 

54 40 528 337 988 128 786 126 400 320 888 34 702 110 730 186 762 164 824 64 776 202 720 131 738 136 444 298 680 112 872 

60 380 544 276 320 708 362 338 582 280 294 472 438 302 704 380 298 636 486 408 602 314 296 578 510 534 584 284 320 748 422 

66 286 160 46 92 68 96 304 192 14 70 220 92 218 130 40 70 96 126 345 148 34 74 88 120 296 190 34 84 56 114 

72 64 4 126 8 50 6 108 4 244 10 10 0 122 8 216 8 66 6 44 2 138 12 32 2 132 4 208 10 36 6 

78 66 32 60 165 36 132 64 66 30 120 84 172 66 40 56 147 56 102 140 22 44 107 30 198 96 65 42 155 34 90 

84 12 72 44 34 68 60 32 58 28 38 4 64 24 32 46 62 112 54 8 28 48 74 46 28 24 42 62 54 50 34 

90 24 12 40 12 10 26 14 16 10 14 44 16 92 0 18 14 16 30 12 6 18 14 26 20 16 4 18 16 8 16 

96 22 18 0 2 2  0 6 0 4 20  8 8 0 0 6  0 2 0 2 6 0 4 14 2 0 4 0 

102 0  0  6  2 0 2 0 4  0 0 0 2 16  0 0 0 0 28 0 0 0 0 0 18 2 

108 20  0    24 6  6 4  16 8 0 0 2  20 4 0 4 0 4 20 2 0 4 0 2 

114   2    0 4  4   0 12 2 2 0  0 4 0  0 4 0 0 6  0  

120       4 4     20 4   2  4  2  4  4 2   2  

126                   0    0   4     

132                   4    0   0     

138                       4   0     

144                          0     

150                          2     
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2n 

Δ 

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 … 

6 2457 4914 3276 5616 2730 6552 2457 4914 3744 4914 2730 6552 2457 5616 3276 4914 2730 6552 2808 4914 3276 4914 2730 7488 2457 4914 3276 4914 3120 6552 2457 … 

12 6552 2072 4914 2198 5616 1410 6552 2072 4914 2820 4914 1410 6552 1918 5616 2506 4914 1410 6552 2346 4914 2506 4914 882 7488 2072 4914 2506 4914 1536 6552 … 

18 3374 4032 3700 2457 4440 2646 3768 3276 3348 2646 4792 2808 3374 3528 3348 2457 5376 2646 3066 3276 3700 3024 4792 2457 3066 3528 4128 2457 4440 2646 3374 … 

24 1536 3528 2072 3990 2198 3600 1410 4242 2072 4074 2820 3066 1410 3528 1918 4692 2506 3234 1410 4242 2346 3906 2506 3066 882 4464 2072 4144 2506 3234 1536 … 

30 4230 3326 4464 4532 2725 3445 3838 4128 3763 4124 2773 4106 4800 3246 3719 4432 2617 4256 4320 3516 3763 4124 3264 3796 4054 3126 3719 5440 2827 3769 4230 … 

36 962 2094 508 832 854 1692 962 1680 468 1064 786 1468 852 1742 788 996 500 1412 814 1626 714 1308 768 1236 970 1786 496 744 678 1576 1022 … 

42 1800 679 1842 358 2116 472 1766 437 2580 296 2036 369 1392 537 1950 386 2116 283 1812 449 2280 480 1882 486 1624 788 2130 228 2452 316 1716 … 

48 460 224 520 722 526 1018 476 216 508 832 524 968 482 472 664 568 372 890 422 334 532 654 424 1226 492 224 536 606 292 1126 474 … 

54 28 576 387 904 98 782 160 344 250 1024 52 752 98 778 260 644 124 808 96 704 146 804 149 760 106 526 372 576 72 844 40 … 

60 340 560 280 314 736 316 366 588 276 286 486 472 290 664 360 328 630 454 430 630 304 296 584 524 532 528 272 220 748 406 380 … 

66 368 172 38 90 102 92 228 178 38 60 176 92 276 140 30 78 116 110 288 136 64 96 56 112 348 194 22 114 88 90 286 … 

72 32 4 172 10 26 4 156 8 198 2 22 6 92 8 256 8 54 0 80 6 92 14 46 4 98 4 248 16 22 0 64 … 

78 64 10 46 174 40 170 76 110 58 86 74 124 48 28 42 162 66 150 120 48 48 103 32 160 102 43 30 166 48 128 66 … 

84 8 62 32 52 18 58 12 38 30 38 30 68 20 42 32 76 82 48 0 30 60 46 96 52 22 48 52 92 12 36 12 … 

90 28 8 24 14 32 18 24 12 14 3 40 10 78 2 16 22 40 18 29 6 28  12 16 10 10 4 32 26 12 24 … 

96 20 6  0 6  4 18 0 0 6 2 2 8  2 6 2 8 10 4  2 0 0 10 0 12 6 0 22 … 

102 0 4  0 6  0 4 10 0 12 0 2 0  0 20 0 0 2 2  16 0 0 0 0 0 12 0 0 … 

108 16 2  6 2  12 0 0 4 2 0 16 10  0 2 0 12  0  0 6 12 4 2 4 4 4 20 … 

114  2  6 0  0 4 4 2  0 0 8  4 0 0 0  2  0 4 0 0 0 2 0   … 

120     4  4 6    0 26    0 2 8    2  2 2 2 0 0   … 

126       0     2 0    4        6 4  0 4   … 

132       0      4            4   0 0   … 

138       4      4               2 4   … 

144                                … 

150                                … 

 

At the next step pi = 19, there are exactly 180 cases.    

 

The enumerations, at a given step and within the corresponding period, are all different one from each other without 

exception for all of the examples that we examined exhaustively (i.e. up to pi = 19) and we except it to be so in general. 
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APPENDIX 13 

Horizons of spacings.  

 

Table 83 
 

      fac 

Δ 

 1 3 

2  0 1 

4  0 1 

6  1  

 

Table 84 
 

      fac 

Δ 

 1 3 15  1 5 15 

2  0 1 3 
 

0 0 3 

4  0 2 3 
 

0 0 3 

6  1 2 2 
 

1 3 2 

8  0 1  
 

0 0  

10  0   
 

0 0  

12  2   
 

2 1  

 

Table 85 
 

      fac 

Δ 

 1 3 15 105  1 7 35 385 

2  0 3 12 15 
 

0 0 0 15 

4  0 6 9 15 
 

0 0 0 15 

6  3 12 10 14 
 

3 10 15 14 

8  0 4 2 2 
 

0 0 0 2 

10  0 2 6 2 
 

0 0 0 2 

12  8 0 0  
 

8 1 7  

14  0 2 1  
 

0 0 0  

16  0 0   
 

0 0 0  

18  2 0   
 

2 5 2  

20  0 0   
 

0 0   

22  0 0   
 

0 0   

24  0 0   
 

0 2   

26  0 0   
 

0    

28  0 1   
 

0    

30  2    
 

2    

 

Table 86 
 

      fac 

Δ 

 1 3 15 105 1155  1 11 77 385 1155 

2  0 21 84 105 135 
 

0 0 0 0 135 

4  0 42 63 105 135 
 

0 0 0 0 135 

6  21 104 86 130 142 
 

21 36 90 135 142 

8  0 28 28 34 28 
 

0 0 0 0 28 

10  0 20 54 40 30 
 

0 0 0 0 30 

12  56 0 26 12 8 
 

56 54 13 71 8 

14  0 22 10 6 2 
 

0 0 0 0 2 

16  0 4 4 
   

0 0 0 0 
 

18  22 8 4 
   

22 22 45 28 
 

20  0 4 0 
   

0 0 0 0 
 

22  0 2 1 
   

0 0 0 0 
 

24  6 4 
    

6 19 26 6 
 

26  0 0 
    

0 0 0 
  

28  0 8 
    

0 0 0 
  

30  22 2 
    

22 17 6 
  

32  0 1 
    

0 0 
   

34  0 
     

0 0 
   

36  4 
     

4 0 
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      fac 

Δ 

 1 3 15 105 1155  1 11 77 385 1155 

38  0 
     

0 0 
   

40  0 
     

0 0 
   

42  4 
     

4 2 
   

 

Table 87 
 

      fac 

Δ 

 1 3 15 105 1155 15015  1 13 143 1001 5005 15015 

2  0 189 756 1050 1215 1485 
 

0 0 0 0 0 1485 

4  0 378 630 945 1350 1485 
 

0 0 0 0 0 1485 

6  189 1088 814 1250 1406 1690 
 

189 462 792 495 1485 1690 

8  0 252 336 368 445 394 
 

0 0 0 0 0 394 

10  0 218 516 576 378 438 
 

0 0 0 0 0 438 

12  504 0 434 276 306 188 
 

504 208 57 990 845 188 

14  0 246 196 146 110 58 
 

0 0 0 0 0 58 

16  0 68 108 42 40 12 
 

0 0 0 0 0 12 

18  238 124 76 66 22 8 
 

238 264 297 350 394 8 

20  0 88 10 10 2 0 
 

0 0 0 0 0 0 

22  0 38 36 15 4 2 
 

0 0 0 0 0 2 

24  96 80 28 4 2  
 

96 342 274 175 132  

26  0 8 6 4   
 

0 0 0 0 0  

28  0 92 13    
 

0 0 0 0 0  

30  270 56 0    
 

270 236 280 132 24  

32  0 14 0    
 

0 0 0 0   

34  0 4 1    
 

0 0 0 0   

36  60 8     
 

60 42 46 6   

38  0 4     
 

0 0 0 0   

40  0 9     
 

0 0 0 0   

42  84 0     
 

84 15 4 12   

44  0 4      0 0 0    

46  0 0      0 0 0    

48  20 0      20 32 42    

50  0 0      0 0 0    

52  0 0      0 0 0    

54  0 0      0 16 8    

56  0 2      0 0     

58  0       0 0     

60  12       12 3     

62  0       0      

64  0       0      

66  12       12      

 

Table 88 
 

      fac 

Δ 

 1 3 15 105 1155 15015 255255  1 17 221 2431 17017 85085 255255 

2  0 2457 9828 13650 17010 19305 22275 
 

0 0 0 0 0 0 22275 

4  0 4914 8820 12285 17550 19305 22275 
 

0 0 0 0 0 0 22275 

6  2457 15616 10902 18780 19302 24530 26630 
 

2457 7560 4620 4455 14850 22275 26630 

8  0 3276 4968 5298 6429 7320 6812 
 

0 0 0 0 0 0 6812 

10  0 3148 6948 8208 7104 8022 7734 
 

0 0 0 0 0 0 7734 

12  6552 0 7198 5712 5862 4658 4096 
 

6552 1476 6930 8910 2945 13315 4096 

14  0 3582 3708 2550 2538 1450 1406 
 

0 0 0 0 0 0 1406 

16  0 1164 2044 1072 1308 692 432 
 

0 0 0 0 0 0 432 

18  3374 2024 1692 1956 1254 766 376 
 

3374 3150 4130 7400 7425 6812 376 

20  0 1672 422 536 292 116 24 
 

0 0 0 0 0 0 24 

22  0 682 1034 585 324 174 78 
 

0 0 0 0 0 0 78 

24  1536 1540 846 350 164 54 20 
 

1536 3430 3120 3700 5890 2766 20 

26  0 248 350 164 37 4 2 
 

0 0 0 0 0 0 2 

28  0 1548 379 38 20 2  
 

0 0 0 0 0 0  

30  4230 1138 186 76 2 2  
 

4230 4099 4235 2382 2766 816  

32  0 310 0 2 0   
 

0 0 0 0 0 0  

34  0 182 49 10 0   
 

0 0 0 0 0 0  
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      fac 

Δ 

 1 3 15 105 1155 15015 255255  1 17 221 2431 17017 85085 255255 

36  1022 278 10 2 4   
 

1022 1580 658 493 408 72  

38  0 130 4 0    
 

0 0 0 0 0 0  

40  0 214 6 2    
 

0 0 0 0 0 0  

42  1716 86 2 4    
 

1716 298 1686 1126 24 24  

44  0 132 0      0 0 0 0 0   

46  0 16 0      0 0 0 0 0   

48  474 62 2      474 1028 310 152 204   

50  0 44 0      0 0 0 0 0   

52  0 11 0      0 0 0 0 0   

54  40 4 2      40 736 72 12 48   

56  0 30       0 0 0 0    

58  0 2       0 0 0 0    

60  380 32       380 248 115 152    

62  0 0       0 0 0 0    

64  0 0       0 0 0 0    

66  286 2      
 

286 30 12 12    

68  0 2      
 

0 0 0 0    

70  0 2       0 0 0 0    

72  64 0       64 1 20 0    

74  0 0       0 0 0 0    

76  0 0       0 0 0 0    

78  66 2       66 78 8 0    

80  0        0 0 0 0    

82  0        0 0 0 0    

84  12        12 40 4 6    

86  0        0 0      

88  0        0 0      

90  24        24 4      

92  0        0 0      

94  0       
 

0 0      

96  22       
 

22 0      

98  0        0 0      

100  0        0 0      

102  0        0 0      

104  0        0 0      

106  0        0 0      

108  20        20 0      

110           0      

112           0      

114           2      

 

Table 89 
 

      fac 

Δ 

 1 3 15 105 1155 15015 255255 4849845  1 19 323 4199 46189 323323 1616615 4849845 

2  0 36855 147420 204750 255150 289575 334125 378675 
 

0 0 0 0 0 0 0 378675 

4  0 73710 132300 184275 263250 289575 334125 378675 
 

0 0 0 0 0 0 0 378675 

6  36855 254464 171210 297060 314106 396110 435290 470630 
 
36855 47736 96390 67320 100980 252450 378675 470630 

8  0 49140 85920 92058 118824 132960 128192 128810 
 

0 0 0 0 0 0 0 128810 

10  0 51058 109980 140976 128592 156984 150114 148530 
 

0 0 0 0 0 0 0 148530 

12  98280 0 125398 114528 113722 99338 102424 90124 
 
98280 92820 48580 157080 151470 54545 235315 90124 

14  0 58338 66132 51258 50150 41854 39698 33206 
 

0 0 0 0 0 0 0 33206 

16  0 20988 41832 25344 31175 18242 16536 12372 
 

0 0 0 0 0 0 0 12372 

18  53690 35180 38680 47792 36720 24742 18080 12424 
 
53690 77592 48195 64050 79790 126225 128810 12424 

20  0 32088 11528 15112 10414 6338 2224 1440 
 

0 0 0 0 0 0 0 1440 

22  0 12682 24246 14735 11712 6110 3450 2622 
 

0 0 0 0 0 0 0 2622 

24  26208 30092 20856 10930 7560 4732 1844 1136 
 
26208 39852 80710 25305 57815 109090 59160 1136 

26  0 6072 9812 4684 1917 1008 258 142 
 

0 0 0 0 0 0 0 142 

28  0 27128 10917 2304 1714 812 268 72 
 

0 0 0 0 0 0 0 72 

30  72378 25122 9390 3756 1060 302 82 20 
 
72378 53850 103632 89580 83845 59160 22488 20 

32  0 6440 154 488 70 32 2 0 
 

0 0 0 0 0 0 0 0 

34  0 5422 1591 662 90 40 6 2 
 

0 0 0 0 0 0 0 2 

36  18776 7446 898 490 132 38 2  
 
18776 14361 11956 12728 6760 11244 3384  

38  0 3726 304 114 22 2   
 

0 0 0 0 0 0 0  
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      fac 

Δ 

 1 3 15 105 1155 15015 255255 4849845  1 19 323 4199 46189 323323 1616615 4849845 

40  0 5778 428 130 14 6   
 

0 0 0 0 0 0 0  

42  34812 2612 332 208 6    
 
34812 35626 4056 30458 28170 1152 1392  

44  0 3686 64 14      0 0 0 0 0 0 0  

46  0 906 32 44      0 0 0 0 0 0 0  

48  10462 2706 176 26      10462 11246 11806 5074 5036 5622 192  

50  0 1524 16 6      0 0 0 0 0 0 0  

52  0 401 20 8      0 0 0 0 0 0 0  

54  1968 568 90 2      1968 3255 9130 1204 2242 2256 24  

56  0 820 14 0      0 0 0 0 0 0   

58  0 364 14 6      0 0 0 0 0 0   

60  9452 1096 0       9452 17584 3267 5500 1476 312   

62  0 40 6       0 0 0 0 0 0   

64  0 226 14       0 0 0 0 0 0   

66  6322 152 10      
 

6322 2170 3512 5263 72 0   

68  0 96 8      
 

0 0 0 0 0 0   

70  0 184 4       0 0 0 0 0 0   

72  2816 16 2       2816 1342 242 860 648 0   

74  0 28 0       0 0 0 0 0 0   

76  0 16 0       0 0 0 0 0 0   

78  2620 84 2       2620 1214 3144 1616 48 24   

80  0 14        0 0 0 0 0    

82  0 8        0 0 0 0 0    

84  632 44        632 1142 1502 72 48    

86  0 4        0 0 0 0     

88  0 6        0 0 0 0     

90  1236 10        1236 344 1126 198     

92  0 2        0 0 0 0     

94  0 0       
 

0 0 0 0     

96  876 2       
 

876 108 188 32     

98  0 2        0 0 0 0     

100  0 0        0 0 0 0     

102  16 0        16 560 12 0     

104  0 2        0 0 0 0     

106  0 0        0 0 0 0     

108  954 0        954 46 48 138     

110  0 0        0 0 0 0     

112  0 0        0 0 0 0     

114  0 2        0 0 92 0     

116  0         0 0 0 0     

118  0         0 0 0 0     

120  142         142 62 70 74     

122  0         0 0 0 0     

124  0         0 0 0 0     

126  48         48 4 8 0     

128  0         0 0 0 0     

130  0         0 0 0 0     

132  26         26 12 0 4     

134  0         0 0 0 0     

136  0         0 0 0 0     

138  86         86 6 0 0     

140  0         0 0 0 0     

142  0         0 0 0 0     

144  0         0 6 12 0     

146  0         0 0 0 0     

148  0         0 0 0 0     

150  20         20 8 0 4     

152            0 0      

154            0 0      

156            4 0      

158             0      

160             0      

162             0      

164             0      

166             0      

168             0      

170             0      

172             0      

174             2      
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Example of evolution :  

Column fac = 3.  

Populations #SP3(j,i). 

 

Numbers in parentheses are not deduced from the iterative formulas. 

 

i 1 2 3 4 5 6 7 … 

pi 3 5 7 11 13 17 19 … 

j = 1 (1) 1 3 21 189 2457 36855 … 

j = 2 (1) (2) 6 42 378 4914 73710 … 

j = 3 
 

(2) 12 104 1088 15616 254464 … 

j = 4 
 

(1) (4) 28 252 3276 49140 … 

j = 5 
 

(0) 2 20 218 3148 51058 … 

j = 6 
  

(0) 0 0 0 0 … 

j = 7 
  

(2) 22 246 3582 58338 … 

j = 8 
  

… … … … … … 

 

j Formulas 

1 
#SP3(1,1) = 1 

#SP3(1,i) = (pi-4).#SP3(1,i-1) 

2 
#SP3(2,2) = 2  

#SP3(2,i) = (pi-4).#SP3(2,i-1) 

3 

x1(3) = 4 

x1(i) = (pi-1-5).x1(i-1) 

#SP3(3,2) = 2 

#SP3(3,i) = (pi-3).#SP3(3,i-1)+x1(i) 

Indistinguishable from  

x1(4) = 32 

x1(i) = (pi-1-3).x1(i-1) 

#SP3(3,3) = 12 

#SP3(3,i) = (pi-5).#SP3(3,i-1)+x1(i) 

4 
#SP3(4,3) = 4 

#SP3(4,i) = (pi-4).#SP3(4,i-1) 

5 

x1(4) = 2 

x1(i) = (pi-2-6).x1(i-1) 

x2(3) = 2 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#SP3(5,2) = 0 

#SP3(5,i) = (pi-4).#SP3(5,i-1)+x2(i) 

6 #SP3(6,i) = 0 

7 

x1(4) = 8 

x1(i) = (pi-3-5).x1(i-1) 

#SP3(7,3) = 2 

#SP3(7,i) = (pi-4).#SP3(7,i-1)+x1(i) 

8 

x1(6) = 24 

x1(i) = (pi-2-6).x1(i-1) 

x2(5) = 32 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#SP3(8,4) = 0 

#SP3(8,i) = (pi-4).#SP3(8,i-1)+x2(i) 

9 

x1(5) = 12 

x1(i) = (pi-2-7).x1(i-1) 

x2(4) = 8 

x2(i) = (pi-1-6).x2(i-1)+x1(i) 

#SP3(9,3) = 0 

#SP3(9,i) = (pi-4).#SP3(9,i-1)+x2(i) 

10 

x1(5) = 28 

x1(i) = (pi-2-7).x1(i-1) 

x2(4) = 4 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#SP3(10,3) = 0 

#SP3(10,i) = (pi-4).#SP3(10,i-1)+x2(i) 



P 140/142                                                    

11 

x1(6) = 28 

x1(i) = (pi-2-6).x1(i-1) 

x2(5) = 20 

x2(i) = (pi-1-5).x2(i-1)+x1(i) 

#SP3(10,4) = 2 

#SP3(10,i) = (pi-4).#SP3(10,i-1)+x2(i) 

… ? 

 

We note above the unique case j = 3 where the multiplier factor of #SP3(j,i) is no more pi-4.  

However, the pi-3 and pi-5 multiplier factors of the two indistinguishable iterative formula systems (always constructible 

according to our commentary below Table 10) produce an average of pi-4. Just a coincidence ? 

Of course, numerically, we find that the ratios #SP3(3,i)/#SP3(3,i-1) are tending towards pi-3. We know that the most left 

column of the tables sees the ratios #SP(j,i)/#SP(j,i-1) tending towards pi-4 (pseudo-twins) and the most right of them 

tending towards pi-2 (pseudo-primes). Is the strategy for reconciling the two trends to move gradually from pi-4 to pi-3 

and then to pi-2 ? We could not verify this for lack of sufficient numerical data from which we would be able to deduce 

routines by successive Euclidian divisions. This failure may also be due to the fact that this assumption may be totally 

false. 

As a result of the pi-3 leading ratio (instead of pi-4), the populations of the j = 3 line are growing faster than they do on the 

other lines (with logarithmic gain). In the first graph below, we show the ratio of the populations in this line (j = 3) 

compared to that of the first line populations (j = 1). In addition, the proportion of the populations of this line to the 

overall populations (which grows as pi-2) remains significant for a relatively long time (although ultimately tending as all 

the other lines to 0) as shown in the second graph where the curve in blue is the one relating to j = 3 and the curve in red 

the one relating to j = 1. 

 

Graphics 29 and 30 
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APPENDIX 14 

Programming of #S(i,j) evaluations. 

Code  

https ://pari.math.u-bordeaux.fr/ 

 

 

Recursive method (steps 3, 4, 5, etc.) 

Only for the 2n = 2
m

 cases. 

Large memory space needed (fast saturation of memory space) 

 

{expo = 1; ec = 2^expo; \\ choose the gap by choosing the exponent 

kk0 = 4001; kk1 = kk0; \\ to choose so that kk0 and kk0+ec are prime numbers   

rg = 3; prodt = 1; pp1 = primes(100)[rg];  

for(i = 2, rg-1, prodt = prodt*(primes(100)[i]-2)); 

sizm = (pp1-2)*prodt; 

siz = pp1*prodt;  

nbb = vector(siz+1,i,0); 

nbf = vector(siz+1,i,0); 

nbb[1] =6;  

for(i = 1, pp1-1, for(j = 1, prodt, nbb[i*prodt+j] = nbb[j])); 

for(i = 1, siz, kk1 = kk1+nbb[i]; kk2 = kk1+2; 

if(Mod(kk1, pp1) == 0, nbf[i] = 1); 

if(Mod(kk2, pp1) == 0, nbf[i] = 1)); 

for(i = 1, siz, if(nbf[i] == 1, nbb[i+1] = nbb[i] + nbb[i+1]; nbb[i] =0)); 

k = 0; 

for(i = 1, siz, if(nbb[i] <> 0, k = k+1; nbb[k] = nbb[i])); 

\\ for(i = 1, sizm, print(nbb[i])); 

 

print("/"); 

nb = vecmax(nbb); 

print(nb); 

print("/"); 

nz = vector(nb/6,i,0); 

for(i = 1, sizm, nz[nbb[i]/6] = nz[nbb[i]/6]+1); 

for(i = 1, nb/6, print(nz[i])); 

print("/"); 

 

for(rg = 4, 11, \\ choose 6 or more 

prodt = 1; pp1 = primes(100)[rg]; kk1 = kk0; 

for(i = 2, rg-1, prodt = prodt*(primes(100)[i]-2)); 

sizm = (pp1-2)*prodt;  

siz = pp1*prodt;  

nba = vector(siz+1,i,0); 

nbg = vector(siz+1,i,0); 

for(i = 0, pp1-1, for(j = 1, prodt, nba[i*prodt+j] = nbb[j])); 

for(i = 1, siz, kk1 = kk1+nba[i]; kk2 = kk1+2; 

if(Mod(kk1, pp1) == 0, nbg[i] = 1); 

if(Mod(kk2, pp1) == 0, nbg[i] = 1)); 

for(i = 1, siz, if(nbg[i] == 1, nba[i+1] = nba[i] + nba[i+1]; nba[i] =0)); 

k = 0; 

for(i = 1, siz, if(nba[i] <> 0, k = k+1; nba[k] = nba[i])); 

\\ for(i = 1, sizm, print(nba[i])); 

 

nbb = vector(sizm,i,0); 

for(i = 1, sizm, nbb[i]= nba[i]); 

print("/"); 

nb = vecmax(nbb); 

print(nb); 

print("/"); 

nz = vector(nb/6,i,0); 

for(i = 1, sizm, nz[nbb[i]/6] = nz[nbb[i]/6]+1); 

for(i = 1, nb/6, print(nz[i])); 

print("/"););} 

 

https://pari.math.u-bordeaux.fr/
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Direct evaluation method (step i) 

Low memory space needed 

 

{siz = 33; \\ to be ajusted 

fac = 1; \\ to choose 

expo = 1; \\ to choose 

qtpr = 6; \\ to choose 

ec = fac*(2^expo); ec2 = ec/2; nb = vector(siz,i,0); prodt = 1;  

for(i = 2, qtpr, prodt = prodt * primes(qtpr)[i]); 

for(c = 2001+ec2, 2001+ec2+prodt, a = 2*c+1 ; ac = a-ec; 

if(Mod(ac, 3) <> 0,  

if(Mod(a, 3) <> 0,  

if(Mod(ac, 5) <> 0,  

if(Mod(a, 5) <> 0,  

if(Mod(ac, 7) <> 0,  

if(Mod(a, 7) <> 0,  

if(Mod(ac, 11) <> 0,  

if(Mod(a, 11) <> 0,  

if(Mod(ac, 13) <> 0,  

if(Mod(a, 13) <> 0,  

anc = a; canc = (anc-1)/2;  

))))) ))))) );  

for(c = canc+1, canc+1+prodt, a = 2*c+1 ; ac = a-ec; 

if(Mod(ac, 3) <> 0,  

if(Mod(a, 3) <> 0,  

if(Mod(ac, 5) <> 0,  

if(Mod(a, 5) <> 0,  

if(Mod(ac, 7) <> 0,  

if(Mod(a, 7) <> 0,  

if(Mod(ac, 11) <> 0,  

if(Mod(a, 11) <> 0,  

if(Mod(ac, 13) <> 0,  

if(Mod(a, 13) <> 0,  

nouv = a; dif = nouv-anc; dif2 = dif/2; nb[dif2] = nb[dif2]+1; anc = nouv 

))))) ))))) );  

for(i = 1, siz, print(nb[i]))} 

 

Direct evaluation method (step i) 

Large memory space needed (fast saturation in memory space, may miss also an item in the final count) 

 

{reserve  = 1005; 

siz = 50; \\ to be adjusted 

nb = vector(siz,i,0); 

qtpr = 7; \\ to choose 

prodt = 1; 

for(i = 1, qtpr, prodt = prodt * primes(qtpr)[i]); 

base = vector(prodt+reserve,i,i+100); 

for(j = 1,qtpr, 

prem = primes(qtpr)[j]-100%primes(qtpr)[j]; 

\\ print(prem); 

for(i = 1, prodt/primes(qtpr)[j], base[primes(qtpr)[j]*i+prem] = 0)); 

for(i = 1, prodt/2, c = 2*i+1; 

if(base[c]-base[c-2] == 2, anc = c; break));  

for(i = anc, prodt/2, c = 2*i+1; 

if(base[c]-base[c-2] == 2, dif = c-anc ; dif6 = dif/6; nb[dif6] = nb[dif6]+1; anc = c));  

for(i = 1, siz, print(nb[i]))} 

 

 


