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Abstract. The Collatz conjecture states that, starting with any strictly
positive integer, the (3x+1) algorithm leads systematically to the same
cycle (1, 4, 2, 1, · · · ) after a �nite number of steps. The only potential
exceptions to this rule on the positive side of Z∗ are the existence of ei-
ther separate closed cycles or separate in�nite divergent series. We will
analyse the constraints and impediments on these types of objects using
the underlying structures and laws linked to the Collatz algorithm.
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1. The algorithm

Let us have i an index and ui an integer di�erent from zero (positive or
negative). The Collatz algorithm consist in dividing ui by 2 if ui is even and
to multiply it by 3 and adding 1 otherwise in order to get ui+1 recursively.

ui+1 =

{
ui/2 if ui ≡ 0 (mod 2),

3ui + 1 if ui ≡ 1 (mod 2).

According to the Collatz conjecture, starting with an integer in N∗, this
algorithm leads to the same cycle (1, 4, 2, 1, · · · ).

2. Conventions and vocabulary

Vocabulary. Part 1.
We use standard graph vocabulary and a few additional conventions

• vertex : any integer,
• successor : a successor vertex is obtain by applying the Collatz algo-
rithm to an integer; an integer has one immediate successor; when
speaking of successor in the singular we mean the immediate succes-
sor,

• antecedent : an antecedent vertex is obtain by applying the Collatz
algorithm to an integer in the reverse way (upturn or upwards); an
integer has one or two immediate antecedents according to its value;
when speaking of antecedent in the singular we mean an immediate
antecedent,

• active vertex : a green or blue integer (an integer equal to 1 or 2
modulo 3),

• inactive vertex : a yellow vertex (an integer equal to 0 modulo 3),
• link : an edge between two vertices,
• active link : a link giving a blue or green antecedent,
• branch : a set of vertices connected by some links,
• inactive branch : a branch with only yellow vertices,
• graph : an arbitrary initial choice of a vertex or cycle and then all
the vertices and links formed by its successors and antecedents,

• inactive graph : a graph with ultimately only inactive ascendant
branches; note : such graph has only a �nite number of branches,

• root : the cycle or unique vertex (the latter being proven impossible)
at the bottom of a graph,

• rank : the upturn step of antecedents from the root ; by extension,
the term is also used for the number of upturn steps starting from
some chosen integer,

• graph crown : the set of vertices and links of a graph except its root
(or initial integer).
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Color code. Let us consider the values of the integers modulo 3. We as-
sociate the green color to the 1 (mod 3) integers, the blue color to the 2
(mod 3) integers and the yellow color to the 0 (mod 3) integers.

1 (mod 3) 2 (mod 3) 0 (mod 3)

Vocabulary. Part 2.

• integers : N∗ designates the natural numbers, while N includes 0.
The same convention holds for Z∗ and Z for integers.

• stopping time : executing the Collatz algorithm, the step when the
absolute value of the resulting integer is equal or smaller than the
chosen initial integer.

• odd step : a multiplicative operation (3x+1) on x. The total number
of odd steps is noted v at the stopping time.

• even step : a division operation (x/2) on x. The total number of
even steps is noted w at the stopping time.

Part 1. The trees' structure

3. Graph crowns

Let us have the color code de�ned previously. There are 1 or 2 immediate
antecedents for any integer and it is then straightforward to get the modulo
values of these immediate antecedents and corresponding colors according to
the six cases given in �gure 1.

Figure 1. Collatz reverse algorithm : List of antecedents'
modulo values.

The initial set of integers, of course, is chosen in order to cover a complete
set of congruences:
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Case 1 0 (mod 3)
Case 2 1 (mod 3) 1 (mod 6)
Case 3 4 (mod 6) 4 (mod 18)
Case 4 10 (mod 18)
Case 5 16 (mod 18)
Case 6 2 (mod 3)

It is likewise easy to verify that the antecedents' set is also a complete set
of congruences:

Case 1 0 (mod 6)
Case 3 1 (mod 6)
Case 2 2 (mod 6) 2 (mod 12)
Case 3 8 (mod 12) 8 (mod 36)
Case 4 20 (mod 36)
Case 5 32 (mod 36)
Case 4 3 (mod 6)
Case 6 4 (mod 6)
Case 5 5 (mod 6)

Lemma 1. There is no blue antecedent to a blue vertex.

Proof. Case 6 in �gure 1 is the only alternative. It shows green vertices as
antecedents. □

Lemma 2. A green vertex may have a green antecedent vertex. But the later
cannot have another green antecedent.

Proof. Case 3 followed by case 2 in �gure 1 is the only alternative and shows
a blue vertex after two consecutive green vertices. □

Lemma 3. Any branch is linked to an active branch.

Proof. Recall, by our earlier de�nitions, a inactive branch contains only yel-
low vertices. The antecedent of a yellow vertex is unique (case 1 of �gure
1) and is yellow, therefore the branch is inactive up to in�nity once a yellow
vertex appears. But the bottom yellow vertex of that branch has necessarily
a green successor which is linked upwards to a blue vertex (case 4 of �gure 1)
and then again upwards to a green vertex (case 6 of �gure 1). This last green
vertex is equivalent to 4 (mod 6) and therefore has always 2 antecedents pro-
viding the début of an active branch as for there on, whatever follows, one
encounters always at least a blue or a green vertex as antecedent, a yellow
vertex never appearing alone (but with a blue vertex as shown in case 4). □

4. Roots

Figure 1 shows that any integer has two or three links. The 3 links' pattern
is the one that allows roots to thrive with a crown graph. The objective of
this section is to prove that this blossom will always occurs : Any root has
a crown graph.
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Lemma 4. The two lemmas 1 and 2 apply also in a cycle.

Proof. The Collatz algorithm is the same in any circumstances (in cycles as
in linear branches). □

Lemma 5. There is no root with one vertex. The only root with two vertices
is (−1,−2). The only root with three vertices is (1, 2, 4). There is no root
with four vertices. The only root with �ve vertices is (−5,−14,−7,−20,−10).
There is no root with six vertices.

Proof. Let us verify all the 21 possibilities for one vertex u0 → u−1 = u0
going from the initial integer upwards antecedents: we get u0 → u0 =
or(2u0, (u0−1)/3). Hence u0 = or(0,−1/2) and therefore no solutions in Z∗.
The 22 possibilities for two vertices are u0 → u−1 → u−2 = u0 so that u0 →
or(2u0, (u0 − 1)/3) → or(4u0, 2(u0 − 1)/3, (2u0 − 1)/3, ((u0 − 1)/3− 1)/3).
Hence u0 = or(0,−1,−2,−1/2). Only −1 and −2 are in our domain of de�-
nition Z∗ and give e�ectively a cycle with two vertices. For three vertices, the
23 initial solutions are (0, 1, 2,−4/7, 4,−5/7,−8/7,−1/2) where only (1, 2, 4)
are in Z∗ and is e�ectively a cycle with 3 vertices. For four vertices, the
24 initial solutions are (0, 1/5, 2/5, −4/5, 4/5,−1, −8/5,−13/25, 8/5,−7/5,
−2,−14/25,−16/5, −17/25,−26/25,−1/2) where only (−1,−2) are in Z∗

and is e�ectively a cycle, but only with 2 vertices, a redundancy with the
previous search. Similarly, one can resolve the �ve and six vertices' cases. □

Another cycle with 18 vertices is known in Z− to this day. Of course,
to solve it with the given previous method would be quite cumbersome and
painful due to the 218 = 262144 equations to solve. The 4 known cycles are
represented in �gures 3 to 6.

Lemma 6. There is no root containing a yellow vertex.

Proof. The antecedent of an integer equal to 0 (mod 3) is unique and double
its value (case 1 of �gure 1). The next antecedent likewise and so up to
in�nity. Thus it cannot cycle back to its initial value. □

Lemma 7. In a root, there cannot be 2 blue vertices next to each other. In
a root, there can be possibly 2 green vertices next to each other, but not 3.

Proof. This is an immediate result of lemma 4 and �gure 1. □

Lemma 8. In a root, a blue vertex has no link towards the outside of the
root. In a root, an isolated green vertex has always a link towards the outside
of the root. In a root, a pair of green vertex has one and only one of the
vertex with a link towards the outside of the root.

Proof. One gets again all the information from �gure 1. For the blue vertex,
which can only have two links (case 6), the two have to be inner links to
get a cycle. For the isolated green vertex, the only contradictory case would
be case 2, but then its value is equal to 1 (mod 6) and it is therefore linked
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to the green vertex on the top of case 3 which will have a blue link to the
outside. □

Lemma 9. Any root has active links towards the outside.

Proof. For roots with less than six vertices, refer to �gures 3 to 5 to con�rm
the claim. We know by �gure 1 (cases 3, 4 and 5) that outside links from
roots can only grow from green vertices. So then suppose that yellow vertices
are growing out from two possible most narrow links. Figure 2 shows the
two only possible cases of pieces of roots one can get on these premises. For
each separate case in this �gure, the vertices on the left side are those within
the root itself and the vertices on the right side are the �rst items out of that
root. White vertices may be green or blue, it doesn't matter. From �gure 1,
we know that the annotated green vertices must equal 10 (mod 18) as the
only case with two antecedents of which one is yellow is case 4. We then
consider the following two alternatives.
Case 1: Start from the �rst green vertex towards the top equal to 10+18k1.

It is even thus the vertex underneath is equal to 5+ 9k1. The next vertex is
then either equal to (5 + 9k1)/2 or 16 + 27k1. This vertex in the same time
must equal 10+18k2. Therefore either 3(k1−4k2) = 5 or 3(3k1−2k2) = −2
which are both impossible with k1, k2 ∈ Z.
Case 2: Start again from the �rst green vertex equal to 10 + 18k1. The

vertex underneath is equal to 5 + 9k1. The next vertex is then either equal
to (5 + 9k1)/2 or 16 + 27k1. The next vertex is then either (5 + 9k1)/4,
3(5 + 9k1)/2 + 1, (16 + 27k1)/2 or 3(16 + 27k1) + 1. This last vertex in
the same time must equal 10 + 18k2. Therefore either 9(k1 − 8k2) = 35,
3(3k1 − 4k2) = 1, 9(3k1 − 4k2) = 4 or 3(9k1 − 2k2) = −13 which are again
all impossible. So we cannot have "adjacent" yellow vertices stemming from
a root. We know also from lemma 8 that a supplementary intermediate
blue-green-blue vertices' sequence without external link is impossible. Now
considering a complete root, we know by lemma 7 that there are at least
half of green vertices in any root. If these green vertices are systematically
by pairs (which is certainly an absurd situation that we have not seek to
object), there are anyway still at least 1/3 of the vertices in the root having
links with a crown graph. Now from the above discussion, less then half of
these links are yellow. Therefore, the number of active links is at least 1/6
of the root's cardinal. Thus with more than 6 vertices, a root has necessarily
active links. □

For the four known cycles, as the reader can check directly, all the �rst
links towards the outside of the root are active links. Shalom Eliahou [2] has
proven that any unknown cycle in N∗ would contain at least 17026679261
vertices (for the elements of the cycle only) and therefore would have, thanks
to our own above study, more than 2837779877 active links.



WINNING TICKETS FROM TWO COLLATZ GRAPHS' STRUCTURES 7

Figure 2. Pieces of roots.

Figure 3. Cycle 1.

5. Graphs

Now that we know that any root has a crown graph, let us go further on
this blossoming pattern.

Lemma 10. A graph has one and only one root.
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Figure 4. Cycle 2.

Figure 5. Cycle 3.

Proof. Let suppose the existence of a graph with two or more roots and
let consider two of them. Applying the inverse algorithm, at some stage
upwards among all the rami�cations, there will be a common antecedent to
two distinct vertices. As there is only one successor to a given integer, there
is a contradiction to the way the Collatz algorithm works. Therefore only
one unique root is the rule for any graph. □

Lemma 11. Any integer belongs to a graph.

Proof. This is lemma 3 □

Lemma 12. There is no inactive graph.

Proof. This is again lemma 3. According to �gure 1, any active vertex has
at least one active antecedent. Therefore:
Case 1: Starting from any active vertex, the cardinal of the successive

antecedents is the same or increases, and this an in�nite number of times.
Hence, the graph is not inactive.
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Figure 6. Cycle 4.

Case 2: Starting from any inactive vertex, its successors (in downwards
Collatz algorithm) are divided by 2 as long as the result is even, otherwise
the successor gets green and is hence an active vertex bringing us back to
case 1. □

Theorem 1. Any integer belongs to an active graph with a unique root.

Proof. This is the aggregated result of lemmas 9, 10, 11 and 12. □

This proves our �rst point that there is no divergent series stemming from
some given integer nor some series coming down from in�nity and growing
back up to in�nity. There is always a root on the base of a Collatz tree
structure and this root is unique.
Having established the �rst part of our proof, we have to concentrate also
on the way the trees' structure grow.

Lemma 13. The upwards asymptotic growth rate of the number of vertices
between two consecutive ranks is equal to

c =
1 +

√
1 + 4k2

k1+k2+k1.k2

2
where k1 is the ratio of the number of 0 mod 3 valued vertices to the number
of 2 mod 3 vertices and k2 is the ratio of the 0 mod 3 vertices to the number
of 1 mod 3 vertices at a given stage of the upwards algorithm, for any Collatz
graph in Z∗, whatever the choice of the initial integer ̸= 0 (mod 3).

Proof. Any integer is linked upwards or downwards with an active branch
according to theorem 1. But the choice of an integer ̸= 0 (mod 3) allows to
apply exclusively the reverse Collatz algorithm to evaluate the growth rate,
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the said integer being right away part of an active branch that can bosom.
This algorithm has only a �nite number of alternatives (6 cases) according
to �gure 1. We insist here on the term "�nite" which is crucial to conclude.
Using the summary of the antecedents given in the said �gure, let us suppose
at rank r we have ik proportion of vertices in class k. We deduce immediately
the ik' populations ratios for the antecedents underneath:

Cases 1 2 3 4 5 6
n i1 i2 i3 i4 i5 i6

antecedent 2n i1 i2 i3 i4 i5 i6
antecedent (n− 1)/3 i3 i4 i5

If asymptotically, the propositions between the modulo classes are stabiliz-
ing, it is necessarily according to the underneath relations, where c is the
global multiplicative factor of the antecedents modulo classes populations
using again �gure 1:

0 (mod 3) c · i1 ≃ i1 + i4
1 (mod 6) c · i2 ≃ i3
4 (mod 6) c · (i3 + i4 + i5) ≃ i6
2 (mod 3) c · i6 ≃ i2 + i3 + i4 + 2i5

As the initial ik are proportions, we write also i1+ i2+ i3+ i4+ i5+ i6 = 1.
In total, we have thus 5 equations for 7 unknowns (c and i1 to i6), leaving
us with 2 degrees of freedom. These degrees of freedom are completed then
with the two supplementary equations i1 ≃ k1 ∗ i6 ≃ k2 ∗ (i2 + i3 + i4 + i5),
where k1 and k2 are necessarily two positive factors. We will get the equation
c2 − c − k2/(k1 + k2 + k1.k2) = 0. Hence the rate of growth c = (1 + (1 +

4k2/(k1 + k2 + k1.k2))
1/2)/2.

The dependency of c with the parameters k1 and k2 is given in �gure 7.
Except for k2 = 0, which is asymptotically absurd, the ratio c is always
strictly greater than 1 (with maximum value the golden ratio φ = (1 +√
5)/2). As the reverse algorithm is repeated in�nitely, whatever the exact

asymptotic value of c, or even if there is no asymptotic convergence to some
constant value, so long as c > 1, which is the case, the Collatz graph will
grow exponentially. □

Lemma 14. The asymptotic proportion between the numbers of 0, 1 and 2
mod 3 vertices is identical in any graph.

Proof. This means k1 = k2 = 1. It is obvious that the 0 and 1 (mod 2)
populations cannot be equal as there is systematically an even antecedent to
any integer by the reverse Collatz algorithm. On the opposite, if x is random
(unbiased), the integers' transformations x −→ 2x as well as x −→ (x−1)/3,
the later when it has an integer solution, are unbiased modulo any odd
number v. Insisting speci�cally on the modulo 3 case, let us consider 3k1,
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Figure 7. Evolution of c versus k1 and k2.

3k2 + 1, 3k3 + 2 with equal populations, the ki having random (mod 3)
values. The antecedents are 6k1, 6k2 + 2, k2, 6k3 + 4. Therefore as k2 is
initially unbiased (and 6k1 ≡ 0 mod 3, 6k2 + 2 ≡ 2 mod 3, 6k3 + 4 ≡ 1
mod 3), the new set of antecedents is unbiased modulo 3. If the initial sets
ki do not have the same populations (which is necessary the case starting
from one integer or one root of integers), the k2 values sampling, induced
by the reverse algorithm, is collecting numbers from Z where some values
have already being drawn out, therefore giving an advantage to the other
modulo 3 samples, creating a progressive feedback compensation. The 0,
1 and 2 (mod 3) populations will therefore tend towards equal proportions
by random draw in a growing and huge sample of Z and likewise for any
odd integer v instead of 3 as further examined in the appendix A. It shows
that the sampling in similar populations occurs rapidly (less than 50 rounds
in the example). Subsequently, we get two supplementary equations closing
down the said degrees of freedom: i1 ≃ i6 ≃ i2 + i3 + i4 + i5. □

Theorem 2. The asymptotic rate of growth of any Collatz graph is

c =
1 +

√
7/3

2
≈ 1.26376262.

Proof. This is an immediate result of lemma 13 using k1 → 1 and k2 → 1
when the rank increases. □

Note. Going back to �gure 1, we are then able to make a summary of the
modulo 6 's populations:
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0 (mod 6) c− 1

1 (mod 6) 4
3 − c

2 (mod 6) c− 1

3 (mod 6) 4
3 − c

4 (mod 6) c− 1

5 (mod 6) 4
3 − c

and therefore we get for the modulo 2 's populations:

0 (mod 2) 3 · (c− 1)
1 (mod 2) 4− 3 · c

Figure 8. Approximate quantities of vertices versus rank r
for several initial integers.

Note. The PARI/GP computer programming in appendix A provides the
cardinals of the congruence classes of the integers at rank 48 of the reverse
Collatz algorithm taking −67 as a sample for the initial integer. The data
shows already less that 2 % deviation from the asymptotic equiprobable
proportions at this early stage of calculation for odd v modulo operations, v
= 3 to v = 15.
We provide also the hereby �gure 8. The �gure, thanks to the logarithmic

ordinates, shows the same rate of growth for more initial samples.
With the said software, starting from some arbitrary initial integer ̸= 0

mod 3, the reader can easily check the overall growth rate and the proportions
in each congruence class using the resulting numbers of vertices.
The reader may also refer to [9] Sheet Terras Appendix 4 for the numerical

values of growth rate and congruence class proportions. The data is given for
the four known graphs in Z∗ and the two additional partial graphs stemming
from 37 and 127 show that the results are analogous for independent tree
structures as for distinct parts of the same graph.
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So far we checked the rate of growth of the Collatz graphs. But the equality
of their asymptotic value is not su�cient to make sure that the density of
one graph to another is not negligible allowing such graph to coexists on
N*. We will have to show that the rates of growth evolve in a close enough
way one to each other, that the domains in which the graphs develop are
similar and that the repartition within these domains are also similar. The
�rst objective will be achieved in lemma 16, the second in lemma 18 and the
last one in lemma 17.
So let us start and consider two distinct graphs and the corresponding

in�nite products of positive real number series
∏

c1i and
∏

c2i where c1i −→
c and c2i −→ c when i tends towards in�nity. The condition c1i

c2i
−→ 1 is

necessary for the in�nite product
∏ c1i

c2i
to converge (to a strictly positive

value), but the reciprocal is false. Hence the need here for additional decisive
arguments to meet our aim.

Lemma 15. The absolute value of the ratio of the rates of growth c1i and
c2i, at rank i of the reverse Collatz algorithm, of two distinct Collatz graphs
is asymptotically lesser than 1 + 1

in where n is some constant > 1.

Proof. The rate of growth ci at rank i of a Collatz graph converges towards
c in a random way. It takes asymptotically random inferior and superior
values compared to c. The di�erence to 1 of the ratio c1i

c2i
cumulate the

di�erence to c of c1i and c2i. This induces a mere factor 2 in the uncertainty
measurement. The population at rank i of a Collatz graph is similar to α · ci
where α is some approximative initial value. But in random phenomena,
average absolute di�erences compared to the populations fades away with the
increase of populations. Exponential growth of populations means inverse
exponential "growth" of the average absolute di�erences (see the binomial
distribution's example in the note underneath) to the populations. The ratio
of the latter, let us say λ · c−ϵ·i with λ and ϵ strictly positive values, to the
polynomial expression 1

in , where n is constant, therefore tends towards 0

(λ · c−ϵ·i · in −→ 0 when i −→ +∞). □

Lemma 16. The in�nite product of the ratio of the rates of growth c1i and
c2i of two distinct Collatz graphs is convergent (to a non-zero value) where
i is the rank of the reverse Collatz algorithm.

Proof. The asymptotic absolute ratio is lesser than 1+ 1
i , the multiplicative

counterpart of the harmonic series. Let us say, it is smaller than 1 + 1
i1+ε ,

ε > 0 after some rank k. Up to rank k the ratio gives some �nite strictly
positive value, and the remainder in�nite product gives another �nite strictly
positive value which together give a �nite strictly positive value. Hence the
convergence. □

Note. Let us suppose the most likely standard binomial distribution of the
vertices' values in each congruence class. For this kind of distribution,
asymptotically, the mean absolute di�erence is EM(|X − n|, p = 1/2) =
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n
(
2n
n

)
/22n ≃

√
n
π (see reference [6]) where n is the class' population. Here

the class' population is αj(c
i) where i is the rank upwards and αj some con-

stant value depending of the initial integer. The deviation at each rank from
1 is equal to 1

n

√
n
π , hence the ratio is 1 + 2((α1/α2)π)

−1/2c−i/2 where the
multiplicative factor 2 cumulates the uncertainties due to the numerator and
the denominator of | c1ic2i

| as previously mentioned.
For example, modulo 3, in appendix A, the average population in a con-

gruence class is n = 78932/3 ≃ 26311, and implementing the comparison
on the same graph (thus α1/α2 = 1), we get 2 1

n

√
n
π ≃ 0.70% which there-

fore corresponds to an order of magnitude of the mean absolute di�erence to
population ratio of a binomial distribution. The other comparative values
are given in the appendix A for the modulo v cases, v = 5, 7, . . . , 15 with
similar conclusion.
Similar conclusion would also be drawn with a non-binomial distribution

as it would only scale the result by some �nite factor for the ratio
∏ c1i

c2i
.

Now, let us turn to the distributions of values. One way to do it is to
check that the average sum of the values of vertices at some common rank
r are similar. Some constrain may however make it only "locally". A much
decisive argument is that the result remains true for any exponential power
a�ected to the vertices values.

Lemma 17. The asymptotic medium growth of antecedents' values (absolute
values of integers), to which a power n is applied, for the reverse Collatz
algorithm, between two consecutive ranks, is equal to:

t(n) =
2n + (c− 1) · (13)

n

c

Proof. The obvious argument is that the same algorithm applies to the same
types of entities (elements of Z∗). Hence a unique result for given n. But
more speci�cally, as usual, let us start with �gure 1 and make the sum-
mary of the modulo distribution at stake (the k indices in ik underneath are
respectively 3, 4 and 5).

Congruencies Initial
proportions

Initial values Final values Dilution

0 (mod 3) 1
3 (i1)

n (2i1)
n 1/c

1 (mod 6) 4
3 − c (i2)

n (2i2)
n 1/c

4 (mod 6) c− 1 (ik)
n (2ik)

n (13 ik)
n 1/c

2 (mod 3) 1
3 (i6)

n (2i6)
n 1/c

The dilution factor is the result of the factor c increase of populations
between two successive ranks. Adding the terms, we get immediately the
average value of the above proposition. □

In �gure 9, the power value is equal to n = 1 and therefore t(n) converges
to the expected approximate value t(1) = (2 + (c − 1)/3)/c ≈ 1, 652. It is
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indeed also the case for the n = 1/4, n = 1/2 and n = 2 powers that we
studied without reproducing the data here (see our personal internet site for
the data).

Figure 9. t(1) versus rank r for several initial integers.

Lemma 18. Collatz graphs evolve in similar domains of de�nition.

Proof. The further outer element (maximum absolute value vertex) at rank r
is equal to m.2r, m being the choice of the initial positive or negative integer
( ̸= 0 (mod 3)). Hence here the term similar domains of de�nition ([0,m.2r]
if m > 0 and [m.2r, 0] if m < 0) is meant as the �nite multiplicative ratio
m of the domain for the graph stemming from m compared to the graph
domain [0, 2r] involved in the standard graph stemming from 1. □

Note. The global picture is that if one makes the assumption that some graph
stemming from a given root would be able, instead of cycling at that root, to
prolong further down to reach 1, then the data in �gure 8 would fairly overlap
with the data given for the standard graph from 1. Indeed, because the graph
stemming from −1 has a �nal value which in absolute value is precisely equal
to 1, the two data in the said �gure do unsurprisingly asymptotically match.
This being not the case in general, the curves (in y-logarithmic coordinates)
are simply parallel (due to them multiplicative factor). In these coordinates,
one can see the very rapid diminution (around 20 ranks upwards is su�cient)
of margin errors to straight lines. In other words any graph stemming at m
( ̸= 0 (mod 3)) would asymptotically overlap (in absolute values) with the
standard graph stemming from root 1. For this, we would have just to adjust
the initial positions of the two graphs, the former at rank r and the later at
m such that m ≈ 2r.

Theorem 3. The natural density of integers in the natural numbers set N∗

with �nite stopping time, that is using the notation of the introduction the
integers ui such that ui+r < ui with �nite r, is equal to 1.
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Proof. This is the theorem of Riho Terras [1]. □

Note. At this stage we have proven that there is no separate in�nite divergent
series (see page 9). Besides, we established that the Collatz trees' structures
grow at a same rate which makes the existence of two such structures in N
very unlikely as no trace of it exists. The Riho Terras' theorem establishes
an important result but it may encompass in its realm the contribution of
several trees, failing to be an ultimate argument. However the study of the
numbers with �nite stopping time is de�nitively useful as we will see.

Part 2. The parity vectors' structure

6. Cycles' classification

Lemma 19. The composition of linear functions is a linear function.

Proof. The lemma is obvious, but let us develop the precise result. Let us
have Tk(x) = akx + bk, k = 1 to i, a series of linear functions and let us
consider CTi(x) = Ti ◦ Ti−1 ◦ ... ◦ T1(x). Then CT1(x) = a1x+ b1, CT2(x) =
a2a1x+a2b1+b2, ... and CTi(x) = aiai−1...a1x+aiai−1...a2b1+aiai−1...a3b2+
...+ aiai−1...ai−3bi−4 + aiai−1ai−2bi−3 + aiai−1bi−2 + aibi−1 + bi. □

Lemma 20. The composition of j linear functions with ak = 1/2 and bk = 0
and i− j linear functions with ak = 3/2 and bk = 1/2, in that speci�c order,
is equivalent to the linear function :

LTi(x) =
3i−j

2i
(x+ 1− (

2

3
)i−j) (1)

Proof. We have Tk(x) = (3x + 1)/2, k = 1 to i − j and Tk(x) = x/2, k =
i−j+1 to i. Using the previous lemma, we get LTi(x) = (3i−jx+3i−j−120+
3i−j−221 + 3i−j−322 + ...+ 332i−j−4 + 322i−j−3 + 312i−j−2 + 302i−j−1)/2i =
3i−j2−i(x+3−1(1+(2/3)1+(2/3)2+ ...(2/3)i−j−1)). Thus the former result.

□

Lemma 21. The function HTi(x) = LTi(x)/x is an hyperbolic function,
therefore strictly monotonous, de�ned everywhere except for x = 0. Its value
is equal to 1 for the unique solution :

x = −
1− (23)

i−j

1− 2j(23)
i−j

(2)

Posing v = i− j the number of 3x+1 multiplications and w = i the number
of divisions by 2, we get also :

x = −
1− (23)

v

1− 2w−v(23)
v

(3)

Proof. We have Tk(x) = 3i−j2−i(1+(1−(2/3)i−j)(1/x)) which is obviously a
hyperbolic function. Its derivative is equal to −3i−j2−i(1− (2/3)i−j)(1/x2),
therefore of the sign of the constant expression −(1 − (2/3)i−j). Solving
Tk(x) = 1 gives immediately the result x given in the lemma. □
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Lemma 22. Let us pose

w = ⌊ ln(3)
ln(2)

v⌋+ 1− incr (4)

using the �oor function and incr being an integer. Then
if incr > 1, −2 < x < 0,
if incr < 0, 0 < x < 1.

Proof. Let us go back to equation 3. We get immediately x = −(1− (2/3)v)/
(1− 2w/3v). For small values de v, we verify the proposition numerically
and �gure 10 illustrates the point. If v >> 1, as v diverges, the numerator
1−(2/3)v will tend towards 1−. Then 0 > x > −1/(1−1/2) = −2 if 2w/3v <
1/2. Solving 2w/3v < 1/2, we get w < (ln(3)/Ln(2))v − 1. Then replacing
w with the expression of the lemma, we get ⌊(ln(3)/Ln(2))v⌋ + 1 − incr <
(ln(3)/Ln(2))v − 1, therefore 1 ≤ ⌊(ln(3)/Ln(2))v⌋ − (ln(3)/Ln(2))v + 2 <
incr which is the announced lower limit value of incr. Studying the second
condition, we observe that 0 < x < −1/(1 − 2) = 1 if 2w/3v > 2. Solving
2w/3v > 2, we get w > (ln(3)/ln(2))v+1. Then replacing w with the expres-
sion of the lemma, we get ⌊(ln(3)/Ln(2))v⌋+1− incr > (ln(3)/Ln(2))v+1,
therefore 0 ≥ ⌊(ln(3)/Ln(2))v⌋ − (ln(3)/Ln(2))v > incr which is this time
the announced highest limit value of incr. □

Note. The value of x tends towards −1 when incr increases asymptotically
(incr → +∞). The value of x tends towards 0 when incr decreases asymp-
totically (incr → −∞).

Note. The �gures 11 and 12 illustrate the two cases incr = 0 and incr = 1.
The ordinates are in these two cases in logarithmic scales (ln(x) for incr = 0
and ln(-x) for incr = 1).

Figure 10.
Solutions to HTw(x) = 1,
incr = −3,−2,−1, 2 and 3.
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Figure 11. Solutions to HTw(x) = 1, incr = 0.

Figure 12. Solutions to HTw(x) = 1, incr = 1.

Lemma 23. The previous solution x is the largest in absolute value to the
equation PTk(y)/y = 1, where PTk(y) is any permutation of the composition
Ti◦Ti−1◦...◦T1(x) keeping here the same number of (3x+1)/2 multiplications
and x/2 divisions.

Proof. Let us have a = 3i−j−120 + 3i−j−221 + 3i−j−322 + ... + 332i−j−4 +
322i−j−3+312i−j−2+302i−j−1, thus HTi(x) = (3i−jx+a)/2ix = 1 has solu-
tion x = a/(2i−3i−j). Here the denominator has a �xed value and therefore
the absolute value of x is maximal if the absolute value of a diminish when
the permutation is applied (giving a smaller alternative value y). In order to
get the �nal composition of the linear functions, we apply a �nite number of
elementary permutations such that each one switches two members 3n12m1

and 3n22m2 to 3n1−12m1+1 and 3n2+12m2−1, where n1 > n2 and m1 < m2,
systematically reducing the value of the initial a (because 3 > 2). Thus the
result. □

Theorem 4. The Collatz algorithm may lead to a cycle in N∗ if and only
if the number of (3x+1) multiplications, noted v, to the number of (x/2)
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divisions, noted w, meets the condition

Type1 : w = ⌊ ln(3)
ln(2)

v⌋+ 1 (5)

and may generate a cycle in Z− N if and only if it meets the condition

Type0 : w = ⌊ ln(3)
ln(2)

v⌋. (6)

Proof. According to the lemmas 22 and 23, which hold in ℜ and therefore
also in Z, the largest absolute value y to equation PTw(y) = 1 is smaller
then 2 (for any value of incr di�erent from 0 or 1), a �nite interval that one
can easy totally explore numerically for solutions and check that there are
none. One can then conclude on the value of w in Z∗ using again lemma 22
which distinguish the two cases on incr. □

Note. Checking the known cycles (except 0 which meets the type 1), using
ln(3)/ln(2) ≈ 1.58496, we get the following numerical results
Type 1 : y = 1, v = 1, w = 2 and 2 = ⌊(ln(3)/ln(2)).1⌋+ 1,
Type 0 : y = −1, v = 1, w = 1 and 1 = ⌊(ln(3)/ln(2)).1⌋,
Type 0 : y = −5, v = 2, w = 3 and 3 = ⌊(ln(3)/ln(2)).2⌋,
Type 0 : y = −17, v = 7, w = 11 and 11 = ⌊(ln(3)/ln(2)).7⌋.
The reader may refer to the �gures 3 to 6 to check that the cycles meets the
number of (3x+1) multiplications and (x/2) divisions.

At that stage, we know, v being the number of (3x+1) mutiplications
and w the number of (x/2) divisions, that for cycles in Z − N we will have
systematically w = ⌊(ln(3)/ln(2)).v⌋ and for cycles in N∗ we will have w =
⌊(ln(3)/ln(2)).v⌋+ 1. We will study now the stopping time of integers over
the whole domain Z before resuming arguments on the Collatz conjecture.

7. 2w−periodicity in Z

Lemma 24. Let us consider x0 any positive integer. Applying v odd steps
and w even steps in some order of the Collatz algorithm to x0, the nearest
result y0 to the initial integer x0 among all combination of the said odd and
even steps, is equal to

y0 =
3v

2w
x0 +

1

2w−v
((
3

2
)v − 1) (7)

Proof. Applying �rst all the (3x+1)/2 multiplications, we get y0 = (3vx0 +
3v−120 + 3v−221 + 3v−322+ ... +312v−2 + 302v−1)/2v/2w−v = (3v/2w)x0 +
(1/2w−v)((3/2)v − 1). Applying �rst all the (x/2) divisions, we get y0 =
(3vx0+3v−12w−v+3v−22w−v+1+3v−32w−v+2+ ... +312w−2+302w−1)/2w−v/2v

= (3v/2w)x0 + ((3/2)v − 1). The other combinations give intermediary val-
ues between these two results and the �rst expression is the nearest result
y0 to x0 because of the additional ratio (1/2w−v) smaller then 1 in front of
((3/2)v − 1). □
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Lemma 25. The ratio xw/x0, where x0 > 0 and xw is resulting from a
Collatz algorithm is systematically such that

xw
x0

>
3v

2w
(8)

Proof. The nearest y0 to x0 means that xw/x0 ≥ y0/x0. Thus using the
previous lemma result

xw
x0

≥ y0
x0

=
3v

2w
+

1

x0

1

2w−v
((
3

2
)v − 1) >

3v

2w
.

□

Lemma 26. The ratio ln(3)/ln(2) is irrational.

Proof. Let us suppose ln(2)/ln(3) = p/q, where p and q are integers. Then
q.ln(2) = p.ln(3), so that ln(2q) = ln(3p) and �nally 2q = 3p, which is
obviously false. Thus ln(3)/ln(2) /∈ Q. □

Lemma 27. Let us have x0, xw, v and w some �xed strictly positive values
meeting the condition of lemma 25, that is 3v/2w < xw/x0. The function
f(k) = (xw + k.3v)/(x0 + k.2w) is continuous over positive or null k, de-
creasing monotonously from xw/x0 towards 3v/2w, the later an asymptotic
value.

Proof. The function f(k) is a hyperbolic function which is unde�ned at the
unique strictly negative value k = −x0/2

w, therefore is continuous on R+.
The derivative is f ′(k) = (x0.3

v − xw.2
w)/(x0 + k.2w)2, therefore of the sign

of x0.3
v − xw.2

w which is strictly negative by the chosen hypothesis. The
function therefore evolves over R+ monotonously from xw/x0 at k = 0 to
the limit value 3v/2w when k → ∞. □

Lemma 28. Let us have some positive integer x0 and xw its result by the
Collatz algorithm at its stopping time. If the stopping time is �nite then the
ratio xw/x0 is such that 1/2 < xw/x0 ≤ 1.

Proof. By de�nition of the stopping time, we have xw/x0 ≤ 1. The last step
of the algorithm is necessarily an even step which either gives exactly the
value of x0 or a strictly greater value of its half. Using (3x+ 1)/2 multipli-
cations and (x/2) divisions, each step of the process includes a division by 2,
therefore w is the appropriate index to count them and v will be the number
of multiplications. □

Lemma 29. Let us consider the set {x0+k.2w, k ∈ Z}. Then, if xw exist for
a �nite w, the elements of the set {xw+k.3v, k ∈ Z} are the resulting values of
the initial set at their respective stopping time and moreover x0 < 2w (recall
also that 0 < x0 by hypothesis) and 1/2 < (xw + k.3v)/(x0 + k.2w) ≤ 1.

Proof. This is mostly a well-known result but is worth reviewing. By hypoth-
esis, it is clear that the elements resulting from x0 being divisible w times by
2 then x0 + k.2w is also divisible in the same condition w times. Moreover
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at each step the distance 2t between the intermediary results xi + k.2t is
constant and equal to 2w−s3m where s is the number of steps at that stage
and m the number of (x+1)/2 multiplications, hence a distance 203v at the
stopping time. Now for k = 0, the number of steps v and w is necessarily
such that 3v/2w ≤ 1 (in fact 3v/2w < 1 by lemma 26) but in the closest way
as a division by 2 is always the last step of the stopping time process and
therefore 3v/2w > 1/2. Now according to lemma 27, xw/x0 > 3v/2w so that
x0.3

v−x0.xw < xw.2
w−x0.xw and so x0(3

v−xw) < xw(2
w−x0) is equivalent

to (3v − xw)/(2
w − x0) < xw/x0 because x0 < 2w providing the �rst sample

of the (xw + k.3v)/(x0 + k.2w) were k is negative. Here k = −1 < −x0/2
w

which is the unde�ned abscissa of the hyperbolic function. Therefore, as
we know that the function is strictly decreasing, the ratio is increasing from
(3v − xw)/(2

w − x0) up asymptotically towards 3v/2w as k → −∞. □

Theorem 5. At its stopping time, for a �nite non-cyclic event, the number
of (3x+1) multiplications, noted v, to the (x/2) divisions, noted w, is such
that

w = ⌊ ln(3)
ln(2)

v⌋+ 1 (9)

over the whole domain Z.

Proof. According to lemma 29, 1/2 < (xw + k.3v)/(x0 + k.2w) ≤ 1 and the
elements of set x0 + k.2w, k ∈ Z have all the same number of odd and even
steps at the stopping time. We get also, for k = 0, 1/2 < 3v/2w ≤ 1 which

is equivalent to w = ⌊ ln(3)ln(2)v⌋+ 1. □

Lemma 30.
1

2
<

3v

2w
< 1 ⇔ w = ⌊ ln(3)

ln(2)
v⌋+ 1 (10)

Proof. The only point to complete from the previous proof is that 2w

3v ̸= 1
which is obvious. □

Lemma 31. Let us consider x0 an integer such that (3v − 2v)/(2w − 3v) <
x0 < 2w, where w = ⌊(ln(3)/ln(2)).v⌋+1, then applying the Collatz algorithm
up to the stopping time w, the result being xw, is such that 0 < x0 − xw <
2w − 3v.

Proof. The condition w = ⌊(ln(3)/ln(2)).v⌋+1 applies 0 < 2w−3v. Then xw
taking the place of y0 in the lemma 24, we get x0 − xw = (1− (3v/2w))x0 −
(1/2w−v)((3/2)v − 1). The proposition 0 < x0 − xw is equivalent to 0 <
(1 − (3v/2w))x0 − (1/2w−v)((3/2)v − 1) that is (1/2w−v)((3/2)v − 1)/(1 −
(3v/2w)) < x0 or (3

v−2v)/(2w−3v) < x0. The proposition x0−xw < 2w−3v

is equivalent to (1 − (3v/2w))x0 − (1/2w−v)((3/2)v − 1) < 2w − 3v that is
((2w−3v)/2w)x0 < (3v/2w−2v/2w)+2w−3v or x0 < (3v−2v)/(2w−3v)+2w

which is less constraint than the proposition of the lemma. □
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Note. The limite (3v − 2v)/(2w − 3v) < x0 can be replaced by 0 < x0 by
direct numeric veri�cation. The �gure 13 shows that the ratio r = 3v−2v

2w−3v
1
x0

tends towards 0 at an exponential pace.

Figure 13. r = 3v−2v

2w−3v
1
x0
.



WINNING TICKETS FROM TWO COLLATZ GRAPHS' STRUCTURES 23

Example. x = 7, v = 4, w = 7, 3v = 81, 2w = 128, w = ⌊ ln(3)ln(2)v⌋+ 1.

−249 −121 7 135 263
−373 −181 11 203 395
−559 −271 17 305 593
−838 −406 26 458 890
−419 −203 13 229 445
−628 −304 20 344 668
−314 −152 10 172 334
−157 −76 5 86 167

Counterexample. x = −5, v = 2, w = 3, 3v = 9, 2w = 8, w = ⌊ ln(3)ln(2)v⌋.
−21 −13 −5 3 11
−31 −19 −7 5 17
−46 −28 −10 8 26
−23 −14 −5 4 13

Counterexample. x = −17, v = 7, w = 11, 3v = 2187, 2w = 2048, w =

⌊ ln(3)ln(2)v⌋.
−4113 −2065 −17 2031 4079
−6169 −3097 −25 3047 6119
−9253 −4645 −37 4571 9179
−13879 −6967 −55 6857 13769
−20818 −10450 −82 10286 20654
−10409 −5225 −41 5143 10327
−15613 −7837 −61 7715 15491
−23419 −11755 −91 11573 23237
−35128 −17632 −136 17360 34856
−17564 −8816 −68 8680 17428
−8782 −4408 −34 4340 8714
−4391 −2204 −17 2170 4357

8. Numbering scheme

Having established the type of most of the integers, let us study the un-
derlying structure derived from the stopping time w which depends on v by

the relationship w = ⌊ ln(3)ln(2)v⌋+ 1. Starting from the set Z, let us remove all

the elements such that {v = 0, w = 1} that are in the interval [0, 2w−1 = 1[.
Only 0 complies and the other elements satisfying {v = 0, w = 1} are sep-
arated by a distance 2w = 2, therefore the even integers. Then we discard
the elements such that {v = 1, w = 2} in the interval [0, 2w − 1 = 3[, where
only 1 meets the requirement and those separated by a distance 2w = 4 from
the formers, hence all 1 mod 4 integers. Going to step {v = 2, w = 4}, we
consider the integers in interval [0, 2w − 1 = 15[, where only 3 meets the
requirement and the complement separated by a distance 2w = 16, hence all



24 HUBERT SCHAETZEL

3 mod 16 integers. At next step {v = 3, w = 5}, we consider the integers in
interval [0, 2w−1 = 31[, where only 11 and 23 meets the requirement and all
those separated by a distance 2w = 32, hence all 11 mod 32 and 23 mod 32
integers. This removal process is illustrate in the table underneath by low-
ering the initial integers to the corresponding v−indexed line. Of course the
integers −1, −5 and −17 in red in the second line can never be a�ected as

those comply with w = ⌊ ln(3)ln(2)v⌋ instead of w = ⌊ ln(3)ln(2)v⌋+ 1.

Table 1
v −19 −17 −15 −13 −11 −9 −7 −5 −3 −1 1 3 5 7 9 11

−17 −5 −1
1 −19 −15 −11 −7 −3 1 5 9
2 −13 3
3 −9 11

De�nition. We will call parity vector the binary representation 1 or 0 of the
sequence of odd (as (3x+1)/2 multiplications) and even steps of the Collatz
algorithm applied to some initial integer until the stopping time in the order
of apparition. The parity vector is of size w.

It includes v digits 1 and w − v digits 0.

De�nition. We call a licit parity vector that one that doesn't break any rule
of the Collatz algorithm during an altitude �ight routine.

Let us consider, for example, the parity vector 100. It is not licit because
the number of even steps written here (that is 2) is greater than the correct
value w−v = ⌊(ln(3)/ln(2).v)⌋+1−v here (that is 1+1−1 = 1). The altitude
�ight time is exceeded in this writing. Similarly, writing 10111100 is not licit,
even if we do have globally w−v = ⌊(ln(3)/ln(2).v)⌋+1−v = 7+1−5 = 3, as
the altitude �ight time is met prematurely by writing 10 at the beginning of
the sequence. For some given parity vector, in the same way, one has to check
its validity at each new even intermediate step. For example, with parity
vector 111111101000100, the three intermediate necessary checks for a pre-
mature non licit parity vector are the following ones between corresponding
parentheses (((11111110)1000)100). We have 8−7 = 1 < ⌊(ln(3)/ln(2).v1⌋+
1−v1 = 12+1−7 = 6, 12−8 = 4 < ⌊(ln(3)/ln(2).v2⌋+1−v2 = 13+1−8 = 5
and 15− 9 = 6 = ⌊(ln(3)/ln(2).v3⌋+1− v3 = 14+1− 9 thus corresponding
e�ectively to a licit parity vector.
This summarizes as follows.

Lemma 32. The rule linking w to v being respected, there are two limit
cases for the licit parity vectors. The �rst one is where the components 1 are
all on the left and the components 0 follow.

11...1︸ ︷︷ ︸
v times

00...0︸ ︷︷ ︸
w-v times
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The second is where the components 1 are shifted on the right in such a
way that at each step it stays a licit vector. For those, an easy algorithm is
proposed in order to construct them. It consist to use the limit parity vector
at step v − 1 and replace the last 0 by 1 and complete to the right with the
necessary number of 0 to get w − v of them in total.

10
1100
11010
1101100
11011010
1101101100
...

Proof. The proof is in the lemma's self-explanation. □

Lemma 33. For the second limit case, the following applies. The successive
increases of w is either 1 or 2. There can be one increase ∆w = 1 but not
two. There can be two successive increases ∆w = 2 but not three.

Proof. One increase from rank v − 1 to v is ∆w = ⌊(ln(3)/ln(2)).v⌋ −
⌊(ln(3)/ln(2)).(v−1)⌋ = ln(3)/ln(2)− [((ln(3)/ln(2)).v−⌊(ln(3)/ln(2)).v⌋)
− ((ln(3)/ln(2)).(v − 1) − ⌊(ln(3)/ln(2)).(v − 1)⌋)]. The term between
the brackets [ ] is either equal to −1 + ln(3)/ln(2) or −2 + ln(3)/ln(2)
and therefore ∆w is either equal to 1 or 2. A jump from rank v − 2
to v corresponds to ∆ws = ⌊(ln(3)/ln(2)).v⌋ − ⌊(ln(3)/ln(2)).(v − 2)⌋
= 2.ln(3)/ln(2)− [((ln(3)/ln(2)).v−⌊(ln(3)/ln(2)).v⌋) − ((ln(3)/ln(2)).(v−
2)−⌊(ln(3)/ln(2)).(v−2)⌋)]. The term between the brackets [ ] is then either
−3+2.ln(3)/ln(2) or −4+2.ln(3)/ln(2) and therefore ∆ws is either equal to
3 or 4. The jump from rank v−3 to v is equal to ∆wt = ⌊(ln(3)/ln(2)).v⌋ −
⌊(ln(3)/ln(2)).(v−3)⌋= 3.ln(3)/ln(2)− [((ln(3)/ln(2)).v−⌊(ln(3)/ln(2)).v⌋)
− ((ln(3)/ln(2)).(v − 3) − ⌊(ln(3)/ln(2)).(v − 3)⌋)]. The term between the
brackets [ ] is then either −4 + 3.ln(3)/ln(2) or −5 + 3.ln(3)/ln(2) and
therefore ∆wt is either equal to 4 or 5. Combining the ∆w = 1 or 2 and
∆ws = 1 + 2 or 2 + 2 constraints there can be only one increase of ∆w of
spacing 1 but it is possible to have two increases of spacing 2. Using the
previous result, combining it with the ∆wt = 1+2+1 or 2+2 or 1+2+2 or
2 + 1 + 2 or 2 + 2 + 1 constraints there can be only two successive increases
of ∆w of spacing 2. □

De�nition. We call a 2w−seed an integer in the interval [0, 2w − 1] of stop-
ping time w. The number of 2w−seeds is noted #sw.

A sample of the number of seeds is shown in the table underneath.
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v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
w 1 2 4 5 7 8 10 12 13 15 16 18 20 21 23
∆w 1 2 1 2 1 2 2 1 2 1 2 2 1 2
∆wt 1 2 1 2 1 2 2 1 2 1 2 2
(to be 2 1 2 1 2 2 1 2 1 2 2 1
added) 1 2 1 2 2 1 2 1 2 2 1 2
∆wf 1 2 1 2 1 2 2 1 2 1 2 2 1

i = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10 11 12
3 3 7 12 18 25 33 42 52 63 75
4 12 30 55 88 130 182 245 320
5 30 85 173 303 485 730 1050
6 173 476 961 1691 2741
7 961 2652 5393
8 2652 8045

#sw 1 1 1 2 3 7 12 30 85 173 476 961 2652 8045 17637

Theorem 6. The number of seeds #sw at rank v is equal to the sum of terms
#psw(v, i) where #psw(v, i) = #psw(v, i− 1) + #psw(v − 1, i) is applied so
long that #psw(v − 1, i) ̸= 0. Moreover the last term #psw(v, i) is then
repeated when ∆wf = 2.

Proof. It is easy to check the �rst steps when increasing incrementally the
rank v. Let us then consider the rank v−1 and v for v > 2. Having collected
the parity vectors up to that stage, the said vectors are licit parity vectors.
The parity vectors are then constructed from the previous ones adding to
them either 1 if ∆w = 1 or 1 and 0 if ∆w = 2. If those are added behind the
vectors of rank v− 1, one doesn't have to recheck the validity of the writing
of the initial portion of the parity vectors but only what happens with the
added part in regard of the said initial part. For easier understanding of the
present proof, the reader will refer to the �gures 14 and 15. The portions in
red are added digits. The portions in blue are swapping of 10 in some initial
portions to 01. The parity vectors containing red added portions are found
in the same column as in the previous rank and their quantities are of course
equal to those of the said previous rank. In the �gures, we add them under
to swapped parity vectors. The portions are included after the last digit 1
of the previous rank's items and are either 1 or 10 according to the value of
∆w. The parity vectors with swapped part are deduced from the elements
at their left. The swapping of the last 10 portion to 01 is continued to the
right so long the vectors remains licit. Adding at some rank only 1 to the
parity vectors follows in a "de�cit" of 0 at the next rank. There won't be
no possibility of an extra swapping creating a new column. The addition of
10 at the previous rank on the contrary allows it. A more precise way to
check it is to exhaust all cases knowing by lemma 33 that there are only four
possibilities to examine (f stands for former and ff for the former of the
former):
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∆wff 1 2 1 2
∆wf 2 1 2 2
∆w 1 2 2 1

It is easy to check the compliance to the announced result by reviewing the
tables up to rank v = 8.
To �nish with,we have to check that all the licit parity vectors are reach
in this way and that there are no redundancies. Therefore we collect the
data from these rank v tables line by line in a peculiar way and put them
in a vertical order. Figure 16 shows such an reordering. We start by the
�rst line of some initial table corresponding to rank v. Then we pick the
next line with one element less than the current line (that is the second
line at the �rst iteration), then again the next line with one element less
than the current one and so on. Once exhausted the downwards path, we
restart the process on the �rst remaining line while changing column. This
construction provides the parity vectors in an increasing order of its (binary)
values, showing obvious exhaustiveness and non-redundancy. □

Note. The �rst construction is very practical for the enumeration of the
parity vectors. The second construction has obvious advantage to check
exhaustiveness. It has also speci�c properties that the interested reader may
�nd in reference [9].

The density in Z of all number with a �nite stopping time is equal to

ds∞ =
∞∑
v=0

#sw
2w

. (11)

The �gure 17 shows the evolution of the di�erence to 1 of the density of
the said numbers up to the rank v :

difv = 1− dsv. (12)

With logarithmic coordinates for the ordinates, the �gure shows at an early
stage a "linear" picture, a clear stand of its 0 asymptotic value. Of course
the Riho Terras' theorem has established that limit in 1976 [9] as the natural
density 1 result over N is equivalent to it over Z.

Lemma 34. Asymptotically, as v increases, the number of the 2w−seeds in
the interval [0, 2w[ tends towards cw where c is a constant and c ≈ 1.927.

Proof. The density of the seeds approaching 1 in N means in the same time
that asymptotically #sw ≲ 2w and that the trend must be of the same
kind, that is exponential in w. A polynomial growth can in no way be
strong enough because any such form wc, c a constant, will trend towards 0
compared with 2w whatever the huge size of c. Figure 18 shows how#sw and
2w do compare. Numerically, a fair approximation is #sw ≈ 1.927w ≃ 2.828v

(with 1.92w, as shown in the �gure, the curves will ultimately cross). □
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Figure 14. Parity vectors of seeds.

Knowing the precise growth of the 2w−seeds, which are the number of
integers #sw(v) with stopping time w within the interval [0, 2w[, we are
able immediately enumerate the cardinals #plf(v) and #plr(v) that are
respectively the number of integers with stopping times strictly smaller than
w and strictly greater than w. The computer program in appendix B provides
the means to evaluate, at rank v, the 3 cardinals #sw(v), #plf(v) and
#plr(v). This allows us to get the very interesting following ratio.

Lemma 35. Asymptotically, the average interval available for the seeds of
stopping time equal or greater than w is approximatively equal to 104(1.056921v).

Proof. The number of seeds of stopping time strictly greater than w(v − 1),
which is the stopping time at rank v − 1, is #plr(v − 1). This is in some
way the number of empty places at rank v− 1 available for the placement of
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Figure 15. Parity vectors of seeds.

the seeds at rank v taking however account of the following remark. At rank
v, the previous interval [0, 2w(v−1)[ in which we �nd the seeds is multiplied

by 2 or 4 to the size [0, 2w(v)[. We note this multiplicative factor 2∆w. We
therefore have to evaluate the ratio 2w

2∆w(#plr(v−1)+1)
to get the mean distance

available at rank v (note that +1, due to the di�erence between number of
points and number of intervals, is negligible very soon as v increase). As the
density of numbers of �nite stopping time is 1 in N, as previously for #sw,
the growth is necessarily exponential in regard to v (or w). We are able then
to compare this ratio with the approximation 104(1.056921v), also equivalent
to the approximation 104(1.035545w). Figure 19 shows that comparison. □

At this stage it is essential to our purpose to compare the position of the
smallest seeds at rank k with the average distance obtained above. Let us
note that it is di�cult to get numerically a greater number of the smallest
2w−seeds. Our sample of such elements is given in appendix C and �gure 20
provides a close up of �gure 19 in the zone of interest keeping the same colors
for the corresponding curves. We see that most of the seeds are situated
at higher ordinates than the one excepted by average distancing and that
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Figure 16. Parity vectors of seeds.

the likely asymptotic positions is roughly equal to the ordinates (1 + ϵ)v,
ϵ ≈ .056921. These higher positions can be explained easily considering the
ratio 2w

#sw
which is the ratio between the size of interval [0, 2w[ by the number

of seeds #sw in the said interval at rank v. The close up �gure 20 illustrates
the framing by the two relevant ratios (in light blue and deep blue). Note
that the upper framing is bumpy because of the two di�erent cases ∆w = 1
and ∆w = 2.
Of course the e�ective values of the seeds are not limited to the said framing,
which is only the typical framing if the 2w−seeds would check at some exact
equal spacing. There is no wonder that the e�ective positions are regularly o�
the scale, sometimes by more than a multiplicative factor of one decade (10−1

or 10+1). It shows nevertheless a satisfactory match and a fair asymptotic
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Figure 17. difv = 1−
∑v

0
#sw
2w .

Figure 18. Comparison of #sw and 2w.

trend for our purpose, notably on the lower limit (no exception for 60 < v <
200) which is the useful limit here.

Lemma 36. For v > 200, the value of minimal seed, at rank v, is at most
by a few decades near the approximation 104(1.035545w)

Proof. For small v as shown in �gure 20, the o�set is hardly one decade.
There are just a few exceptions around v = 30. The random nature of the
repartition of the seeds increases with v necessarily. Moreover, the evolution
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Figure 19. Comparison of the average distance of seeds of
stopping time greater than w with 104(1.056921v).

Figure 20. Comparison of the lower minimum and higher
minimum average distance of seeds of stopping time greater
than w with the exact abscissa of the known smallest seeds.

of the randomness is linked to an exponential growth of possible combinations
of the seeds positions, therefore making the phenomena happening even much
faster. □
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Lemma 37. The evolution of the average distance 2w−∆w

#plr(v−1)+1 available at

rank v can be traced as αvnc where nc is no more a constant but an increasing
factor of v. With α = 1

4ln(2) , the exponent nc is greater than 2 as soon as

rank v = 39 (and greater than 3 as soon as rank v = 146) and diverges as
v → +∞.

Proof. Figure 21 shows the numerical evolution of nc for v up to 5000. Be-
sides any expression tv, t > 1 diverges faster than any polynomial in v
asymptotically. □

Note. The next section of this article will explain why we made the compar-
ison precisely with 1

4ln(2)v
2 (and 1

4ln(2)v
3), the position of the smallest seeds

being here a minima and the position of the smallest "generating" element
of a cycle going to be there a maxima, at the same rank v, hence providing
incompatible results.

Figure 21. Value of nc such that vnc approximates the ex-

ponential evolution of 2w−∆w

#plr(v−1)+1 .

9. The Collatz cycles' scarcity

Lemma 38. There are no known complete cycle in a unique column of the
2w−period classi�cation set except for seed 1.

Proof. This is an immediate result of theorem 4. A complete cycle is included
in a unique column of the 2w−period classi�cation table if and only if w =
⌊(ln(3)/ln(2))v⌋ + 1 which is false in the set Z − N. The summary for the
known cycles is as follows :
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v 1 0 0 0 1 0

x0 1 4 2 −2 −7 −10
x1 2 2 1 −1 −10 −5
x2 1 −5

v 6 5 1 0 3 2 1 0 0 0

x0 −25 −37 −55 −82 −41 −61 −91 −136 −68 −34
x1 −37 −55 −82 −41 −61 −91 −136 −68 −34 −17
x2 −55 −82 −41 −91 −136 −68
x3 −82 −41 −136 −68
x4 −41 −61 −68 −34
x5 −61 −91 −34
x6 −91 −136
x7 −136 −68
x8 −68 −34
x9 −34
x10 −17

No column of this 2w− period classi�cation set do contain the smallest value
of the cycle as �rst generating element of the column except for 1 . □

Proposition. The reason why the Collatz algorithm is true in N and the
situation is di�erent in Z− N.

Argument. We proved in the �rst part of the article that any tree structure
has a root. The root is a cycle, necessarily �nite in size, and therefore has
a smallest value item. This item is the smallest seed of the tree structure.
In order to form a distinct tree, the "nature" of the smallest seed must be
di�erent from the other integers of the tree structure, that di�erence being
the only "way out". This happens on the negative side of the integers,
where −1, −5 and −17 have, unless almost all the other negative integers,
the needed alternative property. The word "almost" is used in the previous
phrase as one cannot be sure at that stage that there are no other cases
in Z − N than the 3 exceptions mentioned. That special property is w =
⌊(ln(3)/ln(2)).v⌋ instead of w = ⌊(ln(3)/ln(2)).v⌋ + 1. On the positive
side of the integers there is no possibility for a seed to escape the w =
⌊(ln(3)/ln(2)).v⌋+ 1 rule and therefore ultimately every integer will end its
course at the smallest seed in N∗ which is 1. The Collatz conjecture is true
in N because a cycle is entirely part of the parity vectors' structure while a
cycle is not totally in that structure in Z− N.

Knowing the rule w = ⌊(ln(3)/ln(2)).v⌋ +1 for a solution to a Collatz
cycle on the positive side of Z, let us now consider x0 such solution in ℜ+

(with v odd steps and w even steps).
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Lemma 39. The smallest rational value solution to the smallest element x0
of a cycle on the N∗ side of Z is equal to

x0 =
3v − 2v

2w − 3v
.

Proof. As solution to a hyperbolic equation, the cycle solution to some given
order combination of odd and even steps is unique. In lemma 24, we got
the following intermediary result y0 = (3v/2w)x0+1/2w−v((3/2)v − 1) when
applying �rst all the (3x+1)/2 multiplications while meeting the relationship
w = ⌊(ln(3)/ln(2)).v⌋ +1. The solution to y0 = x0 is therefore the proposed
one because applying any other combinations of the even and odd steps will
increase the solution x0. □

Lemma 40. Using a logarithmic scale on the ordinates, the expression f(v) =
3v−2v

2w−3v − 1 is located around the horizontal axis 1, in some apparently sym-

metrical way, with diverging points (towards +∞ or towards 0+) depending

largely on the rational approximations of ln(2)
ln(3) .

Proof. The �gure 22 visualize the lemma for the reader and provides an
answer to the "symmetry" around ordinate 1−axis. The said expression
diverges if and only if 2w − 3v → 0, which is equivalent to 2w/3v → 1.
Replacing w by its value, we get

2⌊(ln(3)/ln(2))v⌋+1

3v = 2⌊(ln(3)/ln(2))v⌋+1−(ln(3)/ln(2))v 2(ln(3)/ln(2))v

3v

= 2⌊(ln(3)/ln(2)).v⌋+1−(ln(3)/ln(2)).v

→ 1

and therefore ⌊ ln(3)ln(2)v⌋ +1− ln(3)
ln(2)v → 0.

These kind of events occurs of course only if ln(3)
ln(2)v approaches an integer

value, so that ln(3)
ln(2)v → n equivalent to ln(2)

ln(3) → v/n for some n ∈ N (and v ∈
N). Let us observe that ln(2)

ln(3) ≈ 0.63092975 and that {53/84 ≈ 0.63095238,
306/485 ≈ 0.630927835, 665/1054 ≈ 0.63092979} and therefore the diverg-
ing locations' representation on the �gure is only approximative with v = 0
mod 53 being one of the proposed locations (in green) and v = 0 mod 306
a stronger one (in red) and v = 0 mod 665 even more so (in yellow) as the
fraction narrows the goal in a better way. □

Note. The previous lemma shows the importance to get the best rational

approximations of the the real number ln(2)
ln(3) . For any continued fraction, the

best rational approximations are also called the convergents of the continued
fraction [7] and are represented by the Gaussian brackets [8].

Lemma 41. The coe�cients cfi of the continued fraction of ln(2)
ln(3) follow

fairly a Gauss-Kuzmin discrete probability distribution. That is

p(cfi) → − log2(1−
1

(cfi + 1)2
)



36 HUBERT SCHAETZEL

Figure 22. Data 3v−2v

2w−3v − 1.

Proof. The Gauss-Kuzmin discrete probability distribution p(cfi) arises as
the limit probability distribution of the coe�cients in the continued frac-
tion expansion of a random variable uniformly distributed in (0, 1) [8]. A
numerical veri�cation, with a small size sample (2000 elements), shows that
the coe�cients of the continued fraction of ln(2)

ln(3) follow fairly that distribu-
tion. □

Lemma 42. The o�set ∆r of ln(2)
ln(3) with its best rational approximations is

approximatively

∆r = (
ln(2)

ln(3)

1

v
)2.

Proof. Here the continued fraction cf starts with the Gaussian bracket [0;
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, ...]. Table 2 gives the
corresponding resulting extracted fractions. Using the theory of Diophan-
tine approximations, the Dirichlet theorem states that there exists for any
positive irrational number ir an in�nity of couples (p, q) ∈ N ∗N∗ such that
| ir− p

q | < a
q2
, a being some �nite value. This theorem is of course optimum

for the best rational approximations. Applying this to ir = ln(2)
ln(3) , we can

thus �nd two in�nite series of integers {vi}, {wri} and an in�nite series of

real numbers {ai} such that ln(2)
ln(3) −

vi
wri

= ai
wr2i

. The index i is here a dummy

index and the values of vi are the one corresponding to v for which we get
the said best approximations. Besides, the denominator wri is either equal
to w or w − 1 according to the cases where ln(3)

ln(2)vi tends to an integer from
beneath or from above. An approximate value |ai| ≈ 1 is then obtained
by numerical veri�cation. Asymptotically wi = ⌊ ln(3)ln(2)vi⌋ + 1 ≈ ln(3)

ln(2)vi and

therefore | ln(2)ln(3) −
vi
wri

| ≈ ( ln(2)ln(3)
1
vi
)2. The �gures 23, 24, 25 and 26 show the

excellent match by making the choice |ai| ≈ 1 which is likely the asymptotic
exact value. In the 3 last �gures, we indicate the values of the coe�cients
of the continued fraction next to the representative points. We remark that
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the higher these coe�cients the better the "�ne tuning" at that step with
the exact excepted value. □

i cf fraction v w approx x0(v) x0(v, w
−)

0 0 0/1 0 1 0 0
1 1 1/1 1 2 1 1 −1
2 1 1/2 1 2 0.5 1
3 1 2/3 2 4 0.66666667 0.71429 −5
4 2 5/8 5 8 0.62500000 16.23077
5 2 12/19 12 20 0.63157895 1.01974 −73.72361
6 3 41/65 41 65 0.63076923 86.7389
7 1 53/84 53 85 0.63095238 1.00419 −479.39702
8 5 306/485 306 485 0.63092784 977.7448
9 2 665/1054 665 1055 0.63092979 1.00009 −22907.85023
10 23 15601/24727 15601 24727 0.63092975 54960.9
11 2 31867/50508 31867 50509 0.63092975 1.00001 −137648.0025
12 2 79335/125743 79335 125743 0.63092975 272871.59
13 1 111202/176251 111202 176252 0.63092975 1.00001 −277761.83
14 1 190537/301994 190537 301994 0.63092975 15502072.2
15 55 10590737/16785921 10590737 16785922 0.63092975 1.00000 −19120269.3
16 1 10781274/17087915 10781274 17087915 0.63092975 81920324.8
17 4 53715833/85137581 53715833 85137582 0.63092975 1.00000 −287969592.7
18 3 171928773/272500658 171928773 272500658 0.63092975 558903955.
19 1 225644606/357638239 225644606 357638240 0.63092975 1.00000 −594045517.

Table 2

Figure 23. Comparison of ap = log10(abs(
ln(2)
ln(3) −

v
wr )) with

2log10(
ln(2)
ln(3)

1
v ).

Lemma 43. The following strictly inequality is true for all v > 2

1

2
<

2w−1 + 2v−1

3v
< 1.

Proof. If v = 0, 2
w−1+2v−1

3v = 3
2 . If v = 1, 2

w−1+2v−1

3v = 1. If v = 2, 2
w−1+2v−1

3v =
10
9 . These cases are excluded.

The equality 2w−1 + 2v−1 = 3v is obviously false as soon as v > 1 for con-
tradiction on parity between the two members of the equation, the �rst one
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Figure 24. Detail relative to �gure 23.

Figure 25. Detail relative to �gure 23.

Figure 26. Detail relative to �gure 23.

being even, the second odd. One can then check the inequality for a sig-
ni�cant number of values of v. Using the same approach as in the proof of
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lemma 42, we can write rigorously ln(3)
ln(2) −

wri
vi

= ci
vi2

, where |ci| ≈ 1 as soon

as for example v = 10. That is equivalent to ln(3)
ln(2)vi −wri =

ci
vi
where wri is

either equal to w or w − 1 according to the cases where ln(3)
ln(2)vi tends to an

integer from beneath or from above. Therefore, getting rid of indices, w =
ln(3)
ln(2)v+or(0, 1)− c

v , |c| ≈ 1. As w = ⌊ ln(3)ln(2)v⌋+1 = ln(3)
ln(2)v+⌊ ln(3)ln(2)v⌋−

ln(3)
ln(2)v+1,

we get or(0, 1) − c
v = ⌊ ln(3)ln(2)v⌋ −

ln(3)
ln(2)v + 1. Therefore if ln(3)

ln(2)v tends to an

integer from beneath, we get c
v = ln(3)

ln(2)v − ⌊ ln(3)ln(2)v⌋ − 1, c ≈ −1 and if ln(3)
ln(2)v

tends to an integer from above, we get c
v = ln(3)

ln(2)v − ⌊ ln(3)ln(2)v⌋, c ≈ 1. This

can be summarized, i being some positive integer that ln(3)
ln(2)v is the nearest

by, with

ln(3)
ln(2)v − ⌊ ln(3)ln(2)v⌋ ≈

c
v if ln(3)

ln(2)v → i+

ln(3)
ln(2)v − ⌊ ln(3)ln(2)v⌋ ≈ 1− c

v if ln(3)
ln(2)v → i−

where c ≈ 1.

Now 2w−1

3v = 2
⌊ ln(3)
ln(2)

v⌋

3v = 2
⌊ ln(3)
ln(2)

v⌋− ln(3)
ln(2)

v
2
ln(3)
ln(2)

v

3v = 2
⌊ ln(3)
ln(2)

v⌋− ln(3)
ln(2)

v
= 2or(−

c
v
,−1+ c

v
).

Then 2w−1+2v−1

3v = 2or(−
c
v
,−1+ c

v
) + 2v−1

3v , hence two cases.

If ln(3)
ln(2)v → i+ provides 2−

c
v + 2v−1

3v = e−ln(2) c
v + 2v−1

3v ≈ 1− ln(2) cv + 1
2(

2
3)

v.

As v is exponentiated in the last term, this one will converges to 0 faster

than the term preceding it. Therefore 2w−1+2v−1

3v → 1−.

If ln(3)
ln(2)v → i− provides 2−1+ c

v + 2v−1

3v = 1
2e

ln(2) c
v + 2v−1

3v ≈ 1
2 +

1
2 ln(2)

c
v +

2v−1

3v

→ 1
2

+
. These are of course limit cases but are the only ones we have to

be concerned with as the intermediary cases' values will land between these
two.
Let us be even more cautious and go back to the approximate value of

c and have a look at the inconsistency of its value if the limit cases were
to be met. If we reconsider the above �rst case, the limit situation would

be to write the equality 2−
c
v + 2v−1

3v = 1. When v increases asymptotically,
bringing the second term on the left side of the equation near 0, obviously
to meet the equality would require to bring the �rst one up near 1 and
therefore c nearer and nearer to 0. More precisely, using ln(1 + x) → x

for small x, will conduct to c = −v
ln(1− 1

2
( 2
3
)v)

ln(2) → v
2ln(2)(

2
3)

v and therefore

log10(c) → log10(
v

2ln(2)) + v.log10(
2
3) ≈ v.log10(

2
3) ≈ −0.176v. This is to be

compared to log10(c) = log10(1) = 0 that we used for �gure 23. The basis for-

mula | ln(2)ln(3) −
v
wr | ≈ ( ln(2)ln(3)

1
v )

2 for this �gure is to be replaced by | ln(2)ln(3) −
v
wr | ≈

c.( ln(2)ln(3)
1
v )

2 which is equivalent to log10| ln(2)ln(3)−
v
wr | ≈ log10(c)+log10((

ln(2)
ln(3)

1
v )

2)

≈ −0.176v+ log10((
ln(2)
ln(3)

1
v )

2). This gives an o�set as represented in �gure 27.

The dark blue dashed line is now replaced by the clear blue dashed line. This
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is totally incompatible with the Gauss-Kuzmin discrete probability distribu-
tion's red (almost) line (remembering especially that the representation is in
logarithmic scale). Let us not forget here, as mentioned previously [2], that
any unknown cycle in N∗ would contain at least 17026679261 vertices, that is
v ≥ 10742638550 or log10(v) ≥ 10.03. At this stage, to meet the limit case,
c ≈ 1 has to be replaced already by the way o� value c ≈ 1.4 10−1891684748

to compensate (which is quite absurd).
We can resume the former argument for the second case. The result is

then very close from the previous one, with only a change in sign of c and a
slight change in absolute value which does not require further analysis. □

Figure 27. Comparison of ap = log10(abs(
ln(2)
ln(3) −

v
wr )) with

−0.176v + 2log10(
ln(2)
ln(3)

1
v ) (clear blue line).

Lemma 44. Let us write numi, deni and cfi the ith numerator, denom-
inator and continued fraction coe�cient respectively in table 2 of the best
approximations of ln(2)/ln(3). Then

numi = cfi × numi−1 + numi−2

deni = cfi × deni−1 + deni−2

Proof. This property is a general property of continued fractions (see ref-
erence [7] under title "In�nite continued fractions and convergents"). In
Gaussian brackets language [8], it writes down precisely as [cf1, cf2, . . . , cfi]
= [cf1, cf2, . . . , cfi−1]cfi + [cf1, cf2, . . . , cfi−2]. □

The computer program in appendix E provides an algorithm to evaluate
numi and cfi from the sole knowledge of numi−1 and numi−2. The same
holds for the denominators. It is based on an iterative test cf = 1, cf = 2, ...
on an equality r1 − r2 = 0 which fails when cf = cfi +1, therefore revealing
the correct value cf = cfi.
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Lemma 45. The absolute values of the extrema of the expression 3v−2v

2w−3v − 1

are linear with an approximate slope of 1
ln(2) according to the number of odd

steps v.

Proof. Asymptotically, the term −1 can of course be neglected. Again, us-
ing the same approach as in the proof of lemma 42, we can write rigorously
ln(3)
ln(2) −

wri
vi

= ci
vi2

, where |ci| ≈ 1. The asymptotic approximate value of |ci|
again is guessed numerically and is quite suggestive again. Other way to ob-
tain the result, but less rigorous, is to simply multiplying by (ln(3)/ln(2))2

on each side of the previously obtained expression ln(2)
ln(3) −

vi
wri

= ai
wri2

, where

|ai| ≈ 1 ≈ |ci|. Indeed, asymptotically ( ln(3)ln(2))
2 vi
wri

= (ln(3)/ln(2))vi
(ln(2)/ln(3))wri

≈ wri
vi

and ( ln(3)ln(2))
2 ai
wri2

= ai
((ln(2)/ln(3))wri)2

≈ ai
vi2

≈ ci
vi2

. Then ln(3)
ln(2)vi − ⌊ ln(3)ln(2)vi⌋ −

1 = ci
vi

+ wri − ⌊ ln(3)ln(2)vi⌋ − 1 ≈ ci
vi
+ wri − wi.

The column x0(v) in table 2 is that of the extrema when there is an equal-
ity between denominator of the fraction and w, otherwise one picks the
result in the column x0(v, w

−) with provides intermediate values but of
negative sign (case denominator = w − 1). For high values of v, and ig-

noring the index i, x0 = 3v−2v

2w−3v = 1−(2/3)v

2w/3v−1 ≈ 1
2w3−v−1

= 1

2
w− ln(3)

ln(2)
v
−1

=

1

2
w−⌊ ln(3)

ln(2)
v⌋−1+(1+⌊ ln(3)

ln(2)
v⌋− ln(3)

ln(2)
v)
−1

= 1

2−
c
v+w−wr−1

= 1

2w−wre−ln(2) cv −1
. Then, again

for large values of v, using ex ≈ 1+x when x → 0, we get x0 ≈ or(1, 1
−ln(2) c

v
)

= or(1,− v
ln(2)c), |c| ≈ 1, giving the linear relationship for the values of v we

are interested in. □

Figures 28 shows how the values of x0 evolves at the best approximations
of ln(2)

ln(3) compared with x0_linear = v
ln(2) . A higher value of a coe�cient of

the continued fraction vector results in a higher value than 1
ln(2)v for the

ordinates x0(v) or x0(v, w
−) respectively as illustrate in the �gures 29, 30

and 31. Nevertheless more moderate values (within the 2000 �rst coe�cients
of the continued fraction, there are 41.65 % of 1, 16.15 % of 2, 9.80 % of 3,
6.0 % of 4, 4.05 % of 5 and only 22.35 % of higher value) coming next to
such higher values will bring the resulting x0(v) or x0(v, w

−) values back to
track rapidly.

Lemma 46. The upper bound of absolute values of the extrema of the expres-
sion 3v−2v

2w−3v −1 are roughly linear with an approximate slope of 1
ln(2) according

to the number of odd steps v

x0 ≈
1

ln(2)
v1+χ, χ ≪ 1 as v → +∞.

Proof. The multiplicative factor between the upper bound values line and
the basis line, with the notation of the lemma, is vχ. Taking account of the
iteration i, let us write it vi

χi . Let us consider two consecutive iterations i
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Figure 28. Evolution of 3v−2v

2w−3v for the best rational approx-

imations of ln(2)
ln(3) by its continued fraction.

Figure 29. Evolution of 3v−2v

2w−3v for the best rational approx-

imations of ln(2)
ln(3) . Detail around the origin.

and i+ 1 and the best approximations results x0i and x0i+1 . The �rst one is
at most equal to the second one, thus vi

χi = x0i+1/x0i . According to lemma
44, vi = cfi × vi−1 + vi−2 and therefore x0i+1 ≈ cfi+1 × x0i if cfi+1 ≫ 1 and

vi ≳ cfi× vi−1 >
∏i

k=1 cfk. Therefore χi ≈ ln(cfi+1)
ln(vi)

< ln(cfi+1)

ln(
∏i

k=1 cfk)
. The last

expression can be greater than 1 only if cfi+1 >
∏i

k=1 cfk which is more and
more unlikely as i increases. Indeed, according to lemma 41, the continued
fraction's coe�cients of ln(2)

ln(3) follows fairly a Gauss-Kuzmin discrete proba-
bility distribution so that p(cfi) → − log2(1− 1

(cfi+1)2
) ≈ 1

ln(2)
1

cf2
i
, i → +∞.

That last expression shows that the size of cfi is not increasing with i (but
only that higher values are possible with a larger sample). The squared in-

verse con�rms the extremely small likelihood of the event cfi+1 >
∏i

k=1 cfk.
More precisely, an additional numerical check shows that the ratio cfi∏i−1

k=1 cfk
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Figure 30. Evolution of 3v−2v

2w−3v for the best rational approx-

imations of ln(2)
ln(3) . Detail around i = 232, continued fraction

coe�cient = 964.

Figure 31. Evolution of 3v−2v

2w−3v for the best rational approx-

imations of ln(2)
ln(3) . Detail around i = 332, continued fraction

coe�cient = 2436.

approximates (e − 1)e−i, a far-�ung from 1 even with small values of the
iteration index i (like i > 15). Figure 32 features the result χ of the equality
vi

1+χ = cfi × vi. If cfi = 1, χ = 0 and is not represented in that graphic
in logarithmic scale. The representative points of some given constant value
of the continued fraction coe�cients are on a strictly decreasing curve, the
lowest one here is the one corresponding to cfi = 2, the second to cfi = 3
and so on. This representatives curves of some �xed coe�cient value cf are
getting closer and closer as cf increases. □
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Figure 32. Evolution of χ. The numbers indicated are the
highest continued fraction coe�cients in the displayed range.

Note. An exceptional case cfi+1 >
∏i

k=1 cfk is not detrimental to our ar-

guments unless cfi+1 ≫≫
∏i

k=1 cfk so that χ ≫ 1 as we will see later
on.

Lemma 47. The largest rational value, solution to the smallest element x′
0

of a cycle on the N∗ side of Z, is asymptotically approximately equal to

x′
0 ≈

v

4

3v − 2v

2w − 3v
.

Proof. Applying �rst all the (x/2) divisions, referring again to lemma 24,
we get x0 = (3v/2w)x0 + ((3/2)v − 1) so that x0 = 2w−v 3v−2v

2w−3v . These
cycles' solutions diverges rapidly and that general expression is therefore
not particular useful to us. But there is no case were all the even steps
are running �rst. The parity vectors needs to be licit which imposes left
upwards limit positions of the 0 elements relatively to the elements 1 within
the parity vectors as v increases. The �rst left elements of that resulting
limit parity vector are 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
... Going back to lemma 24, let us recall the equation to the solution x0
corresponding to all the (3x + 1)/2 multiplications applied �rst. We found
x0(2

w−3v) = 3v−120+3v−221+3v−322+ ... +312v−2+302v−1. Switching to
the equation of the solution x′0 corresponding to the above limit parity vector,
we get x′0(2

w − 3v) = 3v−120+3v−221+3v−323+3v−424+3v−526+3v−627+

... +302w−1−or(1,2), the term or(1, 2) depending on the limit parity vector
at rank v ending with 1 or 2 zeroes. Each time the element 1 appears
in the parity vector, the exponent of the factor 2 increases by 1 while it
increases by 1 + n if there are n elements 0 (thus n + 1 = 1 + 1 = 2 for
one digit 0). Meanwhile, the exponent of 3 decreases by 1 at each step. For
easier understanding, a comparative example is given in the table underneath
�guring the right part of the previous equations for v = 7. The representation
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is a little bit di�erent as it consists in attributing a product value 0 for each
occurrence of element 0 while o�setting the terms towards the bottom at the
same time. The resulting ratio x′0/x0 is thus equal to

x′0
x0

=
3v−120 + 3v−221 + 3v−323 + 3v−424 + 3v−526 + ...+ 302w−1−or(1,2)

3v−120 + 3v−221 + 3v−322 + ...+ 312v−2 + 302v−1

The term 3v−120 is the greatest term of the numerator on the right side of
the equality and by the construction requirement imposed on the limit parity
vector, the smallest term is superior to the half value, that is 3v−12−1. Figure
33 shows the values of the terms 3v−i2j within 3v−120 + 3v−221 + 3v−323 +
3v−424+3v−526+3v−627+ ...+302w−1−or(1,2) after being divided by 3

43
v−120

for v = 1 up to 500. The fractions, according to the previous analysis, vary
in the range ]23 ,

4
3 ]. Note that this kind of �gure is characteristic of those

often found when studying the Collatz conjecture. The approximate average
value shown in the �gure is equal to (4/3 + 2/3)/2 = 1 with the hypothesis
of a non biased distribution. Therefore, as there are v (non null) terms in
the numerator (and denominator) of the expression, we get

x′0
x0

≈
3
43

v−120v

2v−1((32)
v−1 + (32)

v−2 + ...++(32)
0)

=
1
43

vv

2v

2 (
( 3
2
)v−1
3
2
−1

)
=

1

4

3vv

3v − 2v

So that even for some quite small values of v :

x′0
x0

≈ 1

4

v

1− (23)
v
≈ v

4

Hence the said lemma's result. □

In fact, looking carefully at �gure 33 showing the repartition of the frac-
tions within the range ]23 ,

4
3 ], the reader will see a little more concentrated

population on the bottom part of the �gure compared to the upper part.
Therefore the average value of the ordinates should be smaller than 1 asymp-
totically. Figure 34 shows how the average evolves when v varies from 1 to
500. Note also that this o�set from 1 is in no way critical to the main aim
of this article.
In this case, the real solutions to the cycles are, according to numerical

veri�cation, compared to the case of the odd steps running �rst, in an ap-
proximate ratio ≈ 0.2405v, as shown in �gure 35. This asymptotic limit
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ratio is besides matched quite rapidly (as soon as v = 10) in a fairly good
way.

Example. v = 7, w = 12,
x′0/x0 = 3767/2059 ≈ 1.83 (to be compared to 7/4 = 1.75).

w p.v 3v−i 2j product p.v 3v−i 2j product
1 1 729 1 729 1 729 1 729
2 1 243 2 486 1 243 2 486
3 1 81 4 324 0 0 0 0
4 1 27 8 216 1 81 8 648
5 1 9 16 144 1 27 16 432
6 1 3 32 96 0 0 0 0
7 1 1 64 64 1 9 64 576
8 0 0 0 0 1 3 128 384
9 0 0 0 0 0 0 0 0
10 0 0 0 0 1 1 512 512
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
total 2059 3767

Figure 33. Ratios 3v−i2j
3
4
3v−120

.

Lemma 48. The extrema of the largest rational values, solutions to the
smallest element x′

0 of a cycle in N∗, is asymptotically approximately equal
to

x′
0 ≈

1

4ln(2)
v2+χ, χ ≪ 1.

Proof. This is an immediate result of lemmas 46 and 47. □

Lemma 49. The ratio of any solution to a cycle (in Re+) to the smallest
2w−seed is asymptotically tending towards 0 as the rank v tends towards
in�nity.



WINNING TICKETS FROM TWO COLLATZ GRAPHS' STRUCTURES 47

Figure 34. Average of ratios up to v (refer to �gure 33).

Figure 35. Ratio of a largest to the smallest cycles' solu-
tions in Re+: r ≈ 0.2405 v + 0.1434.

Proof. As mentioned earlier, a sample of data of the smallest 2w−seeds is
given in appendix C and �gure 20. The ratio to the smallest cycle solution
is given in �gure 37. The ratio to the largest cycle solution is given in �gure
38. This last limit case, which is the one to be considered, exhibits a "way
afar distance" to the possibility of a solution as soon as v ≈ 100 (by more
than 3 to 4 decades ratio). This is an obvious consequence of the framing of
the 2w−seeds given in �gure 20.
We know that asymptotically the "generating" element of a cycle (its small-
est element) are growing polynomially in v2+χ, χ ≪ 1, while the smallest
2w−seeds are expanding exponentially as ≈ 104(1.056921v) according to the
�gure 20 and surpasses 1

4ln(2)v
2+χ as soon as rank v = 40 even for χ = 1. □

Theorem 7. The lack of a non-trivial cycle in N∗ is very unlikely.

Proof. According to references [4] and [2], the length of a non-trivial cycle is
at least w = 186265759595 which is equivalent to v = 117520609800. At that
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Figure 36. Largest solution rational values to the smallest
cycles' solutions.

rank, the ratio of the smallest seed to the greatest cycle "generator", using
the approximation 104(1.056921v) for the �rst studying entity and 1

4ln(2)v
2+χ

for the second one, is already surpassing 102.8×109 . Returning to lemma 36,
there is no coherent imaginable common event between the two even if the
said smallest and the said greatest might be at a maximum o�set (which can
hardly be more than a few decades) of their respective asymptotic expected
values. In the absence of close up, referring to the �gures 19, 28 and 35, the
trends are almost straight lines (in linear or logarithmic scales) with totally
di�erent slopes and can't have any intersection when v starts to take "large"
enough values. Of course, a literal proof of the former empirical assertion
would be quite more elegant but is not necessary. A snail can't catch up
with a cheetah especially if the double steroidic cheetah took the lead long
ago. □

Figure 37. Ratio of a largest cycle solution in Re+ to the
smallest 2w−seed (abscissa v).
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Figure 38. Ratio of a smallest cycle solution in Re+ to the
smallest 2w−seed (abscissa v).

Note. Let us note forget that the seeds' size argument is only a necessarily
condition. Even if the seeds would be small enough numbers (which they are
not at all asymptotically), it doesn't make them likely candidates to deny
the Collatz conjecture.

There is a somewhat simpler way, in which the 2w−seeds are not involved,
to get an equivalent result to the former one. Surprisingly, digging deeper, it
enables us to get a rigorous proof of the Collatz conjecture. Let us see that
underneath.

Lemma 50. Let us consider the largest solution rational value of the smallest
element of a cycle as provided by the lemmas 39 and 47. The ratios of the
greatest common divisor between numerators and denominators to the value
of the denominators are tending towards 0 as v tends towards ∞.

Proof. Let recall that for both largest and smallest cycle solutions, the de-
nominator is equal to 2w − 3v. This term increase exponentially according
to v. Taking the smallest cycle solution, the numerator is 3v − 2v is not ra-
tionally related to 2w − 3v as ln(3)/ln(2) is in the expression of w. There is
no reason to have peculiar common factors between numerator and denomi-
nator for some given v value. Therefore as v increases only small factors are
expected to be common to both parts of the fraction. The gcd is expected to
be small (and is often equal to 1) while the denominator is diverging. The
reasoning is the same in the case of the largest cycle solution. □

Figure 39 and 40 show the evolution of the former ratios. Appendix D
provides also the computer program to get additional data. The gcd being
often 1 and sharing the same denominator, there is a great number of times
where the results are the same for the ratios of the largest and the smallest
cycle solutions. It would be likely so also for the intermediate cycle solutions
(which all share the same denominator 2w − 3v). The representation of the
ordinate being in a logarithmic scale, the curves appear in a linear form. The
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evolution of the minima of both curves is given by the expression 1
2w−3v .

Now w = ⌊(ln(3)/ln(2)).v⌋ +1 < (ln(3)/ln(2)).v + 1 and therefore 2w <

2(ln(3)/ln(2)).v+1 = 3v+1. So we get 1
2w−3v > 1

2
1
3v , the later expression being a

minima of both curves. Of course, rather than the minima, we would like to
get the maxima of the said evolution. The �gures shows that it is located,
using the logarithmic scaling, in a marginally near range of the minima and
its trend is also asymptotically approaching the 0 limit.

Figure 39. Ratio gcd(num,den)
den of smallest (blue cross) and

largest (red point) cycle rational solutions' numerators and
denominators.

Figure 40. Ratio gcd(num,den)
den of smallest and largest cycle

rational solutions' numerators and denominators.

If we consider then that the said ratios are some kind of an indicator of
the probability to have a natural number cycle solution (as the numerator
has to be the exact product of the denominator by a natural number and
therefore the ratio is at least equal to 1), we see that the said "probability
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indicator" is rapidly aiming towards 0. If we go back to the minimal known
rank of a non-trivial cycle v = 117520609800, the approximative probability,

using 1
2

1
3v as a basis, would be at that stage already less than 10−5.6×1010 .

Theorem 8. There are no cycle of rank v > 1 in N∗.

Proof. Let us consider, for some given rank v > 1, the two limit cases x0 and
x′0 obtained within the domain of the licit parity vectors such as provided
by lemma 32.
We get

x0 =
3v−120 + 3v−221 + 3v−322 + ...+ 312v−2 + 302v−1

2w − 3v

and

x′0 =
3v−120 + 3v−221 + 3v−323 + 3v−424 + 3v−526 + 3v−627 + ...+ 302w−1−or(1,2)

2w − 3v
,

the term or(1, 2) depending on the limit parity vector at rank v ending with
1 or 2 zeroes. We intend to study the greatest common divisor between
numerator (num) and denominator (den) of these expressions. In order to
make the understanding easier let us start with an example. Let us choose
v = 4, w = 7 and one of the corresponding licit parity vector 1110100.
Therefore we get num = 3320+2132+2231+2430 and den = 2w − 3v. Then

gcd(den, num) = gcd(27 − 34, 2033 + 2132 + 2231 + 2430) (1)
= gcd(27 − 34, 3(3320 + 2132 + 2231 + 2430))
= gcd(27 − 34, 3420 + 2133 + 2232 + 2431)
= gcd(27 − 34, 3420 + 2133 + 2232 + 2431 + 27 − 34)
= gcd(27 − 34, 2133 + 2232 + 2431 + 2730)
= gcd(27 − 34, 33 + 2132 + 2331 + 2630) (2)
= gcd(27 − 34, 33 + 2232 + 2531 + 2630) (3)
= gcd(27 − 34, 33 + 2332 + 2431 + 2530) (4)
= gcd(27 − 34, 33 + 2132 + 2231 + 2430) (1)

We give the detail from step (1) to step (2), the other ones being entirely
similar. In each main steps (1) to (4), the exponents of 3 are unchanged
and decrease from v − 1 = 3 to 0. The only "challenge" is to handle the
exponents of 2. One has to proceed as follows. Start with (0, 1, 2, 4) which
is the initial list of the exponents of 2 and add w = 7 at the end of the
list (0, 1, 2, 4; 7). Shift the list by one to the left and subtract the value of
the �rst item to each number and add w = 7 at the end of the list again
(1−1, 2−1, 4−1, 7−1; 7) ≡ (0, 1, 3, 6; 7). Continue (1−1, 3−1, 6−1, 7−1; 7) ≡
(0, 2, 5, 6; 7). Again (2−2, 5−2, 6−2, 7−2; 7) ≡ (0, 3, 4, 5; 7) until going back
to the initial expression (3 − 3, 4 − 3, 5 − 3, 7 − 3; 7) ≡ (0, 1, 2, 4; 7). Here,
during the process, the total number of subtractions is v = 4 and add to
w = 1+1+ 2+ 3 = 7. Obviously it is a general pattern. Now, for any value
v, if t0 is some smallest elements of a cycle in N, we will have den = 2w − 3v
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and num = 3v−120 + 3v−221 + ... + 302w−1−or(1,2) = 2w − 3v. Let us have
(0, i1, i2, i3, ..., iv−1;w) the initial corresponding list of exponents. Then we
inherit of a numerators' list containing v lines which each must correspond
to exact multiples of 2w − 3v

(0, i1, i2, i3, ..., iv−2, iv−1;w)
(0, i2 − i1, i3 − i1, i4 − i1, ..., iv−1 − i1, w − i1;w)
(0, i3 − i2, i4 − i2, i5 − i2, ..., w − i2, w + i1 − i2;w)

...
(0, w − iv−1, w + i1 − iv−1, w + i2 − iv−1, ..., w + iv−3 − iv−1, w + iv−2 − iv−1;w)

before getting back to the initial

(0, i1, i2, i3, ..., iv−2, iv−1;w).

The case that each of the corresponding gcd be equal to 2w−3v bends largely
to absurdity. But let us continue anyway.
We can step by step use these v expressions to reduce by (linear) sub-

tractions and multiplications the powers of 3. That construction leads, in a
systematic way, to expressions between commas containing each 4 members
(if v > 3) as 4 terms disappear at each step being equal by pairs (and yes
the 2 last ones 2w−i4+i1 − 2w−i4+i2 underneath emerge always at the end of
the process whatever the value of v)

3 + 2iv−1−1 − 2iv−2−1 + 2w−i4+i1 − 2w−i4+i2

and therefore to the following greatest common divisor to be studied

gcd(2w − 3v, 3 + 2iv−2−1(2iv−1−iv−2 − 1)− 2w−i4+i1(2i2−i1 − 1)).

Although interesting by its simplicity, the second component of this gcd is
not systematically smaller than 2w − 3v , an event which would constituted
a lucky �rst condition to prove our aim. Therefore, let us focus instead only
on the two �rst items of the previous list:

(0, i1, i2, i3, ..., iv−1;w)
(0, i2 − i1, i3 − i1, i4 − i1, ..., w − i1;w).

As we mentioned, in order to get a Collatz' cycle, the �rst item corresponds to
a value that equals exactly 2w−3v while the second one must then correspond
to an exact non-zero multiple of the same value. So let us have the two
corresponding terms:

3v−120 + 3v−22i1 + 3v−32i2 + 3v−42i3 + ...+ 312iv−2 + 302iv−1

3v−120 + 3v−22i2−i1 + 3v−32i3−i1 + 3v−42i4−i1 + ...312iv−1−i1 + 302w−i1

The ratio of the second term to the �rst one is

r = 3v−120+3v−22i2−i1+3v−32i3−i1+3v−42i4−i1+...312iv−1−i1+302w−i1

3v−120+3v−22i1+3v−32i2+3v−42i3+...+312iv−2+302iv−1

=
1+ 2i2−i1

31
+ 2i3−i1

32
+...+ 2

iv−1−i1

3v−2 + 2w−i1

3v−1

1+ 2i1

31
+ 2i2

32
+ 2i3

33
+...+ 2

iv−2

3v−2 + 2
iv−1

3v−1
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Now the exponents are issued from a parity vector and therefore we have
systematically i1 = 1. So that

r =
1+ 2i2−1

31
+ 2i3−1

32
+...+ 2

iv−1−1

3v−2 + 2w−1

3v−1

1+ 2i1

31
+ 2i2

32
+ 2i3

33
+...+ 2

iv−2

3v−2 + 2
iv−1

3v−1

=
1+ 2i1−1

30
+ 2i2−1

31
+ 2i3−1

32
+...+ 2

iv−1−1

3v−2 +( 2
w−1

3v−1 −1)

1+ 2i1

31
+ 2i2

32
+ 2i3

33
+...+ 2

iv−2

3v−2 + 2
iv−1

3v−1

.

Let us have

c0 =
2i1
31

+ 2i2
32

+ 2i3
33

+ ...+ 2iv−2

3v−2 + 2iv−1

3v−1 and g = 2w−1

3v−1 − 1.

Then

r = 1+3c0/2+g
1+c0

.

Therefore the conditions underneath, if one of them is true, are equivalent

3/2 < r < 2 ⇔ {g > 1/2 and c0 > 2(g − 1)}
⇔ {2w

3v > 1 and c0 > 3(2
w

3v − 4
3)}.

Let us observe that starting with a lower and upper bound on r, we end with
only a lower bound on c0. This is a main simplifying event as we will see
very soon. Meanwhile, let us examine the two limit cases.
For i1 = 1, i2 = 2, i3 = 3, ..., iv−1 = v − 1, we get

c0 = 1 + 21

31
+ 22

32
+ 23

33
+ ...+ 2v−2

3v−2 + 2v−1

3v−1 − 1

=
1− 2v

3v

1− 2
3

− 1

= 3(23 − 2v

3v )

Now

w = ⌊ ln(3)ln(2)v⌋+ 1 ⇒ 2w

3v > 1
2w−1+2v−1

3v < 1 ⇒ 3(23 − 2v

3v ) > 3(2
w

3v − 4
3)

The �rst implication results from lemma 30. The second implication, an
equivalence in fact, results from lemma 43. Therefore the term r cannot be
an integer which proves the �rst limit case. Now for the second case (and all
intermediary ones) the term

c1 =
2i1
31

+ 2i2
32

+ 2i3
33

+ ...+ 2iv−2

3v−2 + 2iv−1

3v−1

is necessary superior, as ik ≥ k for all k ∈ 1, 2, ..., v − 1, to the term

c0 = 21

31
+ 22

32
+ 23

33
+ ...+ 2v−2

3v−2 + 2v−1

3v−1

Hence c1 > c0 > 3(2
w

3v − 4
3) proving the second case and all intermediary

cases. □
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Figure 41 shows a sample of the value of r − 1. It shows the constraint

r → 3
2

+
in the case of the second limit case which is a consequence of

1
2 < 2w−1+2v−1

3v (see lemma 43). Note also the common value r − 1 = 6
5 for

v = 2 in the �rst and second limit cases.
Appendix G provides a computer program to evaluate the ratio r − 1 for

some initial choice x0.

Figure 41. Ratio r − 1.

Theorem 9. The Collatz conjecture is true.

Proof. This is an immediate consequence of the two theorems 1 and 8. □

10. The admissible rational solutions

We spend a long time looking on one kind of possible solutions for the
Collatz cycles, the integers. Let us broaden here the perspective and have
a glance on the "solutions" to the altitude �ight time (thus including the
possible cycles). Let us have some initial integer t0. We are looking for the
�rst event i such that xi = ti/t0 <= 1, ti being the iterated result of the
Collatz algorithm, and gcd(ti, t0) = 1. Then if t0 > 1 and v > 0 (at least
one odd step is occurring in the process),

ti
t0

= ⌊ ti
t0
⌋+ 1

2
(1 +

k1
k2

), k1 = 1 mod 2, k2 = 1 mod 2, 0 ≤ k1 < k2.

This, if proven so, excludes any integer solutions (but not only) and ex-
plains why there is no such solutions to the Collatz conjecture. Figure 42
shows graphically the corresponding result ti

t0
− ⌊ ti

t0
⌋ − 1

2 = k1
2k2

for t0 =

3, 5, 7, ..., 215−1 classi�ed by increasing values. Let us note that the plateau
solutions are not composed of equal values but mostly of small distinct val-
ues.
These plateaus are explained easily as they originate mainly out of equal

odd (and even) steps' solutions.
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Figure 42. Ratio k1
2k2

.

Lemma 51. Let us consider some seed t0 and its result ti by the Collatz
algorithm. Then, for increasing k ∈ N, the ratio ti+k3v

t0+k2w , with the usual

de�nition of (v, w) adopted in this article, is strictly decreasing from ti
t0

to
3v

2w .

Proof. By the property of the underlying hyperbolic function in k, the ratio
ti+k3v

t0+k2w = ti/k+3v

t0/k+2w , as seen in previous lemmas, is strictly monotonous from
ti
t0
to 3v

2w . Now, in the Collatz algorithm, the multiplication is 3x+1 instead

of 3x while the division is exactly x/2. Therefore ti
t0

> 3v

2w and therefore

the ratio ti/k+3v

t0/k+2w decreases systematically. As k increases, t0
k and ti

k tends

towards 0, hence the rapid plateau's e�ect as ti < t0 < 2w. □

Lemma 52. For �xed v, any ratio ti/t0 admits the strict lower bound 3v

2w .

Proof. This is another way to express lemma 51. □

The bottom of the plateaus are given by the ratios 3/4 − 1/2 = 0.25,
32/24 − 1/2 = 0.0625, 33/25 − 1/2 = 0.34375, 34/27 − 1/2 = 0.1328125,
35/28 − 1/2 = 0.44921875, 36/210 − 1/2 ≈ 0.21191406, 37/212 − 1/2 ≈
0.03393555, 38/213−1/2 ≈ 0.30090332, 39/215−1/2 ≈ 0.10067749, 310/216−
1/2 = 0.401016235 and so on. These plateaus are getting shorter as v in-
creases. The best approximations of ln(2)/ln(3) by 3v

2w−or(1,0) provide respec-

tively, of course, the plateaus near 0 and those near 1/2.
v w 3v

2w − 1/2 v w 1/2 − ( 3v

2w − 1/2)
1 2 0.25 1 2 0.25
2 4 0.0625 5 8 0.05078125
12 20 6.82163E − 3 41 65 1.139745E − 2
53 85 1.04516E − 3 306 485 1.02172E − 3
665 1055 2.18275E − 5 15601 24727 1.81944E − 5

31867 50509 3.63248E − 6 79335 125743 3.66471E − 6
111202 176252 1.80011E − 6 190537 301994 6.45075E − 8

10590737 16785922 2.61503E − 8 10781274 17087915 1.22070E − 8
53715833 85137582 1.73629E − 9 171928773 272500658 1.78921E − 9
225644606 357638240 8.41686E − 10
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Table 3
We conclude immediately, for v > 0,

ti
t0

− ⌊ ti
t0
⌋ − 1

2
> 0.

The Collatz conjecture, for t0 > 0, is nothing more than the same lemma
on the upper bound.

ti
t0

− ⌊ ti
t0
⌋ − 1

2
<

1

2
.
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Appendix A. Trees' growth programming

Running the Collatz inverse algorithm without special care leads to dupli-
cate graphs if the initial integer is chosen within a root. Let us start for exam-
ple with integer 1 within the root (1, 2, 4). We have, for the antecedents of x,
one or two values respectively (2x) or (x−1

3 , 2x), therefore here step by step
upwards (0, 2), (0, 4), (0, 1, 8), (0, 0, 2, 16), (0, 0, 4, 5, 32), (0, 0, 1, 8, 10, 64),
(0, 0, 0, 2, 3, 16, 20, 21, 128), (0, 0, 0, 4, 5, 6, 32, 40, 42, 256), (0, 0, 0, 1, 8, 10, 12,
13, 64, 80, 84, 85, 512), . . . , compiling after only a few algorithmic steps al-
ready three graphs stemming from 1 at di�erent stages of blossom (with
an additional "0 graph" next step result of each integer 1 encounter) in-
stead of (2), (4), (8), (16), (5, 32), (10, 64), (3, 20, 21, 128), (6, 40, 42, 256),
(12, 13, 80, 84, 85, 512) starting beyond the root.
The following computer program give the cardinals at the successive up-

wards ranks of the total number of vertices and the number of vertices equal
to i modulo v, i = 0 to v−1. It is executed without any particular constraint
except it refuses even antecedent x−1

3 which is an imperative requirement.
It therefore doesn't generate any antecedent equal to 0 but won't be able to
avoid the unwanted additional integer 1 or any root member of some other
cycle creating graphs' redundancies. Using it, the reader is advised to take
the remark into account by preferably choosing an integer outside a cycle
even if the asymptotic proportions of the cardinals will ultimately remain
the same.

PARI/GP progamming code.
{pr = -67; \\initial integer choice
v = 3; \\modulo value choice
nm = vector(v);
k1 = k2 = vector(1000000); m2 = 1; k2[m2] = pr; for(x = 1, v, nm[x] = 0);
for(x = 1, v, if(k2[m2] % v == x-1, nm[x] = 1; break));
print(0" "m2" "nm);
for(x = 1, 48,\\last upwards rank choice
m1 = 0; for(y = 1, v, nm[y] = 0);
for(m = 1, m2, m1 = m1+1; k1[m1] = 2*k2[m];
for(y = 1, v, if(k1[m1] % v == y-1, nm[y] = nm[y]+1));
t = (k2[m]-1)/3; tr = truncate(t); r = t-tr;
if(r == 0, if(tr%2 == 1, m1 = m1+1; k1[m1] = t;
for(z = 1, v, if(k1[m1] % v == z-1, nm[z] = nm[z]+1)))));
print(x" "m1" "nm); m2 = m1; k2 = k1)}

Choosing for example as starting integer −67, the numerical data is, at
upwards rank 48, a total of 78932 vertices with repartitions as follows:
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v 3 5 7 9 11 13 15
0 mod v 26360 15788 11079 8744 7074 6099 5280
1 mod v 26257 15736 11373 8658 7210 6147 5164
2 mod v 26315 15786 11165 8738 7126 6100 5212
3 mod v 15773 11524 8744 7054 5962 5228
4 mod v 15849 10993 8772 7138 6067 5299
5 mod v 11349 8759 7122 6188 5282
6 mod v 11449 8872 7191 6140 5293
7 mod v 8827 7178 6127 5304
8 mod v 8818 7342 6096 5281
9 mod v 7242 6113 5289
10 mod v 7255 5922 5226
11 mod v 5902 5279
12 mod v 6069 5270
13 mod v 5264
14 mod v 5261

Expressing the o�sets in percent, we get:

v 3 5 7 9 11 13 15
0 mod v 0, 19% 0, 01% −1, 75% −0, 30% −1, 42% 0, 45% 0, 34%
1 mod v −0, 20% −0, 32% 0, 86% −1, 28% 0, 48% 1, 24% −1, 86%
2 mod v 0, 02% 0, 00% −0, 98% −0, 37% −0, 69% 0, 47% −0, 95%
3 mod v −0, 08% 2, 20% −0, 30% −1, 70% −1, 81% −0, 65%
4 mod v 0, 40% −2, 51% 0, 02% −0, 52% −0, 08% 0, 70%
5 mod v 0, 65% −0, 13% −0, 75% 1, 92% 0, 38%
6 mod v 1, 53% 1, 16% 0, 21% 1, 13% 0, 59%
7 mod v 0, 65% 0, 03% 0, 91% 0, 80%
8 mod v 0, 54% 2, 32% 0, 40% 0, 36%
9 mod v 0, 92% 0, 68% 0, 51%
10 mod v 1, 11% −2, 47% −0, 69%
11 mod v −2, 79% 0, 32%
12 mod v −0, 04% 0, 15%
13 mod v 0, 04%
14 mod v −0, 02%
e.m.a.d/p* 0, 20% 0, 26% 1, 76% 0, 71% 1, 18% 1, 46% 0, 73%

2 1√
π
√
n

0, 70% 0, 90% 1, 06% 1, 20% 1, 33% 1, 45% 1, 56%

* E�ective mean absolute di�erences compared to populations' ratio
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Appendix B. Equal stopping time seeds enumeration

The following program provides at rank v, within the interval [0, 2w[, the
cardinals #sw(v), #plf(v) and #plr(v), that is respectively the number of
integers with stopping times equal to w, smaller than w and greater than w.
Note that sometimes the exponentiation sign � won't copy successfully and
has to be retyped manually (3 corrections in that case here).

PARI/GP progamming code.
{rank = 30; \\initial integer choice
dw = 1; da1 = da2 = vector(rank); da1[1] = 0; da1[2] = 1; da2[1] = 0;
print("v " "#sw(v) " "#plf(v) " "#plr(v) " "2 � w");
print(0" "1" "0" "1" "2); print(1" "1" "2" "1" "4); plf = 2+1;
for(v = 2, rank, pla =0; w = (log(3)/log(2)*v)\1+1;
wp = (log(3)/log(2)*(v-1))\1+1; wpp = (log(3)/log(2)*(v-2))\1+1;
ew = wp - (v-1); dw = w - wp; ddw = wp - wpp;
plf = (2 � dw)* plf;
for(k = 1, ew,
da2[k+1] = da2[k] + da1[k+1]; pla = da2[k+1]+pla);
if(ddw == 2, da2[ew+1] = da2[ew]; pla = da2[ew+2]+pla);
plf1 = plf+vecsum(da2); plr = 2 � w - plf1;
print(v" "pla" "plf" "plr" "pla+plf+plr); plf = plf1; da1 = da2)}

v #sw #plf(v) #plr(v) 2w

0 1 0 1 2
1 1 2 1 4
2 1 12 3 16
3 2 26 4 32
4 3 112 13 128
5 7 230 19 256
6 12 948 64 1024
7 30 3840 226 4096
8 85 7740 367 8192
9 173 31300 1295 32768
10 476 62946 2114 65536
11 961 253688 7495 262144
12 2652 1018596 27328 1048576
13 8045 2042496 46611 2097152
14 17637 8202164 168807 8388608
15 51033 16439602 286581 16777216
16 108950 65962540 1037374 67108864
17 312455 132142980 1762293 134217728
18 663535 529821740 6385637 536870912
19 1900470 2121941100 23642078 2147483648
20 5936673 4247683140 41347483 4294967296
21 13472296 17014479252 151917636 17179869184
22 39993895 34055903096 263841377 34359738368
23 87986917 136383587964 967378591 137438953472
24 257978502 545886299524 3611535862 549755813888
25 820236724 1092288556052 6402835000 1099511627776
26 1899474678 4372435171104 23711865322 4398046511104
27 5723030586 8748669291564 41700700058 8796093022208
28 12809477536 35017569288600 153993322696 35184372088832
29 38036848410 70060757532272 269949796982 70368744177664
30 84141805077 280395177522728 995657382851 281474976710656
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Appendix C. Smallest stopping time seeds

The following data provides the smallest number of the 2w−class of rank
v (stopping time w + v). The empty spots corresponds to unknown values
but greater than 400 000 000.

v sm(2w) v sm(2w) v sm(2w) v sm(2w) v sm(2w) v sm(2w)
0 2 40 6887 80 60975 120 6255855 160 40814363 200 371871359
1 1 41 4591 81 45127 121 6492187 161 187375615 201 247914239
2 3 42 13439 82 393967 122 7849755 162 131801135 202 165276159
3 11 43 6383 83 423679 123 3137471 163 44186399 203
4 7 44 4255 84 1759951 124 9294427 164 29457599 204 293824283
5 39 45 7963 85 35655 125 8484287 165 39276799 205 195882855
6 287 46 7527 86 434223 126 2788863 166 19638399 206
7 231 47 12399 87 495687 127 7499935 167 53271551 207 348236187
8 191 48 7279 88 665215 128 6079559 168 71028735 208
9 127 49 1583 89 1643759 129 6204543 169 27209575 209
10 359 50 1055 90 528895 130 20808639 170 35514367 210 127456255
11 511 51 703 91 730559 131 9941863 171 60112511 211 245235559
12 239 52 15039 92 437247 132 29256191 172 40075007 212
13 159 53 111259 93 2162111 133 8837211 173 53433343 213 217987163
14 639 54 41407 94 432923 134 2091647 174 143061311 214 290649551
15 283 55 62079 95 565247 135 1394431 175 215 193766367
16 991 56 77031 96 288615 136 17392879 176 162612223 216 145324775
17 251 57 94959 97 376831 137 13002751 177 107295983 217 96883183
18 167 58 34239 98 2548479 138 7460635 178 22649071 218
19 111 59 138751 99 611455 139 2533535 179 71530655 219
20 1695 60 99007 100 608111 140 1689023 180 20132507 220
21 1307 61 106239 101 1585403 141 1126015 181 13421671 221
22 871 62 187327 102 405407 142 64993051 182 222 326610023
23 927 63 69375 103 270271 143 19925503 183 279200511 223
24 671 64 226767 104 362343 144 13774695 184 20638335 224
25 155 65 104303 105 401151 145 9280639 185 272473947 225
26 103 66 10087 106 1563647 146 46043247 186 226
27 1639 67 256511 107 1042431 147 28290175 187 227
28 91 68 67583 108 6721703 148 57330463 188 26716671 228 272896031
29 3431 69 90111 109 381727 149 54870655 189 144091295 229 181930687
30 3399 70 45055 110 667375 150 46355695 190 192121727 230
31 2287 71 126575 111 626331 151 48773915 191 96060863 231
32 71 72 299259 112 1691807 152 32515943 192 64040575 232 95592191
33 6395 73 96383 113 1564063 153 41946879 193 340208287 233
34 47 74 336199 114 1541147 154 12132095 194 56924955 234
35 31 75 64255 115 1027431 155 8088063 195 235
36 2047 76 84383 116 1127871 156 21677295 196 236
37 27 77 57115 117 1991615 157 14378779 197 237 63728127
38 1819 78 56255 118 1327743 158 41942559 198 383606875
39 17691 79 37503 119 7303711 159 241682847 199
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Appendix D. Greatest common divisor linked to cycles

The following program provides the ratio of the smallest cycle solutions
gcd to the denominator 2w − 3v.
Note that sometimes the exponentiation sign � won't copy successfully and
has to be retyped manually (5 corrections in that case).

PARI/GP progamming code.
{for(v = 1, 20, w = (log(3)/log(2)*v)\1+1;
n_x0 = 3 � v-2 � v;
d_x0 = 2 � w-3 � v;
gcdd = gcd(d_x0, n_x0);
x0 = n_x0/d_x0+0.0;
printf("%s %i %s %i %s %.3f %s %i %s %i %s %i",
"v "v" w "w" x0 "x0" denominator "d_x0" numerator "n_x0" gcd "gcdd);
print()) }

The following program provides the ratio of the largest cycle solutions gcd
to the denominator 2w − 3v.
Note that sometimes the exponentiation sign � won't copy successfully and
has to be retyped manually (5 corrections in that case).

{w = 1; v = 0; d_x0 = 1; n_x0 = 2; tot = 2;
x0 = n_x0/d_x0+0.0; gcdd = 1;
printf("%s %i %s %i %s %.3f %s %i %s %i %s %i",
"v "v" w "w" x0 "x0" denominator "d_x0" numerator "n_x0" gcd "gcdd);
print();
for(w = 2, 20,
v = 1+((w-1)*log(2)/log(3))\1;
ww = (log(3)/log(2)*v)\1+1;
if(w == ww,
tot = tot+(3 � (-v))*(2 � w);
n_x0 = tot*(3 � (v))/2;
www = (log(3)/log(2)*(v+1))\1+1;
d_x0 = 2 � www-3 � (v+1);
gcdd = gcd(d_x0, n_x0);
x0 = n_x0/d_x0+0.0;
printf("%s %i %s %i %s %.3f %s %i %s %i %s %i",
"v "v" w "w" x0 "x0" denominator "d_x0" numerator "n_x0" gcd "gcdd);
print()))}
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Appendix E. Continued fraction of Ln(3)/Ln(2)

The following program provides the continued fraction of ln(2)
ln(3) and the

corresponding successive fractions' approximations. For ln(3)
ln(2) , the continued

fraction starts with [1; 1, 1, 2, ...] instead of [0; 1, 1, 1, 2, ...].

PARI/GP progamming code.
\p 5000
{nb = 20;
vct = vector(nb); x = log(2)/log(3);
for(i = 1, nb, vct[i] = x\1;
y = 1/(x-vct[i]); x = y);
print(vct);
for(i = 2, nb, t = i; x = vct[t];
for(j = 2, i, k = t-j+1; x = vct[k]+1/x);
print(numerator(x)" "denominator(x)))}

The following program provides an alternative way to get the continued

fraction of ln(2)
ln(3) and the corresponding successive fractions' approximations.

It may be analogous to the Terence Jackson / Keith Matthews algorithm in
the article "On Shanks' algorithm for computing the continued fraction of
logb(a)" (see reference [3]).

PARI/GP progamming code.
{infty = 10000000000;
e1 = 1; e2 = 0;
v1 = 0; w1 = 1; v2 = 1; w2 = 1;
printtex(cf" "num" "den);
print(0" "v1" "w1);
print(1" "v2" "w2);
for(n = 1, 50, v3 = v1+v2;
for(cf = 1, infty, m = cf;
v3 = v3+v2;
w3 = (log(3)/log(2)*v3)\1+1-e2;
r1 = (w3-w1)/(v3-v1);
r2 = w2/v2;
if(r1 == r2, ,v3 = v3-v2; break));
w3 = (log(3)/log(2)*v3)\1+1-e2;
print(m" "v3" "w3);
e1 = 1-e1; e2 = 1-e2;
v1 = v2; v2 = v3;
w1 = (log(3)/log(2)*v1)\1+e1;
w2 = (log(3)/log(2)*v2)\1+e2)}
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The continued fraction starts with the following coe�cients.
[0; 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, 5, 7, 1,
1, 4, 8, 1, 11, 1, 20, 2, 1, 10, 1, 4, 1, 1, 1, 1, 1, 37, 4, 55, 1, 1, 49, 1, 1, 1, 4,
1, 3, 2, 3, 3, 1, 5, 16, 2, 3, 1, 1, 1, 1, 1, 5, 2, 1, 2, 8, 7, 1, 1, 2, 1, 1, 3, 3, 1,
1, 1, 1, 5, 4, 2, 2, 2, 16, 8, 10, 1, 25, 2, 1, 1, 1, 2, 18, 10, 1, 1, 1, 1, 9, 1, 5, 6,
2, 1, 1, 12, 1, 1, 1, 6, 2, 12, 1, 1, 12, 1, 1, 2, 12, 1, 12, 3, 1, 5, 1, 14, 1, 1, 14,
2, 3, 1, 2, 2, 1, 4, 1, 4, 8, 1, 1, 1, 3, 5, 1, 1, 1, 1, 2, 1, 4, 3, 7, 5, 3, 1, 32, 1,
1, 1, 18, 1, 3, 2, 5, 2, 1, 3, 1, 8, 1, 1, 1, 2, 6, 6, 5, 33, 2, 2, 3, 1, 1, 1, 1, 29, 1,
3, 2, 1, 21, 1, 6, 52, 1, 8, 1, 4, 14, 9, 7, 1, 4, 18, 2, 2, 1, 1, 2, 100, 39, 1, 2, 1,
1, 19, 1, 5, 9, 1, 3, 964, 5, 1, 1, 1, 39, 1, 1, 1, 1, 5, 3, 1, 88, 1, 2, 1, 3, 1, 11,
1, 23, 11, 1, 1, 1, 2, 1, 1, 4, 3, 1, 5, 1, 4, 2, 1, 75, 1, 2, 1, 11, 17, 2, 5, 3, 1, 3,
34, 1, 10, 2, 4, 7, 1, 1, 23, 1, 6, 3, 1, 7, 1, 17, 2, 1, 24, 1, 1, 1, 10, 1, 4, 1, 1,
5, 3, 2, 1, 2, 1, 1, 3, 6, 8, 1, 8, 2, 1, 1, 4, 2, 7, 9, 2, 2, 2, 1, 7, 12, 2436, 1, 2,
1, 9, 10, 1, 5, 1, 3, 1, 2, 1, 2, 3, 1, 1, 3, 1, 4, 6, 1, 2, 1, 2, 2, 1, 2, 1, 1, 3, 46,
31, 196, 4, 1, 1, 3, 11, 1, 3, 14, 1, 1, 3, 2, 20, 1, 3, 6, 3, 85, 1, 7, 1, 9, 4, 5, 2,
1, 1, 78, 1, 4, 4, 2, 6, 6, 2, 4, 8, 4, 5, 1, 1, 11, 1, 2, 1, 5, 13, 2, 1, 3, 4, 2, 7, 5,
2, 2, 1, 2, 10, 1, 163, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 6, 30, 1, 2, 2, 13, 1, 1, 2, 1, 2,
1, 1, 1, 3, 2, 5, 1, 5, 3, 1, 3, 1, 3, 2, 36, 1, 1, 1, 1, 9, 7, 1, 28, 2, 1, 1, 5, 1, 11,
10, 3, 1, 2, 1, 1, 2, 19, 2, 5, 5, 1, 4, 1, 1, 2, 1, 5, 3, 10, ...].

Besides, a small sample of the corresponding successive fractions' approx-
imations is :
0/1, 1/1, 1/2, 2/3, 5/8, 12/19, 41/65, 53/84, 306/485, 665/1054, 15601/24727,
31867/50508, 79335/125743, 111202/176251, 190537/301994, 10590737/16785921,
10781274/17087915, 53715833/85137581, ...
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Appendix F. Evaluation of the cycles' "generators"

The following program provides the evaluation of the ratio x0 = (3v −
2v)/(2wad−3v) for very large value of v. It is designed to be able to get such

high value for the best rational approximation of ln(2)
ln(3) . These value of v and

wad are the numerator and denominator obtained in the previous appendix
and we have to notice that wad = or(w,w − 1) which has to be correctly
chosen underneath (or simply use the value on the denominator for w given
by the previous computer program). Over a certain rank, the exponents get
so high that straight calculations are out of reach and the exponents have to
be addressed separately which is done here.
Note again that sometimes the exponentiation sign � won't copy success-

fully and has to be retyped manually (7 corrections in that case).

PARI/GP progamming code.
\p 1000
{v = 15601; zero_one = 0; \ \ initial choice
w = (log(3)/log(2)*v)\1+ 1 - zero_one;
if(v < 1000, z = (3 � v - 2 � v)/(2 � w - 3 � v)+0.0,
tot = 0; ajt = vev = vector(1);
nv = v;
if(nv/2 == nv\2, vev[1] = 0, vev[1] = 1); m = 1;
nv = (nv/2)\1;
for(i = 1, 1000,
if(nv/2 == nv\2, ajt[1] = 0, ajt[1] = 1);
vev = concat(ajt[1],vev); m = m+1; nv = (nv/2)\1;
if(nv < 2, ajt[1] = nv; vev = concat(ajt[1],vev); m = m+1; break));
for(i = 1, m, j = m-i; tot = tot+(2 � j)*vev[i]);
prodd = 1.5; prodp = vector(2); exposa = vector(2); ajtp = vector(1);
prodp[2] = 1.0; exposa[2] = 0; prodp[1] = 1.5; exposa[1] = 0; exposd = 0;
for(i = 2, m, prodd = prodd*prodd; exposd = exposd*2;
for(i = 1, 10, if(prodd > 10, prodd= prodd/10; exposd = exposd+1, break));
ajtp[1] = prodd; prodp = concat(ajtp[1],prodp);
ajtp[1] = exposd; exposa = concat(ajtp[1],exposa));
prodd = 1; exposd = 0;
for(i = 1, m, if(vev[i] == 1, prodd = prodd*prodp[i]; exposd = exposd+exposa[i]));
mem1 = prodd; mem2 = exposd;
tot = 0; ajt = vev = vector(1);
nv = w-v;
if(nv/2 == nv\2, vev[1] = 0, vev[1] = 1); m = 1;
nv = (nv/2)\1;
for(i = 1, 1000,
if(nv/2 == nv\2, ajt[1] = 0, ajt[1] = 1);
vev = concat(ajt[1],vev); m = m+1; nv = (nv/2)\1;
if(nv < 2, ajt[1] = nv; vev = concat(ajt[1],vev); m = m+1; break));
for(i = 1, m, j = m-i; tot = tot+(2 � j)*vev[i]);
prodd = 2.0; prodp = vector(2); exposa = vector(2); ajtp = vector(1);
prodp[2] = 1.0; exposa[2] = 0; prodp[1] = 2.0; exposa[1] = 0; exposd = 0;
for(i = 2, m, prodd = prodd*prodd; exposd = exposd*2;
for(i = 1, 10, if(prodd > 10, prodd= prodd/10; exposd = exposd+1, break));
ajtp[1] = prodd; prodp = concat(ajtp[1],prodp);
ajtp[1] = exposd; exposa = concat(ajtp[1],exposa));
prodd = 1; exposd = 0;
for(i = 1, m, if(vev[i] == 1, prodd = prodd*prodp[i]; exposd = exposd+exposa[i]));
prodd = prodd/mem1; exposd = exposd - mem2;
z = 1/(prodd*(10 � exposd) - 1));
print(z)}
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Appendix G. Evaluation of the ratio r

The following program provides the evaluation of the ratio r− 1 for some
initial values x0 equal to 3 mod 4. The ratio n°1 is always in the interval
]0, 1[ except here if v = 2 for the said initial values.
Note again that sometimes the exponentiation sign � won't copy success-

fully and has to be retyped manually (4 corrections in that case).

PARI/GP progamming code.
{infty = 10000;
for(i = 1, 10, \\ make choice
x0 = 4*i+3;
parv = addp = shft = vector(1);
t = (3*x0+1)/2 ; parv[1] = 1; shft[1] = 0; v = 1;
for(k = 1, infty, if(t < x0, break,
if(t/2 == t\2, t = t/2;
addp[1] = 0, v = v+1; t = (3*t+1)/2; addp[1] = 1);
parv = concat(parv, addp[1])));
print("Initial value = "x0", v = "v);
print("Parity vector "parv);
w = (log(3)/log(2)*v)\1+1; addp[1] = 0; m = 1;
for(k = 1, v, n = m;
for(j = 1, w-n, if(parv[n+j] == 0, m = m+1, break)); m = m+1; addp[1] = m-1;
shft = concat(shft, addp[1])); shftp = shftn = shft; tot0 = 0.0;
for(k = 1, v, tot0 = tot0+(3 � (v-k))*(2 � shftn[k]));
for(j = 1, v-1,
for(k = 3, v+1, shftp[k-1] = shftn[k]-shftn[2]);
print("Exponents vector "shftp); tot1 = 0.0;
for(k = 1, v, tot1 = tot1+(3 � (v-k))*(2 � shftp[k]));
r = tot1/tot0; print("Ratio n°"j": "r-1); shftn = shftp))}
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