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Number Theory / Théorie des nombres 

 

Obstructions to Hasse principe. Another point of view. 
 

Hubert Schaetzel 
 

 

Abstract  To answer to the Hasse principle is the same as to make sure about the existence or not of solutions for a 

system of diophantine equations. There are numerous obstructions to this principle with non-linear and non-

quadratic equations. However, this principle is applied usually to formal variables representing integers. We 

extend here this framework to prime numbers variables causing a deep modification of the obstruction 

concept. We then observe that behind the existence problem associated with this principle, one can find the 

ingredients, mainly by replacing "global" variables by "local" variables, to enumerate the solutions of the 

asymptotic branches of diophantine equations.  
 

 Obstructions au principe de Hasse : une perspective différente. 
 

Résumé  Répondre au principe de Hasse est la garantie de l’existence ou non de solutions pour un système d’équations 

diophantines. Il existe de nombreux cas d’obstruction à ce principe pour des équations qui ne sont ni linéaires, 

ni quadratiques. Cependant, ce principe est appliqué habituellement à des variables formelles représentant des 

nombres entiers. Nous élargissons ici ce cadre à des variables représentant des nombres premiers ce qui a pour 

conséquence une large remise en cause de la notion même d’obstruction. Nous observons ensuite que derrière 

le problème d’existence de solutions associé à ce principe se découvrent les ingrédients, notamment le 

remplacement des variables « globales » par des variables « locales », permettant de dénombrer les solutions 

des branches asymptotiques des équations diophantines. 
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SIGNS AND ABREVIATIONS 

 

n Natural integer 

N Set of natural integers 

Z Set of relative integers 

p Any prime number 

P Set of prime numbers 

#{(x1, …, xn)} Cardinal (quantity, multiplicity…) of n-th (x1, …, xn), also noted #(x1, …, xn).  

( , )  Greatest common divisor of ( , ) 

Si(x, y, z)  If x true then y if not z. The condition can be overlapping : if(x, if(y, z, t),… ) 

^  Sign of exponentiation (x^n = x
n
) 

\ Such as 

 Whatever  

Є Sign of membership to a set (n є N, p є P) 

C Sign of inclusion 
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1 Part I : Existence of solutions 

 

1.1 Local global Hasse principle. Obstruction to the principle. 

 

The local-global principle consists in trying to reconstruct an information on a global object from information on associated 

local objects, easier to get [16]. 
 

Trivially 

 

R(x1,x2,…) = 0  =>  p є P,  k є N, R(x1,x2,…) = 0 mod p
k
            (1)

 

 

The Hasse principle is verified if the logical implication in the opposite direction is also true (with the condition R(x1,x2,…) 

= 0 has a solution in R, the real numbers field).    

 

The Hasse Minkowski theorem [3] applies on quadratic forms (and therefore also the linear forms) on the (global) field of 

the rational numbers. It stipulates that such a form will take the value 0 if and only if the form is set to 0 for each of the local 

field associated with the field of the rational numbers, that is within R the field of the real numbers, and within any of the p-

adic numbers field Qp, p a prime,. This is an example where the local-global principle is perfectly verified [16]. 

 

Otherwise, it is customary to speak of obstructions to the Hasse principle.  

As a first step, we will dedicate ourselves to redefine the framework of these obstructions with a new approach of the local 

tests. 

 

1.2 Local variables  

 

1.2.1 Chebotarev density theorem  

 

Through the preliminary work of Frobenius, Chebotarev [2] shows the following :  
 

Let us have a Galois extension L/K of a number field, of Galois group G.  Let us have B|p a prime ideal of L over p. Let us 

have the Frobenius conjugation class (p,L/K), yet noted ζp. Let us have C a class of conjugation in G. Then, the set of prime 

ideals p of K, unramified in L, and such as ζp = C, has natural density |C|/|G|.    
 

This theorem extends the Dirichlet's theorem on the infinitude of the primes in arithmetic progression by trivial application 

to a Q cyclotomic extension.    
 

It follows from the theorem : 

 

1.2.2 Prime number density theorem 

 

If c and a ≥ 1 are coprime integers, the natural density of the set of primes p = c mod a is equal to 1/φ(a). 

 

1.2.3 Corollary on prime numbers variables  

 

Let us have p a prime number.  

We project the set of prime numbers P on modulo p congruency classes : 

 

 mod p    

P  → {0, 1, 2, …, p-1}   

pi  pi mod p   

 

This application projects a unique number to 0. It is p. Other classes are images in same density of all other primes. By 

setting a probability density to quantities projected onto each of congruencies 0, 1, 2,..., p-1 and by arbitrarily summing all 

densities to p (that is an average density of 1 per class), we get the correspondence 

 

Congruencies 0 1 2 … p-1  

Normalized densities → 0 → p/(p-1) → p/(p-1)  → p/(p-1)  

 

This means that modulo p, the set of prime numbers is equivalent to the series of classes called here temporarily the 

representative of P at sequence p : 

{1, 2, …, p-1}            (2) 

 

Indeed, the probability density of 0 is 0, we can ignore this value 0 and we can then ignore the other congruencies relative 

weights as of equal values (the interest of normalization will be mentioned below in the part concerning the enumeration). 

 

The set {1, 2, …, p-1} is precisely the Galois group (Z/pZ)*. This group is generated by any primitive root g de p. 
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{g
0
, g

1
, …, g

p-2
}            (3) 

 

We can make similar projections on any set of congruencies modulo p
k
. 

 

 mod   

P  → {0, 1, 2, …, p
k
-1}  

pi  pi mod p
k
  

 

Then, the table will be (with still the same average value of 1) : 

 

Congruencies 0 mod p ≠ 0 mod p 
              (4) 

Densities → 0 → p/(p-1) 

 

The corresponding group (with φ(p) = p
(k-1)

(p-1)) will be : 

 

{g
0
, g

1
, …, g

φ(p)-1
}            (5) 

 

1.2.4 Case of variables of integers  

 

In a similar and trivial routine, the sets Z, N or N* will project in equiprobable way modulo p
k
 on : 

 

{0, 1, 2, …, p
k
-1}            (6) 

 

Then, the table of correspondence of congruencies densities will be (taking an average density of 1 per class) : 

 

Congruencies 0 mod p ≠ 0 mod p 
              (7) 

Densities → 1 → 1 

 

Note : Moreover here, the exact value of the density is obtained within a p
k
 period when are added gradually new integers. 

 

1.2.5 Definition of local variables 

 

We will call "asymptotic representative" or "local variable" of a variable at sequence p and exponent k (a term which is 

implied when k = 1), the equiprobable projection modulo p
k
 of the elements of non-null density of this variable.   

This can also be viewed as the classes of congruencies modulo p
k
 associated with these classes probability densities (before 

having confirmed the equidensity of the probabilities). 

 

1.2.6 Two available presentations : by congruency classes of or deployed list 

 

The local variable (or asymptotic representative) is usable either as the finite series of congruencies affected of probability 

densities or as an infinite series (called deployed) also assigned with the densities of probabilities corresponding to this 

variable. 

 

For example, for all primes P in the simplest modulo p case, it is either the finite series {1, 2, ..., p-1} or the infinite 

sequence (called deployed) {1, 2, …, p-1, p+1, p+2, … , 2p-1, 2p+1, 2p+2, …, 3p-1, …} with equidensity, the list can be 

deployed also left to negative numbers. 

 

Later, in asymptotic enumeration, we use variables in deployed form. 

 

1.2.7 Essential concept of stability. 

 

1.2.7.1 Generalities 

 

Let us have a variable X or Y depending on whether one is in the presence of integers and prime numbers. For 

representatives of X
n
 or Y

n
, we use the same method of projection on the set of congruencies {0, 1, 2, …, p

k
-1} 

 

 modulo   

X
n
  → {0, 1, 2, …, p

k
-1}               (8) 

x
n
  x

n
 mod p

k
  

 

This lead in the same way to zero density classes and given densities classes families. If beyond a given k, there is no more 

evolution in the relative proportions between two classes c and c+p
k
 densities for any c, the representative is then said stable 

(and the good representative is obtained) or stationary (later term which can borrow at similar concepts that one will 

discover in the p-adic field theory and that the reader can find in peculiar in [15] page 26). 
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We give below these representatives for X
n
 or Y

n
, with the convention of writing that X is a variable of integers and Y is a 

variable of prime numbers. 

By adding different degrees or more complex monomials, we obtain polynomials of variables of integers or variables of 

prime numbers. Let us have R(X,Y,...) such a polynomial.  

We then conduct the projection (with φ(p) = p
(k-1)

(p-1)) : 

 

 modulo    

R(X,Y,…) → {0, 1, 2, …, p
k
-1}   

R(x,y,…)  R(x,y,…) mod p
k
                   (9) 

x = 0 to p
k
-1     

y = g
0
, g

1
, … to g

φ(p)-1
     

…     

 

Collected frequencies on {0, 1, 2, ..., p
k
-1} depend on the data R(X, Y, ...) and the local parameters p and k.  

Let us set the sequence p and let us increase by integer increment k starting with 1. Possibly, the relative proportions of the 

collected frequencies stabilize at a certain rank kp. If this happens, the relative proportions remain constant for all k ≥ kp 

and we refer kp as the degree of stability of R(x, y, ...) at the sequence p.  

All the sequences are passed in review in this way and we go to the next sequence as soon as stable relative proportions are 

recognized. 

 

1.2.7.2 Stability degree of a monomial of prime numbers 

 

Let us have δb the positive integer δ from which the greatest common divisor of n et p
δ-1

(p-1) remains unchanged (n is the 

exponent in Y
n
) : 

δb(p,n) = min(δ \ dδ = dδ+j   j c N*, di = (n, p
i-1

(p-1))) 

 

The degree of stability δc of a monomial is the minimal value δ such as the normalized representative of the monomial 

modulo p
δ
 will no longer evolve when exponent δ increases. 

Let us consider the monomial y
n
. 

Let us have the sequence p and dδ = (n, Φ(δ)) = (n, p
δ-1

.(p-1)) 

We get then : 

δc(p = 2, y
n
) = 1+min(δ \ dδ = dδ+j   j c N*) = 1+δb               (10) 

δc(p ≠ 2, y
n
) = min(δ \ dδ = dδ+j   j c N*) = δb               (11) 

 

The reader will find in appendix 2 an illustration with the prime numbers variable y
6
. This example highlights the proof of 

results (10) et (11) which follows. 

 

Proof  
 

Let us have g a primitive root of p. The representative of a variable y
n
, at sequence p ≠ 2, g being a primitive root of p and 

with d = (n,p
δ-1

.(p-1)), is {g
0.d

, g
1.d

, g
2.d

, …, g
(Φ(δ)/d-1).d

} mod p
δ
. For p = 2, the representative is {5

0.d
, 5

1.d
, … , 5

(Φ(δ)/d-1).d
}U{(-

5)
0.d

, (-5)
1.d

, … , (-5)
(Φ(δ)/d-1).d

} where d = (n, Φ(δ)/2) = (n,2
δ-2

.(2-1)). Thus the result. 

 

Function « rho » 
 

The degree of stability cuts behaviour modulo p
δ
 of an expression into two zones : the "unpredictable" zone δ < δc to be 

explored in a case by case way and the δ ≥ δc zone having the characteristics observed at δ = δc. 

 

1.2.7.3 Degree of stability of a monomial of integers 

 

The degree of stability of the monomial X
n
 is infinite in the sense that the frequencies (densities) gathered on {0, 1, 2, …, 

p
k
-1} evolve permanently on the first {0} term in regard to other terms {1, 2, …, p

k
-1} when k increases (and tends to 

infinity). However, even if the representative cannot therefore be completely expressed, it is possible to examine its 

evolution with k (in the expression given in (8)) and infer useful features at infinity as appropriate.  

We shall see, by further developments in part II, that this non-stability of {0} is host key reason of "obstructions" to the 

Hasse principle. 

 

1.3 Obstruction to the Hasse principle with a new point of view  

 

1.3.1 A trail to reconsider  

 

For the forms of greater than 2 degrees, counterexamples have been given by different authors to the Hasse principle. These 

counter-examples are called "obstructions" in the dedicated language. However, these obstructions are observed recklessly 

only for integer variables. The local variable (of congruency classes) takes in this case successively each of the values 

between 0 and p
k
-1 and one gets, in case of "obstruction", solutions modulo p

k
, (k ≥ kp) to the studied diophantine equation 

at all sequences p.  

However, if a diophantine equation, for example 3x
3
+4y

3
+5z

3
 = 0 has no solution in Z, except the trivial solution (0,0,0), it 
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has neither if variables x, y and z take only values in the set of prime numbers. Formally, the overall equation with integers 

or with prime numbers is exactly the same. But it is not so in the local situations with integers on one side and prime 

numbers on the other side. 

 

Thus, we could not find any obstructions to the Hasse principle after this "change of point of view" which is to replace the 

local variables of integers by local variables of prime numbers in all the examples of the mathematical literature that we 

tested. Below, we call "prohibitions" the sequences p that entails the denial of the obstruction (in prime numbers).   

In the table below, the prohibitions are not necessarily limited to the given sequences (even if these lists are a priori 

exhaustive), but it is sufficient to find a single value, as we have done, to prove the absence of obstructions to the Hasse 

principle (according to our new perspective). 

 

Table (1) 

  

References Equations  

(x, y, z and t prime numbers variables)  

Prohibitions 

p = 

[6] Cassels et Guy (1968)  5x
3
+9y

3
-10z

3
-12t

3
 = 0 7 

[10] 9x
2
-2x.y-7y

2
-2z

2
+1 = 0 2 

[5] A.Schinzler  x
4
+17y

4
-2(4z

2
+t

2
)

2
 = 0 3 

[7] E.S.Selmer  3x
3
+4y

3
+5z

3
 = 0 3 et 7 

[7] x
3
+3y

3
+20z

3
 = 0 7 

[7] x
3
+4y

3
+15z

3
 = 0 7 

[7] x
3
+5y

3
+12z

3
 = 0 7 et 13 

[11], [7] x
3
+11y

3
+43z

3
 = 0 2, 3 et 7 

[6] V.A.Iskovskikh (1970) x
2
+y

2
+(z

2
-3).(z

2
-2) = 0 2 et 3 

[4] x
2
+y

2
+(z

2
+1).(z

2
+3).(z

2
-3)

2
.(z

2
+23) = 0 2 et 3 

 

Briefly, let's go back for a proper understanding of the subject, on how to obtain this table. We do a calculation with 

overlapping loops according to the routine of the relationship (9). For the equation of Cassels and Guy, this is written for 

example : 

 

From p = 2 to pi 

From x = 0 to p
k
-1 

If x/p = int(x/p) goto next x otherwise 

From y = 0 to p
k
-1 

If y/p = int(y/p) goto next y otherwise  

From z = 0 to p
k
-1 

If z/p = int(z/p) goto next z otherwise 

From  t = 0 to p
k
-1 

If x/p = int(x/p) goto next x otherwise 

c = 5x
3
+9y

3
-10z

3
-12t

3
 mod p 

#(c) = #(c)+1 

Next t  

Next z 

Next y 

Next x 

Next p 

Spread out of cardinals # (duplications modulo p
k
) 

We get then the following tables : 

 

Tables (2) 
k = 1              

p           c 0 1 2 3 4 5 6 7 8 9 10 11 12 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 8 4 4 8 4 4 8 4 4 8 4 4 8 

5 64 48 48 48 48 64 48 48 48 48 64 48 48 

7 0 243 324 81 81 324 243 0 243 324 81 81 324 

Product 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0 ≠ 0 
              

k = 2 
             

p           c 0 1 2 3 4 5 6 7 8 9 10 11 12 

2 8 0 8 0 8 0 8 0 8 0 8 0 8 

3 324 162 162 162 0 0 162 162 162 324 162 162 162 

5 8000 6000 6000 6000 6000 8000 6000 6000 6000 6000 8000 6000 6000 

7 0 83349 111132 27783 27783 111132 83349 0 83349 111132 27783 27783 111132 

Product 0 0 ≠ 0 0 0 0 ≠ 0 0 ≠ 0 0 ≠ 0 0 ≠ 0 
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k = 3 
             

p           c 0 1 2 3 4 5 6 7 8 9 10 11 12 

2 64 0 64 0 64 0 64 0 64 0 64 0 64 

3 8748 4374 4374 4374 0 0 4374 4374 4374 8748 4374 4374 4374 

5 1000000 750000 750000 750000 750000 1000000 750000 750000 750000 750000 1000000 750000 750000 

7 0 28588707 38118276 9529569 9529569 38118276 28588707 0 28588707 38118276 9529569 9529569 38118276 

Product 0 0 ≠ 0 0 0 0 ≠ 0 0 ≠ 0 0 ≠ 0 0 ≠ 0 

 

The cardinals (numbers) of solutions #(c) are within the double framework. As required, we call these cardinals the factors 

of abundance of c. The modulo p
k
 spread outs are indicated with red wavy edges. 

For c = 0, we find indeed a ban due to the sequence p = 7. We can also view the concept of stability by looking at ratios of 

cardinals from a target c to another. Thus, for p = 2, 3 and 5, stability is reached from k = 2. For p = 7, it intervenes even 

from k = 1 (precisely on the fact that #(c) = 0 for c = 0 modulo 7 and that in general stability occurs for c ≠ 0 modulo p from 

k = 1 on what we will see later in part II). 

 

In addition, returning to the table of obstructions examples, we can note that a priori any equation ax
3
+by

3
+cz

3
 = 0 with 

a+b+c ≠ 0 has a prohibition testing prime numbers local variables and has not for integer variables.  

 

The temporary absence of "obstruction with prime numbers" in the literature does not mean his absence regardless of the 

chosen diophantine problem.  

Thus 

x
2
+2y

2
+3z

2
+18t

2
 = 0              (12) 

  

which has of course only a trivial solution (0,0,0,0) has no prohibition, using prime numbers variables, regardless of the 

sequence p. 

However, x
2
+2y

2
+3z

2
+18t

2
 = c has a finite number of solutions (and often none) regardless of the target c. In this world of 

scarcity or lack of solutions, a single solution as (0,0,0,0) is to be regarded as a source of abundance. Therefore, there is no 

place for a ban at c = 0. 

 

This example shows that if one wishes to acquire some understanding of what interests us here, it is necessary to have an 

overall vision, namely study not an equation but a family of equations at the same time. Thus, we introduce the concept of 

target which is the use of a c parameter : 

 

R(x,y,…) = c 

 

Deeper information is obtained when we get interested, in this framework, with the enumeration of solutions what we will 

do in the second part of the article. 

 

1.3.2 Redefining obstructions  

 

In the light of the foregoing, we are led to define a notion of more gradual obstruction. We call weak obstruction that 

observed with variables of integers and strong obstruction that observed with variables of prime umbers. There is of course 

the possibility of mixing in a diophantine equation, integer variables and variables of primes. In this case, we can speak of 

intermediate obstruction when it occurs, but this concept is flawed (as a result of the number of variables of each category 

without quantification with the terminology "intermediate") and has certainly little of interest. 

 

 

 Types of global et local variables 

Strong obstruction                Prime numbers 

Weak obstruction                Integers 

Intermediate obstruction                The two types 

 

Within this new framework, we highlight the concept of trivial solutions and non-trivial solutions by its banning. There are 

no trivial solutions. There is a solution or there is none. For the homogeneous equations, 0 is a solution and even more. We 

will see that, far from being trivial, it is instead of great importance for the coherence of the results observed while 

enumerating solutions. For example, the existence of a single trivial solution allows to justify the consistency with a general 

enumeration which anticipates an infinite number of solutions, simply by arbitrary assignment of an appropriate multiplicity 

as 0
n
 = 0 for any n (similar to the solution at infinity in a projective space). 

 

1.3.3 Relevance of weak obstruction : a very narrow domain 

 

As noted at paragraph 1.2.7.3, the degree of stability of an integer variable can be infinite (in particular for the monomials of 

degree greater than 1). However, the non-stability affects only target c = 0 in the local equation P(x) = c mod p
k
 where P(x) 

is a polynomial without constant term. It is the unique case of the weak prohibition phenomenon. This will be discussed in 

more detail in part II of this article.   

For this exception, the weak obstruction may then be "lifted" somehow by studying what happens when changing variable 

type. 
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1.3.4 Relevance of strong obstruction : an a priori empty domain 

 

We could not highlight a one variable equation strong obstruction which made sense, that is with the remarks of the 

example of the diophantine equation (12) in the background. 

 

1.3.5 Evaluation strategies 

 

We have two possible options. 

Option 1 : Search for the origin of the obstructions by the study of Bauer-Manin groups and other bielliptic objects taking 

into account different types of variables (of integers and of prime numbers to start with…). 

Option 2 : Examine the selected diophantine equation within a target c parameterized family of equations, c varying on Z. 

Reasoning within simultaneous enumerations (c axis forming an additional dimension of the initial affine space) as we 

indicated in paragraph 1.3.2 while keeping in mind the possibility of exceptions (ex p-q = 0 among p-q = 2n). 

We adopt this second option because it allows to give another perspective to the concept of "obstruction", but also to unveil 

an opposite concept, that we have called the "influx", and then discard both in the way proposed in part II. 

 

 

 

2 Part II : Solutions enumerations 

 

2.1 Introduction to local-global enumerations 

 

We reuse in this paragraph title the terminology (local-global) associated with the Hasse principle, but converting a problem 

of existence into a counting exercise.   
 

We will discover that the notion of obstruction is much less determined as usually sought. According to the choice of the 

diophantine equation and what we called above the target, it is not about a question of all or none, but it appears rather a 

gradation of exceptions to the a priori expected results (enumerations), with straight "obstruction", with low values, but also 

with high values, or even infinite ones. 
 

We are interested in the enumeration of solutions of either integers or prime numbers diophantine equations (or a mixture of 

the two). Following equations, we will have one finite number (possibly zero) or an infinite number of solutions. Our 

ultimate goal is the count of the last class of equations. For them, known formulas (demonstrated or supposed) are usually 

written in the form of a product with a "density of solutions" oriented factor and an “available volume” oriented factor. 

 

 #{(x,y,…) \ R(x,y,…) = c} ≈ fan(c).V’(c)            (13)
 

 

It is the kind of expression that is found, for example, with the "circle method", where the solutions density factor fan (c) is 

called the singular series (or fudge product) or even Euler product. The formulas associated of this method do however 

apply only when the number of variables is great towards the degree of the equation, which excluded the most "interesting" 

cases. We will reduce this barrier of the number of variables by taking a different path sieving the appropriate impacts on 

one variable (monomials and polynomials) diophantine equations. 

Thus, we will gradually show how to reach the type of relationship (13) not by the top (many variables) but from the bottom 

down (one single variable) without meanwhile forgetting the concept of "obstruction" by checking its relevance (or not). 

 

2.1.1 The solutions density factor 

 

Let us have a diophantine equation and a given target c : 

 

R(x,y,…) = c 

 

Variables x, respectively y, are taking values in the set of integers, respectively prime numbers.   

Then, trivially 

R(x,y,…) = c  =>  p є P,  k є N, R(x,y,…) = c mod p
k
            (14)

 

 

but also, and this is the most useful relationship (by adding the product sign), 

 

R(x,y,…) = c  =>  pi є P,  ki є N, R(x,y,…) = c mod Π pi
ki
            (15)

 

 

so that by adding the notion of enumeration 

 

#{(x,y,…) \ R(x,y,…) = c}  => #{(x,y,…) \  pi є P,  ki є N, R(x,y,…) = c mod Π pi
ki
}            (16)

 

 

Let us note that the variables in the second member are local variables, in other words congruency classes. It would be more 

appropriate to write : 

 



P 9/68                                                    

#{(x,y,…) \ R(x,y,…) = c}  => #{(cx,cy,…) \  pi є P,  ki є N, R(cx,cy,…) = c mod Π pi
ki
}            (17)

 

 

where cx belongs to classes {0, 1, …, Π pi
ki
 -1} and cy to classes {g

0
, g

1
, …, g

φ(t)-1
} with φ(t) = φ(Π pi

ki
) = Π pi

ki-1
.(pi-1).  

 

Later on in this paper, when there is no ambiguity on the preliminary choice of pi and of ki, we will use eventually the 

shortened expression #(c) for : 

 

#(c) = #{(cx,cy,…) \  pi є P,  ki є N, R(cx,cy,…) = c mod Π pi
ki
}         (18)

 

 

The term "abundance factor" is also used on this occasion for cardinal # (c), these factors being natural numbers. 

 

Let us have n the number of integers variables (type x) and m the number of prime numbers variables (type y). When the ki 

are incremented, the number of classes increases in the presence of several variables. To reduce the term to a density, we 

divide the expression by the total number of classes. We call this the normalization operation. 

Then : 

 

fan(c, pi) = pi
ki
 . 

#{(x,y,…) \  pi є P,  ki є N, R(x,y,…) = c mod Π pi
ki
} 

           (19) 
 

                               (pi
ki
 )

n
.(φ(pi

ki
))

m
  

 

Multiplication by pi
ki
 brings back to an average value of 1 the fan(c, pi) instances.  

For the moment, the used earlier implication involvement (relation17) has a rather fuzzy meaning. It essentially says that if 

there are solutions to the global equation, they are reflected in the local equations. In other words, we return at this stage 

without major progress towards a problem of solutions existence. To go further, we will examine the right member of the 

implication and determine whether the arrow in the other direction is lawful and what may be its significance from the point 

of view of enumeration. 

 

Before that, however, it is necessary to have related results based in particular on the Chinese theorem that we will discuss 

after the paragraph "available volume factor". 

 

2.1.2 The available volume factor 

 

This second ingredient is obtained as follows. Let us write again : 

 

R(x,y,…) = c 

 

Let us consider the affine space (x, y,...) landmarked by the axis x, y,... that is constructed as follows. The axis coordinates 

are integers. The coordinates are defined by the subscripts of x and y, that is for x an integer variable x0 = 0, x1 = 1, x2 = 2, 

... and for y prime numbers variable y0 = 2, y1 = 3, y2 = 5, y3 = 7, y4 = 11, ... (according to specific need, subscripts and 

numbers can be also negative). The volume of the affine space is then equal to all solutions of R(x,y,...) = c, c describing all 

(possibly negative) integers. For a given c, the number of solutions of R(x,y,...) ≤ c is given by the volume of a "slice" of the 

space noted V(c). For the nearby c+1 target, the number of solutions is given by the nearby "slice" V(c+1). If V(c) is a 

sufficiently regular function (such as a polynomial), the volume between two targets is then : 

 

V’(c) ≈ V(c+1)-V(c)              (20) 

 

Note that asymptotically, we can use equality. 

 

2.2 Theorem of Chinese remainder 

 

The Chinese remainder theorem is a result of arithmetic dealing with the resolution of systems of congruencies. This result, 

initially established for Z/nZ, what suffices here, generalizes in ring theory. The Chinese origin is on the mathematician Qin 

Jiushao for a book published in 1247, but there is also a version dating from the 3rd century by Sun Zi, the Sunzi Suanjing 

[16]. 

 

2.2.1 Statement 

 

Let us have m1, m2, …, mr relative primes and m their product. For any succession of given integers x1, x2, …, xr, there is a 

single integer x between 0 and m-1 such as x = xi, mod mi for i = 1 to r.   
 

In modern terms, this is written as : If m1, m2, …, mr are relative primes, m = m1.m2…mr, then the ring Z/m1Z x Z/m2Z x … 

x Z/mr is isomorphic to the Z/mZ ring.  

 

2.2.2 Application to enumerations 

 

Let us have m1 et m2 two relative prime numbers. Let us have R(x1, x2,…) a polynomial expression with one or more 

variables. We do vary x1, x2, … from 0 to m1-1, respectively from 0 to m2-1, ... and collect the number #(cm), respectively 

#(cm1), respectively #(cm2) solutions (x1, x2,…) such as R(x1, x2,…) = c mod m. 
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Then 

#(cm) = #(cm1).#(cm2)          (21) 

 

Proof  

 

The reader, somewhat unfamiliar with Chinese theorem, will find two examples in appendix 1 as illustrations. 

The R(x1, x2,…) expression induces the values of c such as c = R(x1, x2,…) in the second column of the appendix standard 

table that can be written for any choice of m, m1 and m2 and any polynomial expression. For the column of the modulo m1 

values, the results of the m1-th first lines are duplicated m2 times. One proceeds in the same way in the column 

corresponding to m2 with systematic permutations of subscripts 1 and 2. Then for a given target cm mod m (second column) 

is corresponding a distinct (cm1,cm2) modulo m1 and modulo m2 respectively (third and fourth columns). As m1 et m2 are 

relative primes and by the Chinese theorem, we have an equality between the "frequency" m/#cm of cm and its “frequency 

of coincidence" with the previous couple (cm1,cm2) and is thus the product (m1/#cm1).(m2/#cm2). As m = m1.m2, the said 

result follows. 

 

For equations containing the prime numbers variables, we first make up a truth table (as in appendix 1) temporarily keeping 

integer variables. The transition to the new variables leads to a simple deletion of certain rows in this truth table without 

changing the remaining rows (see again the example of l’appendix 1. Thus the acquired result remains unchanged.   

 

By induction, we then have with cxi et cyi the relevant classes corresponding to either integer variables or prime numbers 

variables (p2 = 2, p3 = 3, p4 = 5, p5 = 7, p6 = 11...) : 
 

 k 

{#(cx1,…,cy1,…) \ R(cx1,…, cy1,…) = c mod 2
i2

...pk
ik
} =   ∏ {#(cx1,…,cy1, …) \ R(cx1, …,cy1,…) = c mod pm

im
}       (22) 

 m = 2 

 

2.3 Related concepts indispensable to enumerations 

 

2.3.1 Concept of stability (or stationarity) 

 

We start with  

 

#{(x,y,…) \ R(x,y,…) = c}  => #{(cx,cy,…) \  pi є P,  ki є N, R(cx,cy,…) = c mod Π pi
ki
}            (23)

 

 

So that according to the Chinese theorem 

 

#{(x,y,…) \ R(x,y,…) = c}  =>  Π #{(cx,cy,…) \  ki є N, R(cx,cy,…) = c mod pi
ki
}            (24) 

 pi є P  

 

The second member will only give relevant information if increasing ki leads to a stability of the proportions between 

classes or if the trends of these proportions can be inferred at infinity. 

 

The concept of stability is thus fundamental.  

 

2.3.2 Information contained in local variables 

 

A local variable is the projection of an infinite number of values on a finite set. To get back the global variable from the 

finite sets assumes therefore an infinite number of information, that is all the sequences pi must be reviewed. However, even 

with all these data available, it is not sure that the initial information can be found completely or in a useful manner. We will 

therefore proceed by stage starting from the most basic cases. 

 

2.4 One variable local-global enumeration 

 

2.4.1 Generalities on monomials 

 

The x
n
 monomials are the basic building blocks of a diophantine equation. Their behaviour towards the Hasse principle 

supports all the remainder. If they respond in a certain way to such principle, the said principle spreads in a natural way in 

any equation formed with these bricks. If they are not, we can predict failure in advance. 
 

To enumerate the number of integer solutions of a unique variable diophantine equation, in peculiar z
n
 = c, is a priori easy. 

This is an opportunity that must be taken. Thus, we propose to find the link, in relation to enumeration, between the global 

equation z
n
 = c and the set of equations local z

n
 = c mod p

δ
, for a finite given c and z a variable either of whole numbers or 

of prime numbers.  
 

If relevant results for one variable are highlighted and if literature proved results in three or more variables (Vinogradov for 

three prime numbers, Friendlander and Iwaniec for p = x
2
+y

4
, ...) are deduced by the same construction, a bridge is thrown 

then to valid conjectures concerning two variables (twin primes, Goldbach problem...) 
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We shall seek an expression in the usual form of the asymptotic enumerations, that is the product of a singular series (Euler 

product) by a volume : 
 

 p = ∞   

#(c) = ( Π 
#(c) mod pi

δi
 
).V'(c)             (25) 

p
ai
 

 pi = 2   

 

Here δi is chosen large enough to ensure the concept of stability, the constant ai, properly chosen, ensures on his side what 

may called normalization and V'(c) ≈ V (c)-V(c-1) is the available volume between neighbouring targets. 

 

Main objective 

 

In what follows, we do need only a minimal information concerning the number of solutions of the equation diophantine z
n
 

= c. That is, for a given n, this number is equal to zero if c ≠ a
n
 and c ≠ 0, is constant if c = a

n
 and a ≠ 0 (equal to 1 or 2 

according to the parity of n) and is equal to 1 for c = 0. This last assertion is questionable as we will see below.  

These numbers of solutions being thus determined, our goal is to find them back in with the help of the relation 25. 

 

2.4.2 The example of x 

 

The equation x = c has a unique solution for any c (integer or not). 

Locally, x = c mod p (or mod p
k
) has a unique solution for any p.  Thus, trivially, with V’(c) = x’ = 1 :  

 

#{(x) \ x = c} =  Π #{cx) \ cx = c mod pi}.V’(c) = 1.1 = 1            (26) 

 pi є P  

 

This may seem so simple, but things are less trivial to the higher degrees. 

 

2.4.3 The examples of x² and x
4
 

 

Dealing with the general case further, we are concerned for the moment only by the numerical examples in order to 

familiarizes with the concepts. 

We begin with x². We seek the evolution of the values of #(c) mod p
δ
 with δ, then of V'(c) which is deduced from c = x², 

that is x = c
1/2

, and so V'(c) = x' = 1/2).c
-1/2

. The numerical example taking some place, we have leaved it in appendix 3. We 

observe that the problem is actually solved for c = 1 to 64 targets by using the formula : 

 

 p = 7   

#(c) = V'(c) . Π 
#(c) mod p

9
 

              (27) 
2 

 p = 2   

 

In appendix 3, we have given a somewhat broader numerical table with a review of the cardinals for a range of sequences p 

= 2 to 29 for δ < 6 and p = 2 to 7 for 6 ≤ δ ≤ 9. When subsequent sequences are examined, the multiplicative ratio is 2/2 = 1 

and does not alter the results for each target. Of course, when c is greater than 64, the range of p sequences and of powers δ 

is to extend. On the range of examples on display, we see that we arrive for a right member to a cardinal of 2 when c is 

actually square and to a cardinal of 0 otherwise, which corresponds to the actual number of solutions. Note however that the 

result in c = 0 does not coincide with such a formula if we consider having only a single solution. 

 

We did the same with the example of the monomial x4 we present below. There, we have formally c = x4, so that x = c
1/4

 and 

V’(c) = x’ = (1/4).c
-3/4

 = 1/(4.x
3
). 

Table (3) 

 

x 1 2 3 4 
 

/ / / / / 

p                         c = x4 1 16 81 256 
 

2 3 4 5 6 

2 8 64 8 512 
 

0 0 0 0 0 
3 2 2 54 2 

 
0 0 2 0 0 

5 4 4 4 4 
 

0 0 0 0 4 
7 2 2 2 2 

 
2 0 2 0 0 

11 2 2 2 2 
 

0 2 2 2 0 
13 4 4 4 4 

 
0 4 0 0 0 

17 4 4 4 4 
 

0 0 4 0 0 
19 2 2 2 2 

 
0 0 2 2 2 

23 2 2 2 2 
 

2 2 2 0 2 
29 4 4 4 4 

 
0 0 0 0 0 

31 2 2 2 2 
 

2 0 2 2 0 

           Product 131072 1048576 3538944 8388608 
 

0 0 0 0 0 

Product/#(1) 1 8 27 64 
      

4.ajust = 1/V’(c) = 4.x3 4 32 108 256 
 

/ / / / / 
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x 1 2 3 4 
 

/ / / / / 

p                         c = x4 1 16 81 256 
 

2 3 4 5 6 

Product/#(1)/ajust 1 1 1 1 
      

 

The results in the red framework are equal to #(c) mod p
δ
 with a large enough δ (up to get a constant term). We check again 

that the evaluation method sieves targets without solutions giving a zero value and that the result of the targets with 

solutions can be put in the form fan(c).V'(c) since the last line is a constant (equal to 1). To achieve this result, we note that 

for the case where c = x4, the terms are the same for one target to another except when p sequences are not relative primes 

with the power of x (here p = 2 and n = 4) or with targets c (p = 3 and c = 3). 
 

We now consider the general case taking into account any target, using sequences 2 to infinite, and this to any power n. We 

find again the remark concerning the sequences p, the power of x and targets c. 

 

2.4.4 The example of x
n
 

 

2.4.4.1 Singular series 

 

Let us have to solve  

x
n
 = c mod p

δ 

 

We note systematically by g, later in the text, one of the primitive roots of the prime number p. 

 

2.4.4.1.1 Case p odd 

 

Let us have di = (n,Ф(δ-i)) where Ф(δ-i) = p
δ-i-1

.(p-1) and δn = int((δ-1)/n) the integer part of (δ-1)/n.  

Nous pouvons alors dresser le tableau suivant : 

We can then compile the following table : 

Table (4) 

 

x c = x
n
 mod p

δ
 #(c) #(variant of c) Types 

0 

p
δ-1

.{g
0
, g

1
, … , g

Φ(1)-1
} 

p
δ-2

.{g
0
, g

1
, … , g

Φ(2)-1
} 

… 

p
δn+1

.{g
0
, g

1
, … , g

Φ(δ-(δn+1))-1
} 

0 p
δ-δn-1

 1 

S
u

p
er

n
u

m
er

ar
y

 c
ar

d
in

al
s 

p
δn

.{g
0
, g

1
, … , g

Φ(δ-δn)-1
} p

δn.n
.{g

0.d[δn.n]
, g

1.d[δn.n]
, … , g

(Φ(δ-δn.n)/d[δn.n]-1).d[δn.n]
} dδn.n.p

δn.(n-1)
 Φ(δ-δn.n)/dδn.n 

… … … … 

p
i
.{g

0
, g

1
, … , g

Φ(δ-i)-1
} p

i.n
.{g

0.d[i.n]
, g

1.d[i.n]
, … , g

(Φ(δ-i.n)/d[i.n]-1).d[i.n]
} di.n.p

i.(n-1)
 Φ(δ-i.n)/di.n 

…  … … 

p
1
.{g

0
, g

1
, … , g

Φ(δ-1)-1
} p

n
.{g

0.d[n]
, g

1.d[n]
, … , g

(Φ(δ-n)/d[n]-1).d[n]
} dn.p

(n-1)
 Φ(δ-n)/dn 

p
0
.{g

0
, g

1
, … , g

Φ(δ)-1
} p

0
.{g

0.d[0]
, g

1.d[0]
, … , g

(Φ(δ)/d[0]-1).d[0]
} d0 Φ(δ)/d0 Std 

 

We have adopted above the writing convention [i] which means that integers i are subscripts. Moreover p
i
.{g

0
, g

1
, … , g

Φ(δ-i)-

1
} is to be read {p

i
.g

0
, p

i
.g

1
, … , p

i
.g

Φ(δ-i)-1
}.  

We recall also that #(c) is the number of solutions corresponding to a given target c. For example, for the first line (except the 

title line), c = 0 mod p
δ
 when x takes one of the first column values and we have 1+Φ(1)+Φ(2)+…+Φ(δ-(δn+1)) = 1+p

0
.(p-

1)+p
1
.(p-1)+…+p

δ-(δn+1)-1
.(p-1) = p

δ-δn-1
 distinct values of x. 

 

Thus, equation x
n
 = c mod p

δ
 admits di.n.p

i.(n-1)
 solutions for c likewise p

i.n
.g

i.d[i.n]
 and i ≤ δn, admits p

δ-δn-1
 solutions for c = 0, 

otherwise there is no solution. 

 

Proof 
 

Replacing x in x
n
 mod p

δ
, the reader verifies immediately column 2 of the preceding table. All numbers in the first column 

are distinct when g is a primitive root of p (by definition of a primitive root). It is necessary and it suffices then to show that 

all the cases x = 0 to p
δ
-1 are given in the first column. Indeed, counting from top to bottom, we have 

1+Φ(1)+Φ(2)+…+Φ(δ-(δn+1))+Φ(δ-δn)+…+Φ(δ-i)+…+ +Φ(δ-1)+Φ(δ) = p
δ-δn-1

+p
δ-δn-1

.(-1+p)+… +p
δ-i-1

.(-1+p)+… +p
δ-1

.(-

1+p) = p
δ-δn-1

-p
δ-δn-1

+p
δ-δn

-p
δ-δn

 …+p
δ-i-1

-p
δ-i-1

+…+p
δ-1

-p
δ-1

+p
δ
 = p

δ
, then the result.  

 

Evaluation of the set {g
0.d[i.n]

, g
1.d[i.n]

, … , g
(Φ(δ-i.n)/d[i.n]-1).d[i.n]

} 
 

There are Φ(δ)/d0 variants (distinct numbers). 

The whole set is described by : 

{g
0
, g

n
, g

2n
, …, g

Φ(δ-i.n)/d[i.n]-1).n
 g

Φ(δ-i)-
}+m.p

i
 with m = 0 to Φ(δ-δn). Φ(δ-i.n)/di.n-1. 

In peculiar, for i = 1 

{g
0.d[0]

, g
1.d[0]

, … , g
(Φ(δ

 g
0.d[0]

, g
1.d[0]

, … ,}+i.p with m = 0 to Φ(δ-δn). 
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Terminology 

 

It will be useful later in this article to distinguish some of the c target and their factors of abundance #(c). We call them 

"supernumerary cardinals". For the monomials, they identify to objects called that way in table (4). 

 

2.4.4.1.2 Case p even (p=2) 

 

Here, there is no primitive root but we can take the generating couple (5, -5).  

Let us have di = (n,Ф(δ-i)/2) where Ф(δ-i) = 2
δ-i-1

 and δn = int((δ-1)/n).  
 

We can draw again the table of residues cardinals as in the case of odd sequences : 

 

Table (5) 

 

x x
n
 = c mod 2

δ
 #(c) Types 

0 

2
δ-1

.{5
0
} 

2
δ-2

.{5
0
, 5

1
, … , 5

Φ(2)-1
} 

2
δ-2

.{(-5)
0
, (-5)

1
, … , (-5)

Φ(2)-1
} 

… 

2
δn+1

.{5
0
, 5

1
, … , 5

Φ(δ-(δn+1))-1
} 

2
δn+1

.{(-5)
0
, (-5)

1
, … , (-5)

Φ(δ-(δn+1))-1
} 

0 2
δ-δn-1

 

S
u
p
er

n
u
m

er
ar

y
 c

ar
d
in

al
s 

2
δn

.{5
0
, 5

1
, … , 5

Φ(δ-δn)-1
} 

2
δn

.{(-5)
0
, (-5)

1
, … , (-5)

Φ(δ-δn)-1
} 

2
δn.n

.{5
0
, 5

1
, … , 5

(Φ(δ-δn.n)/d[δn.n]-1)
} 

2
δn.n

.{(-5)
0
, (-5)

1
, … , (-5)

(Φ(δ-δn.n)/d[δn.n]-1)
} 

2
δ-δn-1

 

… … … 

2
i
.{5

0
, 5

1
, … , 5

Φ(δ-i)-1
} 

2
i
.{(-5)

0
, (-5)

1
, … , (-5)

Φ(δ-i)-1
} 

2
i.n

.{5
0.d[i.n]

, 5
1.d[i.n]

, … , 5
(Φ(δ-i.n)/d[i.n]-1).d[i.n]

} 

2
i.n

.{(-5)
0.d[i.n]

, (-5)
1.d[i.n]

, … , (-5)
(Φ(δ-i.n)/d[i.n]-1).d[i.n]

} 

di.n.2
i.(n-1)

 

…  … 

2
1
.{5

0
, 5

1
, … , 5

Φ(δ-1)-1
} 

2
1
.{(-5)

0
, (-5)

1
, … , (-5)

Φ(δ-1)-1
} 

2
n
.{5

0.d[n]
, 5

1.d[n]
, … , 5

(Φ(δ-n)/d[n]-1).d[n]
} 

2
n
.{(-5)

0.d[n]
, (-5)

1.d[n]
, … , (-5)

(Φ(δ-n)/d[n]-1).d[n]
} 

dn.2
(n-1)

 

2
0
.{5

0
, 5

1
, … , 5

Φ(δ)-1
} 

2
0
.{(-5)

0
, (-5)

1
, … , (-5)

Φ(δ)-1
} 

2
0
.{5

0.d[0]
, 5

1.d[0]
, … , 5

(Φ(δ)/d[0]-1).d[0]
} 

2
0
.{(-5)

0.d[0]
, (-5)

1.d[0]
, … , (-5)

(Φ(δ)/d[0]-1).d[0]
} 

d0  

 

Again, the writing convention [i] means that integers i are subscripts. 
 

The equation x
n
 = c mod 2

δ
 admits di.n.2

i.(n-1)
 solutions for c likewise 2

i.n
.5

i.d[i.n]
 et i ≤ δn, admits 2

δ-δn-1
 solutions for c = 0, 

admits 2
δ-δn-1

 solutions for c = 2
δn.n

, otherwise, it has no solution. 

Let us have c a residue mod 2
δ
 et let us have m the multiplicity of factor 2 in n. We get then the following table (the values 

of column x are verified by substitution in x
n
 = c mod 2

δ
) : 

 

Table (6) 

 

x conditions on k,i et n c #{c} #{variants of c} 

2
δn

.(2k) k = 0, 1, …, 2
δ-δn-1

-1 0 2
δ-δn-1

 1 

2
δn

.(1+2k) k = 0, 1, …, 2
δ-δn-1

-1 2
δn.n

 2
δ-δn-1

 1 

2
i
.(1+2.(#{1}).k)

1/n 

+2
δ-i.(.n-1)

/(#{1})k’ 

k = 0, 1, …, 2
δ-1-i.n

/(#{1})-1 

i = 0 to δn-1 

k’ = 0 to 2
i.(n-1)

.(#{1})-1 

2
i.n

 (1+2.#{1}.k) 

 

2
i.(n-1)

.(#{1}) 2
δ-1-i.n

/(#{1}) 

 

The particularity of case p = 2 is on the second data line of the preceding table (#{2
δn.n

} = 2
δ-δn-1

) which does not exist in the 

odd p cases. 
 

To summarize, in a slightly different manner than above, the equation x
n
 = c mod 2

δ
 admits 2

i.(n-1)
.(#{1}) solutions for c 

different from 0 and 2
δn.n

, admits 2
δ-δn-1

 solutions for c = 0 and c = 2
δn.n

, otherwise it has no solution. 

 

Proof 
 

By replacing x in x
n
 mod 2

δ
, the reader finds immediately the values for each target c. All numbers in the first column are 

distinct. Making up then the sum ∑#{c}.#{variants of c}, we get 2
δ
, which proves that all solutions are described.  

 

2.4.4.1.3 Number of solutions of x
n
 = c mod 2

δ
.∏ pi

δi
 

 

We shall see in the next paragraph the basis for distinguishing the c = 0 and c ≠ 0 cases. 

 

Case c ≠ 0, c ≠ x
n
  

 

We use the Chinese theorem : 
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#{x
n
 = c mod 2

δ
.∏ pi

δi
} = #{x

n
 = c mod 2

δ
}.∏#{x

n
 = c mod pi

δi
}       (28)

 

 

As c ≠ x
n
 , one at least of the terms is zero (and indeed an infinite number of them if all sequences pi are reviewed), so the 

product is null.  

#{x
n
 = c mod 2

δ
.∏ pi

δi
} = 0       (29) 

 

Case c ≠ 0, c = x
n
  

 

We use again the Chinese theorem : 

 

#{x
n
 = c mod 2

δ
.∏ pi

δi
} = #{x

n
 = c mod 2

δ
}.∏#{x

n
 = c mod pi

δi
}

 

 

The number of solutions of x
n
 = c mod pi

δi
 is given by the tables presented in paragraphs 2.4.4.1.1 et 2.4.4.1.2. If c = 

(2
r
.p1

k1
.p2

k2
…pj

kj
)

n
, the last index is here j (and not i), we have dki.n.p

ki.(n-1)
 classes of solutions each time that pi is equal to 

one of the numbers p1, p2, … or pj (with dki.n = 1 in the case of factor 2), otherwise we have d0 classes of solutions when pi is 

different from the set of the numbers p1, p2, … and pj. 

Thus : 

1 = 
#{x

n
 = c mod p1

δ1
} 

= 
#{x

n
 = c mod p2

δ2
} 

=…= 
#{x

n
 = c mod pj

δj
} 

      (30) 
dk1.n.p

k1.(n-1)
 dk2.n.p

k2.(n-1)
 dkj.n.p

kj.(n-1)
 

and 

1 = 
#{x

n
 = c mod pi

δi
} 

     (31) 
d0 

 

It is necessary, further on, to review all sequences pi. However, only sequences that divide c have a form of the type (30). 

All other ones are of the type (31). 

Let us interest then the dk.n. We have first d0 = #{x
n
 = 1 mod pi

δi
}, still referring to the same tables, which is a constant from 

a higher δi that a certain δs. This large enough δi hypothesis is capital and is adopted systematically in the following text. 

We simplify also the writing of #{x
n
 = 1 mod pi

δi
} as #{1}  when no confusion results. We then have : 

 

dk.n = (n,Ф(δi-k.n)) = (n, p
δi-k.n-1

.(p-1)) 

and in peculiar 

d0 = (n, p
δi-1

.(p-1)) 

 

It is clear that, for δi sufficient large instances, on one side p
k
, k any positive integer, and on the other side all the factors of 

(p-1) are taken into account in the common factor operation (n,...) and this factor cannot therefore evolve. Thus we have 

 

dk.n = d0 

so that still adding its effective value 

dk.n = d0 = #{x
n
 = 1 mod pi

δi
} = #{1} 

 

Thus for large enough δi, the factors dk.n are constants (thus the local stability). 

Then : 

 

#{x
n
 = c mod 2

δ
.∏ pi

δi
}  

= 2
r.(n-1)

.p
k1.(n-1)

.p
k2.(n-1)

 … p
kj.(n-1)

 = c
(n-1)/n

           (32) 
#{1}

j+1
  

 

Case c = 0 

 

#{x
n
 = 0 mod 2

δ
.∏ pi

δi
} = #{x

n
 = 0 mod 2

δ
}.∏#{x

n
 = 0 mod pi

δi
} = 2

δ-1
.∏ pi

δi
       (33)

 

 

2.4.4.2 Function volume and cardinal product 

 

As x
n
 = c, it follows x = c

1/n
, so that also :  

 

V’(c) = x’(c) = (1/n).c
1/n-1

 = (1/n).c
-(n-1)/n

  

 

We assume the generality of the use of this formula even when it does not make obvious sense. 

 

Case c ≠ 0, c ≠ x
n
  

 

The singular series is null.  

We have therefore : 

#{x
n
 = c} = 0.V’(c) = 0       (34)

 

This is the sought result. 

 

Case c ≠ 0, c = x
n
  



P 15/68                                                    

 

We have  

#{x
n
 = c mod 2

δ
.∏ pi

δi
} = 2

r.(n-1)
.p

k1.(n-1)
.p

k2.(n-1)
 … p

kj.(n-1)
 = c

(n-1)/n
.#{1}

j+1
 

Then  

#{x
n
 = c} = c

(n-1)/n
.#{1}

j+1
.V’(c) = c

(n-1)/n
.#{1}

j+1
.(1/n).c

1/n-1
 = #{1}

j+1
/n 

 

It is the search result as (1/n).#{1}
j+1

 is a constant when c is given in advance. 

 

Case c = 0 : Obstruction or indetermination 

 

#{x
n
 = 0 mod 2

δ
.∏ pi

δi
} = 2

δ-1
.∏ pi

δi 

 

Le product, bearing on all sequences from 2 to ∞, diverges.  

Le volume associated to target 0 is (n > 1) : 

 

V’(c → 0) = (1/n).c
1/n-1

 → ∞    (35) 

 

Then, assuming the product :  

#{x
n
 → 0} = singular series . volume → ∞    (36) 

 

However equation x
n
 = 0 has  a unique solution x = 0. The results are not matching. 

We are facing an "obstruction". It's the unique exception when we solve equation x
n
 = c, c parameter of the global-local 

method. 

However, for any positive integer m, 

0
m
 = 0      (37) 

 

Therefore the multiplicity of 0 is itself quite arbitrary. What makes somewhat acceptable the observed exception. 

We can thus replace here the notion of obstruction in favour of the concept of indetermination. 

 

We can also support this indeterminacy noting that the calculation of V'(c) in (35) is quite cavalier and has no obvious 

mathematical sense at c = 0 because V(c) = c
1/n

 (n > 1) is not differentiable at this point. 

 

We will return to the proper way to deal with this case at the end of the article at paragraph 2.6.2.3. 

 

2.4.5 Second degree polynomial equations 

 

Let us have the diophantine equation (u and v non-null) 

 

c = u.x
2
+v.x 

 

The solutions to this equation are given by x = (-v+(v²+4uc)
1/2

)/2 in the complex plane. In Z, the existence of solutions is 

related to the discriminant Disc = v²+4u.c which must be a square of an integer for solutions to exist, and in this case, we 

have 2 solutions (double root if null discriminant).   

We track again this remarkable point in what follows. 

 

Function volume 

 

When x increases, c = u.x
2
+v.x ≈ u.x

2
, thus x = V(c) ≈ (c/u)

1/2
. Then : 

 

V’(c) ≈ (1/2).u
-1/2

.(c)
-1/2

     (c ≠ 0)        (38)
 

 

Strictly c must be different from zero.  

The factor (1/2).u
-1/2

, without impact on equiprobability, can eventually be forgotten.) 

 

Singular series 

 

Let us have to solve the local equation 

c = u.x
2
+v.x mod p

δ
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p > 2 

 

Single root : 

Table (7) 

 

Conditions #(c) 

 u = 0 mod p u ≠ 0 mod p
δ
 1 

k ≥ δc Disc = 0 mod p
k
  

Case 

dependent 

k < δc 

Disc = g
0
.g

2n
.p

2i
 Disc ≠ 0 mod p

2i+1 
2.p

i
 

Disc = g
1
.g

2n
.p

2i
 Disc ≠ 0 mod p

2i+1 
0 

Disc = 0 mod p
2i

 Disc ≠ 0 mod p
2i+1 

0 

Disc = 0 mod p
2i-1

   Disc ≠ 0 mod p
2i 

 0 

 

We meet again with the importance of square discriminant in the computation of the singular series. This point by itself is 

already remarkable. 

 

Proof  

 

The integer 2 is invertible modulo p
δ
 and let us have k2 as such g

k2 
= 2

-1
 modulo p

δ
. 

Let us have x a solution of c = u.x
2
+v.x mod p

δ
, that is such as u.x

2
+v.x = c+k.p

δ
 for some integer k. 

Then formally x = (-v±(v²+4.u.c+4k.u.p
δ
)

1/2
)/2.  

If Disc = 0 mod p
2i

 and Disc ≠ 0 mod p
2i+1

, then v²+4.u.c = m.p
2i

 for a given integer m with m ≠ 0 mod p. We have then x = 

(-v±(m.p
2i

+4k.u.p
δ
)

1/2
)/2, so that 

 

x = -v.g
k2

±p
i
.g

k2
.(m+4k.u.p

δ-2i
)

1/2
              (39) 

 

For p ≠ 2 and u ≠ 0 mod p, the set A = {m+4k.u.p
δ-2i

 mod p
δ
, k = 0 to p

δ
-1}, is equal to the set B = {m+k.p

δ-2i
, k = 0 to p

δ-2i
-

1} with multiplicity p
2i

. As m ≠ 0 mod p, there is a primitive root g of p and an integer s such as g
s
 mod p

δ
. 

 

If s is even then, for any k, there exists an integer ks as m+k.p
δ-2i

 = g
2ks

 mod p
δ
. The integers s/2 and ks are all distinct, 

otherwise their squares would be equal, which would be in contradiction with the distinct elements of B. Thus the extraction 

of roots square b provides p
δ-2i

 distinct numbers distant of p
δ-2i

. What is important here is not the cardinal of the distinct 

numbers but the interval p
δ-2i

 between these numbers. We inject again the found values in the relation (39) which gives x = -

v.g
k2 

± p
i
.g

k2
.(g

s
+r.p

δ-2i
), r = 0 to p

δ-2i
-1. So that also x = -v.g

k2
±p

i
.g

k2+s
+r.g

k2
.p

δ-i
, r = 0 à p

δ-2i
-1. Modulo p

δ
, we have 

redundant values that we eliminate : 

 

x = -v.g
k2

±p
i
.g

k2+s
+r.g

k2
.p

δ-i
, r = 0 to p

i
-1                (40) 

 

We have therefore two alternatives : 

i ≥ δ or δ = 2i p
i
 

i < δ and δ ≠ 2i 2.p
i
 

 

On account of the search for stability, δ is large enough and thus only the second alternative does present in fact  

 

If s is odd, m+k.p = g
s
+k.p admits no square root and the case δ-2i = 0 being dismissed for imperative of stability, there is 

no solutions to the equation under consideration.   

 

If Disc = = 0 mod p
2i+1

 and Disc ≠ 0 mod p
2(i+1)

, then v²+4.u.c = p.m.p
2i

. The factor p is distinct from any number g
n
. It is 

thus impossible to extract a root square of the discriminant and the local equation has no solution. 

 

Double root :  

 

When the selected equation in the form u.(z-a)² = c, z being the indeterminate, we make the change of variable x = z-a. If u 

≠ 0 mod p, u has a reverse and there is a bijection between c and u.c modulo p
δ
. The equation, as far as enumeration is 

concerned, is then the same as the base case : 

c = x² 

 

p = 2 
 

This case is to deal with apart because of the absence of primitive root. However, the conclusions remain the same using the 

two roots 5 and -5. For not overloading the text with this digression, we go ahead. 

 

Table discussion  

 

Let us have first u = 0 mod p. Then #(c) is constant and can be ignored thanks to equiprobability.  

Let us have then a given target c such as, for all x, P (x) ≠ c. Then, there is a p such as v²+4.u.c = m.p
2i

 where m is not a 
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square (a case on two on average). Therefore, many factors of the singular series corresponding to c are null and singular 

series of target c is zero. 

Finally, consider a target c such as P (x) = c. Then trivially, we have always locally at least one solution to the equation P(x) 

= c mod p
δ
 (for all p and δ). We seek then i such that Disc = 0 mod p

2i
 and Disc ≠ 0 mod p

2i+1
 which exists necessarily. 

Returning to the previous table, we then 2p
i
 solutions to the local equation at sequence p. The target c being fixed, the 

discriminant Disc is a constant, the sequence p variant, we have 2 solutions to the local equations except for a finite number 

of cases where p coincides with possible squares of Disc. Thus, when c increases, Disc increases linearly in c (with 

multiplicative factor 4u), the number of local solutions in these cases increases as Disc
1/2

 and therefore as r.c
1/2

, r a constant. 

For the other sequences, we take 2/2 = 1 solution to avoid divergence of singular series while retaining equiprobability. 

    

Once again, for given p, the degree of stability of target c is not the same for each target c. We write this number δc. When 

enumerating modulo p
δ
, it is imperative to be in conditions like δ > δc in such a way to get the good local value of #(c) = #(x 

as c = P(x) mod p
δ
, x = 0 à p

δ
-1). 

 

The reader interested in a numerical, around the origin, verification will take care to offset it by using not the polynomial 

P(x) = = u.x²+v.x but P(x) = u.x²+v.x+int(v²/4u) and will use the generic equation : 

 

P(x) = u.x²+v.x+int(v²/4u) = c 

 

Global enumeration 

 

Let us come back to the product  

 

#(c) ≈ singular series x volume ≈ r.c
1/2

.(1/2).u
-1/2

.(c)
-1/2

 ≈ (1/2).r.u
-1/2

   (for c ≠ 0)    (41)
 

 

The result is therefore a constant at any point c ≠ 0. 

At c = 0, the value is indeterminate and we may intend to extend by continuity. 

Thus, the global-local count is feasible without ambiguity for any equation of second degree. 

 

Theorem 

 

There is no "obstructions" to the global-local count for second degree equations except possibly at a single origin point 

where indetermination can be remove by continuity. 

 

2.4.6 Third degree polynomial equations 

 

2.4.6.1 Exposition of the general context 

 

The previous theorem recalls and confirms the Hensel lemma which claims the absence of obstructions for equations of the 

second degree in terms of existence of solutions (part I context). 

Beyond this degree 2, "troubles" are reckoned if we refer to the mathematical literature (since the famous lemma stops at 

degree 2). We have seen that as long as we confine ourselves to the monomials of degree 3, contrary events reduce to the 

target c = 0. For polynomials, this may be quite another thing that we address here. 

 

Let us go back first to the numerical example of the monomial with equation x
3
-c = 0 modulo p

δ
. 

 

Table (8) 

 

p 2 3 5 7 11 13 17 19 

δ 19 11 8 5 3 3 3 3 

p
δ
 524288 177147 390625 16807 1331 2197 4913 6859 

c #(c) 

0 4096 2187 3125 343 121 169 289 361 

1 1 3 1 3 1 3 1 3 

8 4 3 1 3 1 3 1 3 

27 1 27 1 3 1 3 1 3 

64 16 3 1 3 1 3 1 3 

125 1 3 25 3 1 3 1 3 

216 4 27 1 3 1 3 1 3 

343 1 3 1 147 1 3 1 3 

512 64 3 1 3 1 3 1 3 

729 1 243 1 3 1 3 1 3 

1000 4 3 25 3 1 3 1 3 

10648 4 3 1 3 121 3 1 3 

32768 1024 3 1 3 1 3 1 3 
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p 2 3 5 7 11 13 17 19 

δ 19 11 8 5 3 3 3 3 

p
δ
 524288 177147 390625 16807 1331 2197 4913 6859 

c #(c) 

74088 4 27 1 147 1 3 1 3 

 

In this table, we kept only in the first column of the table the c values that are cubes. For any other c, there is at least one 

sequence (and indeed an infinity) for which #(c) shall be null and the product ∏ #(c) thus equal to zero.    

We find a vertical alignment of cardinals equal to 3 to comply with the general case of monomials studied above. According 

to the concept of equiprobability modulo p
δ
 widely developed above, it is equivalent to divide by 3 these columns, (the 

interest being that the infinite product versus lines do no more diverge more and can be compared between themselves) : 

 

Table (9) 
(derived from the previous by abuse of writing) 

p 2 3 5 7 11 13 17 19  

Δ 19 11 8 5 3 3 3 3  

p
δ
 524288 177147 390625 16807 1331 2197 4913 6859  

c #(c) (∏#(c))
3/2

 

0 4096 729 3125 114,33 121 56,3 289 120,33 → ∞ 

1 1 1 1 1 1 1 1 1 1 

8 4 1 1 1 1 1 1 1 8 

27 1 9 1 1 1 1 1 1 27 

64 16 1 1 1 1 1 1 1 64 

125 1 1 25 1 1 1 1 1 125 

216 4 9 1 1 1 1 1 1 216 

343 1 1 1 49 1 1 1 1 343 

512 64 1 1 1 1 1 1 1 512 

729 1 81 1 1 1 1 1 1 729 

1000 4 1 25 1 1 1 1 1 1000 

10648 4 1 1 1 121 1 1 1 10648 

32768 1024 1 1 1 1 1 1 1 32768 

74088 4 9 1 49 1 1 1 1 74088 

 

As we have seen above (relation 32), we get a constant ratio (reduced to 1 here) between the value of the target c and the 

product (∏#(c))
n/(n-1)

. 

By an example, let us then compare the situation of a third-degree polynomial to the monomial of even degree. We choose : 

 

P(x) = x
3
+x

2
+x-c 

 

We get to this equation the following table : 
 

Table (10) 

 

p 2 3 5 7 11 13 17 19 

δ 9 10 3 3 5 3 3 5 

p
δ
 512 59049 125 343 161051 2197 4913 2476099 

c #(c) 

0 1 1 1 3 1 3 1 3 

3 2 7 1 1 3 1 3 3 

14 1 1 3 3 3 1 35 1 

39 2 1 3 1 1 3 35 1 

84 1 7 3 3 1 1 3 39 

155 2 1 1 1 1 3 1 3 

258 1 1 1 1 243 1 3 1 

399 2 163 3 3 3 1 1 3 

584 1 1 3 1 23 3 1 39 

819 2 1 3 3 1 3 3 1 

1110 1 7 1 1 1 1 1 1 

1463 2 1 1 3 1 1 1 3 

1884 1 1 3 1 3 3 1 3 

2379 2 7 3 1 3 3 3 1 

2954 1 1 3 3 1 1 1 1 

3615 2 1 1 1 1 1 1 1 

4368 1 19 1 3 1 3 3 1 

5219 2 1 3 1 23 1 1 1 
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p 2 3 5 7 11 13 17 19 

δ 9 10 3 3 5 3 3 5 

p
δ
 512 59049 125 343 161051 2197 4913 2476099 

c #(c) 

6174 1 1 3 3 3 3 3 1 

7239 2 7 3 1 23 1 35 3 

8420 1 1 1 1 1 1 35 3 

9723 2 7 1 3 1 3 3 1 

11154 1 7 3 1 1 3 1 1 

12719 2 1 3 3 3 1 3 39 

14424 1 1 3 1 3 1 1 3 

16275 2 19 1 3 1 3 1 1 

18278 1 1 1 1 1 3 3 3 

20439 2 1 3 1 1 1 1 39 

22764 1 7 3 3 23 1 1 1 

25259 2 1 3 1 3 3 1 1 

27930 1 1 1 3 23 1 3 3 

30783 2 7 1 1 1 3 1 3 

33824 1 1 3 3 1 1 1 1 

37059 2 1 3 1 1 1 3 1 

40494 1 55 3 1 3 3 1 1 

44135 2 1 1 3 3 3 3 1 

47988 1 1 1 1 1 1 35 1 

52059 2 7 3 3 1 1 35 1 

56354 1 1 3 1 1 3 3 3 

60879 2 1 3 3 23 3 1 3 

65640 1 7 1 1 3 1 3 1 

70643 2 1 1 1 23 1 1 1 

75894 1 1 3 3 1 
 

1 39 

 

Again, in this table, we accept only the c values that are of the form n
3
+n

2
+n, n an integer. For any other c, there are at least 

one sequence (indeed an infinity) for which #(c) shall be null and the product ∏ #(c) will be equal to zero. 

For this table to be usable, we must complete it with all supernumerary cardinals (in red in the table above) to greater 

sequences than p =19. We give them while recalling supernumerary cardinals for lower sequences than p = 19 in the 

following table : 

Table (11) 

 

Targets Sequences 

# super 

numerary 

cardinals 

Sequences 

# super 

numerary 

cardinals 

Sequences 

# super 

numerary 

cardinals 

Disc Lines 

0 / / / / / / 3 0 

3 3 7 / / / / 3
2
.2

5
 1 

14 17 35 / / / / 17
2
.19 1 

39 17 35 / / / / 2
4
.3

2
.17

2
 1 

84 3 7 19 39 / / 3
2
.19

2
.59 2 

155 43 87 / / / / 2
5
.43

2
.11 1 

258 11 243 / / / / 3.11
4
.41 1 

399 3 163 / / / / 3
8
.2

4
.41 1 

584 11 23 19 39 / / 11
2
.19

2
.211 2 

819 131 263 / / / / 2
5
.3.11.131

2
 1 

1110 3 7 107 215 / / 3
2
.17.19.107

2
 2 

1463 193 387 / / / / 2
4
.97.193

2
 1 

1884 457 915 / / / / 3
3
.17.457

2
 1 

2379 3 7 89 179 / / 2
5
.3

2
.67.89

2
 2 

2954 617 1235 / / / / 617
2
.619 1 

3615 353 707 / / / / 2
4
.3.59.353

2
 1 

4368 3 19 89 179 / / 3
4
.11.73.89

2
 2 

5219 11 23 41 83 / / 2
5
.11

2
.41

2
.113 2 

6174 1009 2019 / / / / 3.337.1009
2
 1 

7239 3 7 11 23 17 35 2
4
.3

2
.11

2
.17

2
.281 3 

8420 17 35 73 147 / / 11.17
2
.73

2
.113 2 

9723 3 7 683 1367 / / 2
5
.3

2
.19.683

2
 (3) 

11154 3 7 499 999 / / 3
2
.499

2
.1499 2 

12719 19 39 43 87 / / 2
4
.19

2
.43

2
.409 2 
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Targets Sequences 

# super 

numerary 

cardinals 

Sequences 

# super 

numerary 

cardinals 

Sequences 

# super 

numerary 

cardinals 

Disc Lines 

14424 1777 3555 / / / / 3.593.1777
2
 1 

16275 3 19 107 315 / / 2
5
.3

4
.107

2
.241 2 

18278 2081 4163 / / / / 2081
2
.2083 1 

20439 19 39 59 119 / / 2
4
.3.11.17.19

2
.59

2
 2 

22764 3 7 11 23 73 147 3
2
.11

2
.73

2
.2411 3 

25259 1291 2583 / / / / 2
5
.17.19.1291

2
 1 

27930 11 23 251 503 / / 3
2
.11

2
.251

2
.307 2 

30783 3 7 491 983 / / 2
4
.3

2
.11.67.491

2
 2 

33824 3137 6275 / / / / 43.73.3137
2
 1 

37059 1667 3335 / / / / 2
5
.3.139.1667

2
 1 

40494 3 55 131 263 / / 3
6
.131

2
.3539 2 

44135 1873 3747 / / / / 2
4
.937.1873

2
 1 

47988 17 35 233 467 / / 3.17
2
.233

2
.1321 2 

52059 3 7 17 35 41 83 2
5
.3

2
.17

2
.41

2
.523 3 

56354 4409 8819 / / / / 11.401.4409
2
 1 

60879 11 23 211 423 / / 2
4
.3

3
.11

2
.43.211

2
 2 

65640 3 7 1627 3255 / / 3
2
.19.257.1627

2
 2 

70643 11 23 233 467 / / 2
5
.11

2
.233

2
.641 2 

75894 19 39 283 567 / / 3.11.19
2
.163.283

2
 2 

 

We immediately see the link between supernumerary cardinals equal to 1+2p
ent(i/2)

 and prime factors p
i
 of the discriminant 

(for odd p). We will return to it later to explain the presence of exception to this link (such as systematically for p = 2 and 

for p = 3 for example when c = 39, c = 1884, c = 27930 or c = 60879). 

 

Let us go back to the last but one table. The main change from the case of the monomial x
3
-c is the loss of alignment of the 

cardinals worth 3. Previously, we could easily divide the supernumerary cardinals by the appropriate value (1 or 3) to reach 

the constant ratio that is our ultimate goal. Here, because of the loss of alignment, we cannot decide without rule on the 

position of the cardinals worth 1 and the cardinals worth 3 (on condition that the choice 1 or 3 is actually relevant). We will 

return to this point later on.  

Admitting that a rule exists, it is necessary also, and this is the most important point, that there may exist an equiprobability 

of the cardinals worth 3 (and the cardinals worth 1) from one target to the other (that is in each row of the table). In the 

absence of equiprobability, the products of the local abundance factor (Euler products) would diverge when comparing of 

one target to another and our construction would be doomed to failure. In the case of the monomial, we had vertical 

alignment of the cardinals worth 3 for p = 1 modulo 6 sequences. Here, but this is by chance, we have the same rule at c = 0 

(thus a probability of 1/2 of such cardinals) and we need to ask if this equiprobability is retained for other targets. The proof 

of this point follows. 

 

2.4.6.2 Proof of equiprobability at degree 3 

 

We consider the general case of a degree 3 polynomial with parameter target c. Let us have P(x,c) = a3.x
3
+a2.x

2
+a1.x-c. 

Since the only c targets which we are concerned with are of the form a3.n
3
+a2.n

2
+a1.n, n an integer (other cases 

corresponding to an impossibility at the global level with some cardinals locally null), we can rewrite thanks to a simple 

Euclidean division, the polynomial in the form P(x,c) = P(x,n) = (x-n).Q(x,n) with Q(x,n) an degree 2 polynomial with 

parameter n.  

Equation P(x,n) = 0 mod p
δ
 writes then : 

 

x-n = 0 mod p
i
      and      Q(x,n) = 0 mod p

δ-i
 

 

The x-n = 0 modulo p
δ-i

 equation resolves without difficulty and has always one and only one solution.  

Consider the second equation and let us have ∆(n) the determinant of polynomial Q(x,n). If ∆(n) is a non-null square 

modulo p
δ-i

 then this equation has two solutions. If ∆(n) is not a square modulo p
δ-i

 then this equation has no solution. 

Finally, if ∆(n) is zero modulo p
δ-i

 then this equation has a single (double) solution. 

For a given n, we seek the relative frequency of these three cases according to p. We note first that the third case has no 

bearing on the frequency, since ∆(n) is set, these cases are in finite quantity. 

We note then that the “∆(n) is a square modulo p” property is inherited by ∆(n) modulo p
j
 for any j. Similarly, if ∆(n) is not 

a square modulo p then ∆(n) is not a square modulo p
j
 for any j. Indeed, let us reason by the absurd. Let g a primitive root of 

p. Suppose that ∆ (n) = g
2r

 modulo p and ∆(n) = g
2s+1

 modulo p
j
. Then g

2s+1
-g

2r
 = 0 modulo p, then g

2r
.(g

2(s-r)+1
-1) = 0 modulo 

p, so that also g
2(s-r)+1

 = 1 modulo p. But a non-square (quadratic non-residue) can be a square (quadratic residue) modulo the 

same value p, thus a contradiction. The result is the same taking ∆(n) a non-square modulo p and ∆(n) a square modulo p
j
. 

It leaves us only to determine the frequency of the modulo p property. The proof of this point taking some space, we have 

postponed it in appendix 7 page 62 showing that solutions p are of the form 

 

p = cl mod ∆(n)         (42) 
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with as many classes cl of one type as the other. Then one can conclude thanks to Dirichlet. 

Returning to P(x), for a given c of the form a3.n3 + a2.n2 + a1.n, we either have 1 solution, 3 solutions with equiprobability 

of these cases or a finite number of exceptions. We will return to these exceptions below. 

 

2.4.6.3 Study of supernumerary cardinals 

 

Nous avons ainsi établi l’essentiel pour ce qui concerne le degré 3. Nous pouvons comparer le produit des cardinaux 

obtenus localement en divisant les incidences à cardinaux 3 par 3. Si, nous faisons cela sans nous préoccuper en même 

temps des cardinaux, nous obtenons une dispersion très marquée vis-à-vis de notre objectif, cité plusieurs fois, d’obtention 

d’un rapport constant.   

Traçons par exemple, toujours pour P(x) = x
3
+x

2
+x-c, ∏#(c) en fonction de c

(n-1)/n
 suivant des coordonnées linéaires, puis 

logarithmiques (pour mieux montrer les valeurs près de l’origine), puis ∏#(c)/c
(n-1)/n

 en fonction de c.  

 

We have established the essential so much as regards the degree 3. We can compare the product of cardinals achieved 

locally by dividing the incidences to cardinals 3 by 3. If we do this without concern at the same time of the supernumerary 

cardinals, we get a dispersion very marked with our goal, noticed several times, to obtain a constant ratio. 

Let us chart for example, always for P (x) = x
3
+x

2
+x-c, ∏#(c) according to c

(n-1)/n
 with linear and logarithmic coordinates (to 

better view in the second case the values close to the origin), then ∏#(c)/c
(n-1)/n

 with c. 

 

Graphics (1) 

 

   
 

The objective of the constant ratio is to find, of course, in the last chart. We find there three candidates of "constant" ratios 

as we have not yet divided at this stage the supernumerary cardinals by appropriate values as had proceed from table (8) to 

table (9). It is obvious, that as n increases, the determinant ∆(n) may contain many multiple factors and new lines of points 

will then appear. A fourth candidate corresponds here to the particular point c = 9723 who is not, a priori, of the same nature 

as the other points as discussed below. 

The appearance of the chart immediately tells us about one important fact. The appropriate divisions are not "monolithic" as 

in the case of the monomial x
3
 (that is 1 or 3). Indeed, if lower points are relatively well aligned, the points above are less 

well (as for the next three points, offering few examples, it is difficult to comment the alignment). In fact, to align these 

points, it is necessary to proceed one after another. To a supernumerary cardinal, it is necessary to assign a division by an 

intermediate value between 1 and 3 (very roughly in the order of 2) for all non-special cases (here where c ≠ 9723) to align 

all points on a horizontal line. We can nevertheless speculate about the behaviour at infinity (c → +∞) of these points which 

we believe that the alignment would be quite remarkable (but this is not essential). 

Let us come back on the case c = 9723. It is unique in that the factor of 2 in the discriminant 2
5
.3

2
.19.683

2
 is active contrary 

to what is happening elsewhere in our numerical example. To obtain an alignment it is necessary to resort to a division of 

approximately 2
3/2

. 

We must therefore conclude here that there is no simple rules for alignment following a constant (cte) which was our 

objective. This does not mean that there is no more sophisticated way (which can be found a posteriori by simple division of 

cte by #(c)). 

 

Now we ought to ask the question of our ultimate goal : this is the enumeration of asymptotic diophantine equations in 

several variables. What is the impact for a given target of the supernumerary cardinals (finite number what we proved 

earlier) inherited from each of the variables compared with the impact of the non- supernumerary cardinals (in infinite 

number) ? To know more about this, the simplest is to review the case to two variables c = x1
3
+x2

3
 which means to look 

locally at c1 =  x1
3
 modulo p and c-c1 = c2 = x2

3
 modulo p. The crossing of the supernumerary cardinals remains finite 

number events. Thus only accounts the notion of equiprobability that we analysed in detail (see appendix 7). The rules of 

division of supernumerary cardinals contributions of each variable are thus secondary. There are not really required and they 

can be chosen freely to always find an adequate if not satisfactory consistency.  

The equiprobabilily is present for degree 3. What is with higher degrees ?  

 

2.4.7 Higher degrees polynomial equations 

 

2.4.7.1 Decomposition in ring Z/p
δ
Z[X] 

 

When we are looking for the number of solutions of P(x) = c mod p
δ
, we get in fact the problem of decomposition of P(x) in 

ring K[X] where K = Z/p
δ
Z is a perfect field (field where all extensions are separable). Although K is perfect, the field has 

Produit des cardinaux ∏#(c) Produit des cardinaux ∏#(c) ∏#(c)/(c2/3) 
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the distinction of non-unique decompositions according to the chosen case. P(x) is a polynomial of degree n, equation P(x) 

= c mod p
δ
 has either 0 solution, n solutions or other cardinals less or greater than n. When the number of solutions (x1, x2, 

…, xk) is less than or equal to n, the decomposition is unique and is obtained by simple Euclidean division of the polynomial 

P(x) by x-xi modulo p
δ
. When the number of solutions is strictly greater than n, the decomposition cannot be unique. 

For example, with K = Z/43²Z, we have : 

 

x
5
+x

4
+x

3
+x

2
+x-62 mod 43²  = (x-1723).(x

4
-125x

3
-890x

2
-648x+293) mod 43² 

 = (x-1723).(x-2+43k).(x
3
-(123+43k)x

2
+(713-8.43k)x+778+2.43k) mod 43², k = 0 à 42 

 

There are thus 1+43 = 44 solutions to this equation of degree 5.  

The variants occur as pairs of polynomial solutions with polynomial coefficients of indeterminate k of degree δ-1. In the 

example, these pairs are (x-2+43k , x
3
-(123+43k)x

2
+(713-8.43k)x+778+2.43k) with k = 0 to 42.  

Note that the irreducibility of polynomials can be a factor conducive to many solutions (which may seem contradictory), 

since if the polynomial is completely reducible (to the first degree), we wouldn't have only 5 solutions.  

This is a classical result with basic dating back to Lagrange who demonstrated that a polynomial of degree n admits no more 

than n non-congruent roots mod p, to Kummer, and to Dirichlet. Here, it is essential to find a method related to all of this 

and in order to detect the number of local solutions. 

 

2.4.7.2 Direct resolution  

 

Let us find the integer solutions of P(x) = c mod p
δ
, p > 2, with P(x) not a monomial. To this end, we have made some 

numerical tests. We have for examples : 

 

Ex 1 : P(x) = x
3
+x

2
+x, p = 11, g = 2, δ = 6 

 

#(c) Matching 

of 

#(c) 

x Matching of x 

1 1 0  

0+mod(2
k
,11).11

4
, k = 1 to 10 

0+mod(2
k
,11).m.11

3
, k = 1 to 10, m = 1 to 11 

0+mod(2
k
,11).m.11

2
, k = 1 to 10, m = 1 to 121 

0+mod(2
k
,11).m.11, k = 1 to 10, m = 1 to 1331 

5+11k+121m, k = 0, 2 to 10 (k ≠ 1), m = 0 to 11
3
-1 

16+121k+1331m, k = 0,3,5,6 or 7, m = 0 to 11
2
-1 

258+1331k+14641m, k = 1 to 10, m = 0 to 11
1
-1 

258+14641k, k = 2,4,5,6 or 10 

1+11k+121m, k = 0 to 8, 10 (k ≠ 9), m = 0 to 11
3
-1 

221+121k+1331m, k = 0,1,2,4 or 7, m = 0 to 11
2
-1 

826+1331k+14641m, k = 1 to 10, m = 0 to 11
1
-1 

826+14641k, k = 0, 2,5,9 or 10 

(6,7 or 10)+11.k, k = 0 to 11
4
-1 

r1 

r1+mod(g
k
,p).p

4
, k = 1 to p-1 

r1+mod(g
k
,p).p

3
, k = 1 to p-1, m = 1 to p 

r1+mod(g
k
,p).p

2
, k = 1 to p-1, m = 1 to p

2 

r1+mod(g
k
,p).p

1
, k = 1 to p-1, m = 1 to p

3 

r2+k.p+m.p
2
, some k, m = 0 to p

3
-1

 

r3+k.p
2
+m.p

3
, some k, m = 0 to p

2
-1

 

r4+k.p
3
+m.p

4
, k = 1 to p-1, m = 0 to p

1
-1

 

r5+k.p
4
, some k

 

r2’+k.p+m.p
2
, some k, m = 0 to p

3
-1

 

r3’+k.p
2
+m.p

3
, some k, m = 0 to p

2
-1

 

r4’+k.p
3
+m.p

4
, k = 1 to p-1, m = 0 to p

1
-1

 

r5’+k.p
4
, some k

 

r6+k.p, some r6, k = 0 to p
4
-1

 

3 n or 1+2p
0
 3+11.k, k = 0 to 11

4
-1 r7+p.k, k = 0 to p

4
-1 

23 1+2p 137+(mod(2
2k+1

,11)-2).m.11
4
,  

k = 0 to 4, m = 0 to 11
2
-1 

100+(mod(2
2k

,11)-1).11
4
,  

k = 0 to 4, m = 11
2
-1 

r8+(mod(g
2k+1

,p)-g
1
).m.p

4
,  

k = 0 to (p-1)/2-1, m = 0 to p
2
-1 

r9+(mod(g
2k

,p)-g
0
).p

4
,  

k = 0 to (p-1)/2-1, m = p
2
-1 

122 1+p
2
 14899, 44749 r10, r11 

243 1+2p
2
 (258 or 15467)+(2

2k+1
-2).11

4
, k = 0 to 4 r12+(g

2k+1
- g

1
).p

4
, k = 0 to (p-1)/2-1 

 

Ex 2 : P(x) = x
4
+x

3
+x

2
+x, p = 13, g = 2, δ = 6 

 

#(c) Rapprochement 

#(c) 

x Rapprochement  

x 

1 1 (2, 3, 7, 8, 9 or 10)+13.k, k = 0 to 13
4
-1 r1+p.k, k = 0 to p

4
-1 

2 2 4+13.k, k = 0 to 13
4
-1 r2+p.k, k = 0 to p

4
-1 

4 n 0+13.k, k = 0 to 13
4
-1 r3+p.k, k = 0 to p

4
-1 

26 2p 1110+(g
k
-1), k = 0 to p

2
.(p-1)/2-1 r4+(g

k
-1), k = 0 to p

2
.(p-1)/2-1 

338 2p
2
 214388+(g

k
-1), k = 0 to (p-1)/2-1 r5+(g

k
-1), k = 0 to (p-1)/2-1 

169 p
2
 772 r6 

 

The "matching" columns are simple assumptions of generalization of the associated columns that precede them. 

In fact, the possibilities for solutions are not limited to these two types of results at all. We see in the first example that 

direct research results are relatively "messy". It seems futile to seek a general outcome. However results have a 

homogeneous form under one aspect : solutions are in arithmetic progressions (by modulo p
δ
 construction) with insertion of 

supernumerary cardinals for square powers. 
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When c varies, it is important to us that the non-supernumerary cardinals be equiprobable. 

 

2.4.7.3 Discriminant 

 

2.4.7.3.1 Generalities 

 

The degree 2 and degree 3 examples show the importance of the polynomial discriminant, which can no longer surprise us. 

It remains however to see until which point its knowledge can we be effectively useful. 

The discriminant of a polynomial P (x) = an.x
n
+an-1.x

n-1
+….+a1.x+a0, an ≠ 0, is defined according to the usual formula : 

  

Disc = (-1)
n.(n-1)/2

.(1/an).Res                (43) 

 

Here n is the degree of the polynomial P(x), ), an is the dominant coefficient and Res is the resultant of P(x) and its derivate 

P'(x). We set up as usual our equations by the target c parameter. Thus, we replace P(x) by removing the constant an and we 

write : 

P(x) = an.x
n
+an-1.x

n-1
+….+a1.x = c 

 

The discriminant, which concerns us, is thus that of P(X)-c and the resultant is a matrix of Sylvester MS(c) = Res(c), square 

matrix of size 2n-1, defined by : 

 

MS(c) = 

an an-1 an-2 … a1 -c 0 0 … 0 

0 an an-1 an-2 … a1 -c 0 … 0 

0 0 an an-1 an-2 … a1 -c … 0 

… … … … … … … … … … 

0 0 0 0 0 an an-1 an-2 … -c 

n.an (n-1).an-1 (n-2).an-2 … a1 0 0 0 … 0 

0 n.an (n-1).an-1 (n-2).an-2 … a1 0 0 … 0 

0 0 n.an (n-1).an-1 (n-2).an-2 … a1 0 … 0 

… … … … … … … … … … 

0 0 0 0 0 n.an (n-1).an-1 (n-2).an-2 … a1 

 

The coefficients of P(X) occupy the first n-1 lines and those of P'(X) are in the following n lines.  

The determinant of this resultant is a polynomial of degree n-1 with the c parameter.  

The aai being integers (of any sign), we then have : 

 

Disc = (-1)
n.(n-1)/2

.(1/an).(aan-1.c
n-1

+aan-2.c
n-2

+….+aa1.c+aa0)                (44) 

 

2.4.7.3.2 Multiple roots 

 

The discriminant of a polynomial is zero for multiple roots. 

 

Proof 

 

Let us have α1, α2, …, αn the solutions split in the field of complex numbers of polynomial P(x) = c of degree n. We have the 

following result [16] : 

Disc = (-1)
n.(n-1)/2

.an
 2n-1

. ∏ (αi-αj)²            (45) 

 i < j  

 

Thus, if there are distinct i and j such as αi = αj , then Disc = 0 and vice versa if Disc = 0, there is i and j as αi = αj (because an 

≠ 0). Which completes the proof. 

 

Let us consider then the extension K(i) the (local) perfect field K = Z/p
δ
Z in order to manipulate the complex roots. In this 

local field, considering a primitive root g, to write g
m
 = t

1/d
 means to solve g

m.d
 = t. By this process, we go back from roots αi 

global αi to local roots βi of the studied equation. The cancellation of the discriminant writes then 

 

Disc = 0 mod p
δ
               (46) 

 

Let us have β1, β2, …, βi the local roots of the polynomial P(x)-c = 0 mod p
δ
. If βi1 = βi2 mod p

k
, corresponding to multiple 

roots, then 

 

Disc = t.p
2k

.(-1)
n.(n-1)/2

.an.an
 2(n-1)

. ∏ (βi-βj)² = 0 mod p
2k

                  (47) 

 i < j, i ≠ i1, j ≠ i2  

 

Here t is the part of expression (45) for which the local decomposition is impossible.  

Multiple roots imply a locally null discriminant with square modulus (in p²) for each root instance. This evolution with the 

square can be verified in the example in the table (11).   
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However, the converse is false as (αi-αj)² can be an integer without that the roots αi or αj are themselves integers (what we 

check in the table just mentioned for the sequence p = 3 and c = 39, c = 1884, c = 27930 and c = 60879 targets). Similarly, 

the discriminant may be either multiple of p
2k

 or only multiple of p
2i

, with i smaller than k, difference which will impact the 

expression of the cardinal #(c) (but this possiblity has not appeared in our numerical examples). 

 

2.4.7.3.3 Number of solutions associated to the discriminant 

  

We are interested in the relationship between the values of the discriminant and the number of solutions #(c) of local 

equations parameterized by c : 

P(x) = c mod p
δ
 

 

Let us recall that Disc is analysed for each target c and each p sequence : 

 

Disc = Disc(c,p) 

 

We observe, for a given target c, that the degree of stability δ of c is equal at sequence p to the multiplicity of p in Disc. The 

degree of stability of c is infinite only if : 

Disc ≡ 0 

 

The degree of stability is then infinite for all p and we have a good candidate for "obstruction". 

 

The discriminant of an equation detects double roots of an global or local equation. It is null when such roots exist. Null 

value locally means that 

Disc = 0 mod p
δ
 

 

and thus that the sequences, for which the supernumerary cardinals appear, are among the divisors of Disc. 

 

Finally, when Disc ≠ 0 mod p
δ
, we write the discriminant under the form (i < δ) 

 

Disc = g
m
.p

i
 

 

We observe then systematically, for equations of degree 3 and 4, a dependency of the enumerations to the parity of m and i. 

 

Locally, we distinguished thus the events relating to Disc = Disc(c,p) :  

 

Case Lower case 

Disc = 0  

Disc = 0 mod p
δ
  

Disc ≠ 0 mod p
δ
 Disc = g

m
.p

i
 mod p

δ
 

 

In the following tables we used {Ø} to mean that the corresponding condition has not been observed. The special case p = 2 

is not treated here. In header of each table, we have indicated the number of Z roots of P(x). As P(x) is of the form an.x
n
+an-

1.x
n-1

+….+a1.x, we always have at least the root x = 0. Here are some of the results that we get then : 

 

2.4.7.3.3.1 Degree 3  

 

It is essential to take into account the concept of stability in the study. Here δ is the value which allows achieving it.  

The particular case of p = 3, concerning several tables, is not treated below. 

 

Conditions #(c = P(x)) 

Dominant coefficient of P(X) = 0 mod p 
See lower degree 

polynomial 

 

Single roots : 

Conditions #(c = P(x)) 

Disc = 0 mod p
0
, Disc = g

0
.g

2k
 mod p

1
 3 

Disc = 0 mod p
0
, Disc = g

1
.g

2k
 mod p

1
 1 

Disc = 0 mod p
i
 , i > 0 {Ø} 
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Double root : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
2i

, Disc = g
0
.g

2k
 mod p

2i+1
 1+2.p

i
 

0 < i < δ, Disc = 0 mod p
2i

, Disc = g
1
.g

2k
 mod p

2i+1
 1 

i < δ, Disc = p
2i+1

 1 

i = 0, Disc = p
0
, Disc = g

0
.g

2k
 mod p

1
 {Ø} 

i = 0, Disc = p
0
, Disc = g

1
.g

2k
 mod p

1
 1 

 

Triple root : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
3i

, Disc = g
0
.g

2k
 mod p

3i+1
 {Ø} 

0 < i < δ, Disc = 0 mod p
3i

, Disc = g
1
.g

2k
 mod p

3i+1
 (3,p-1).p

i
 

0 < i < δ, j = 1 or j = 2, Disc = 0 mod p
3i+j

 {Ø} 

Disc = 0 mod p
0
, Disc ≠ 0 mod p

1
 {Ø} 

 

Clearly, without the need for proof, local enumerations are related to the existence or not of multiple roots. For the case of a 

"simple root", given the result of section 2.4.6.2, we demonstrate the equiprobability, when the targets c vary from -∞ to +∞, 

for a given polynomial P(X), between discriminants equal to g
0
.g

2k
 mod p on one hand and discriminants equal to g

1
.g

2k
 

mod p on the other hand. 

 

2.4.7.3.3.2 Degree 4  

 

Trends 

 

Conditions #(c = P(x)) 

Dominant coefficient of P (X) = 0 mod p 
See lower degree 

polynomial 

 

Single roots : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
2i

, Disc = g
0
.g

2k
 mod p

2i+1
 p (or 4p ?) 

0 < i < δ, Disc = 0 mod p
2i

, Disc = g
1
.g

2k
 mod p

2i+1
 {Ø} (or 2.p

i 
?) 

Disc = 0 mod p
2
, Disc ≠ 0 mod p

3
, 2p 

Disc = 0 mod p
1
, Disc ≠ 0 mod p

2
, 2 

Disc = 0 mod p
0
, Disc = some g

0
.g

2k
 mod p

1
 1 

Disc = 0 mod p
0
, Disc = some g

0
.g

2k
 mod p

1
, k odd 4 

Disc = 0 mod p
0
, Disc = g

1
.g

2k
 mod p

1
 2 

Disc = 0 mod p
i
 , i > 0 {Ø} 

                          See examples with P(x) = x
4
+x

3
+x

2
+x at appendix 4 

 

1 double root, 2 single roots : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
2i

, Disc = g
0
.g

2k
 mod p

2i+1
 2.(1+p

i
) 

i < δ, Disc = 0 mod p
2i

, Disc = g
1
.g

2k
 mod p

2i+1
 2 

i < δ, Disc = p
2i+1

 2 

i = 0, Disc = p
0
, Disc = g

0
.g

2k
 mod p

1
 {Ø} 

 

2 double roots : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
2i

, Disc = g
0
.g

2k
 mod p

2i+1
 {Ø} 

i < δ, Disc = 0 mod p
2i

, Disc = g
1
.g

2k
 mod p

2i+1
 2.p

i
 

i < δ, Disc = p
2i+1

 {Ø} 

i = 0, Disc = p
0
, Disc = g

0
.g

2k
 mod p

1
 Case dependent 

i = 0, Disc = p
0
, Disc = g

1
.g

2k
 mod p

1
 {Ø} 
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Triple root : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
3i

, Disc = g
0
.g

2k
 mod p

3i+1
 1 

0 < i < δ, Disc = 0 mod p
3i

, Disc = g
1
.g

2k
 mod p

3i+1
 1 

0 < i < δ, j = 1 ou j = 2, Disc = 0 mod p
3i+j

 {Ø} 

Disc = 0 mod p
0
, Disc = g

0
.g

2k
 mod p

1
 1 

Disc = 0 mod p
0
, Disc = g

1
.g

2k
 mod p

1
 {Ø} 

 

Quadruple root : 

Conditions #(c = P(x)) 

i ≥ δ Case dependent 

0 < i < δ, Disc = 0 mod p
4i

, Disc = g
0
.g

2k
 mod p

4i+1
 (4,p-1).p

i
  

0 < i < δ, Disc = 0 mod p
4i

, Disc = g
1
.g

2k
 mod p

4i+1
 {Ø} 

0 < i < δ, j = 1, j = 2 or j = 3, Disc = 0 mod p
4i+j

 {Ø} 

Disc = 0 mod p
0
, Disc ≠ 0 mod p

1
 {Ø} 

 

Numerical example 

 

The following table is corresponding to the number of solutions of the equation P(x) = c mod p
2
 with P(x) = x

4
+x

3
+x

2
+x 

varying from 0 to p
2
-1 and target c accordingly chosen. Another numerical example with P(x) = x

4
+3x

3
+4x

2
+7x is given at 

appendix 8. We see that the sought equiprobability in this case, given at the end of the table, seems difficult to establish a 

priori by studying one after the other the prime numbers p with the objective of finding a possible rule of counting. The non-

integer ratios #(i)/p correspond to contributions of supernumerary cardinals. In addition, we define #(T) = ∑ #(i). 

 

Table (12) 

 

p #(1) #(2) #(4)  6.#(1)/#(T) 6.#(2)/#(T) 6.#(4) )/#(T) 

3 3 6 0  2 4 0 
5 0 0 20  0 0 6 
7 14 28 0  2 4 0 

11 55 22 44  2,73 1,09 2,18 
13 78 26 52  3 1 2 
17 119 102 68  2,47 2,12 1,41 
19 95 266 0  1,58 4,42 0 
23 138 368 0  1,64 4,36 0 
29 290 406 116  2,14 3 0,86 
31 310 496 124  2 3,2 0,8 
37 444 740 148  2 3,33 0,67 
41 615 738 328  2,20 2,63 1,17 
43 688 854 172  2,41 2,99 0,60 
47 564 1598 0  1,57 4,43 0 
53 848 1696 212  1,85 3,69 0,46 
59 1180 1882 236  2,15 3,42 0,43 
61 1220 1952 488  2 3,2 0,8 
67 1809 1340 1340  2,42 1,79 1,79 
71 1420 3266 284  1,71 3,94 0,34 
73 1533 3504 292  1,73 3,95 0,33 
79 2370 2212 1580  2,31 2,15 1,54 
83 2573 2656 1660  2,24 2,31 1,45 
89 2225 5340 356  1,69 4,04 0,27 
97 3104 5232 776  2,04 3,45 0,51 
101 4040 3232 2828  2,4 1,92 1,68 
103 3708 4738 2060  2,12 2,71 1,18 
107 3959 5350 2140  2,07 2,80 1,12 
109 4360 4796 2616  2,22 2,44 1,33 
113 4633 5424 2712  2,18 2,55 1,27 
127 5334 8128 2540  2 3,05 0,95 
131 5240 10474 1048  1,88 3,75 0,38 
Etc.        

    ∑    

Total 52969 76872 24240 154081    

Mean value     2,0233 2,9599 1,0168 

Ratio 

 
2,063 2,993 0,944 6    

At infinity 
awaited value 

2 3 1 6 2 3 1 

Difference 3,13% -0,22% -5,61%  1,16% -1,34% 1,68% 
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Graphics (2) 
Evolution of proportions with sequence p 

 

 
  

Assuming the law of distribution of enumeration as a random draw, we are outlining a trend with proportions (2,3,1), 

corresponding to irreducible or single root degree 4 polynomials, easily readable on the graph for which we have extended 

here until the p = 743 sequence the data. Rather than by an average phenomenon (who also plays a rule), we believe that it is 

an asymptotic trend (which would be the right track to a demonstration in our view) to the values (2,3,1) that the 

"equiprobability" is carried out, small sequences being without incidence as negligible before infinity. The result "product" 

is realised to a given target because the result is almost aligned with the expected value to each p sequence provided that p is 

extremely large. This asymptotic trend is, however, very slow and only suspected here. We will see later on (in paragraphs 

2.4.7.4.2 and 2.4.7.5) a simple heuristic approach for these proportions for the polynomials without double roots in Z (here, 

this is the case with P(x) = x.(x+1).(x²+1)). 

 

2.4.7.3.4 Degree 5 and more  

 

The expression of the discriminant is the result of a great number of "degrees of freedom" to integer roots or not involved in 

(-1)
n.(n-1)/2

.an
 2n-1

. ∏ (αi-αj)². The relationship to the parity of power of the primitive root g is observed only very partially 

when the degree of the polynomial increases. Some numerical tests announce the following table (the last line being a trivial 

one) : 

#(c = P(x)) Conditions 

n Disc = g
0
.g

2k
 mod p or Disc = 0 mod p 

n-1 {Ø} 

n-2 Disc = g
1
.g

2k
 mod p or Disc = 0 mod p 

n-3 Disc = g
0
.g

2k
 mod p or Disc = 0 mod p 

< n-3 Disc = g
k
 mod p or Disc = 0 mod p 

 

 

In the absence of immediate interest, we do not seek a proof of these lines. We simply observe the alternated parities as soon 

as P(x) = c has at least n-3 integer solutions, n is the degree of P(x). For lower cardinals, the parity of the power of g is 

completely random and other arithmetic series (as 2-based) would be to look for. On a general level (any polynomial P(x)), 

this has the aspect of a major difficulty. 

 

Let us note also that the alternated parities between n-2 and n solutions logically corresponds to n-1 solutions, additional 

solution (to arrive at n solutions) is somehow free. 

Finally, our study does not provide important results on the determinant precise incidence but to obvious impact of square of 

primitive roots g. For a more ambitious study, our tool with 14 significant digits is not sufficient. 

 

2.4.7.4 Cardinals relative frequencies 

 

We already said it. The essential is to have a relative frequency of cardinals which is not dependent on targets c. Previously, 

let us go back again on the following fundamental case. If we admit that there are as many cases of type Disc = g
0
.g

2i
 mod p 

that Disc = g
1
.g

2i
 mod p, we find the case of the equiprobability at degree 3, that we have proven otherwise. By the same 

argument, this extends also to degree 4. In the higher degrees, we have not apparently this kind of simplicity that a rule on 

the powers of g could produce (and also the study of the discriminant becomes difficult on an software that has only 14 

significant digits). So, we have below a more rudimentary approach. 
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2.4.7.4.1 Case of monomials 

 

We start from table (4) with a representative line : 

 

x c = x
n
 mod p

δ
 #{c} #{variants of c} 

p
i
.{g

0
, g

1
, … , g

Φ(δ-i)-1
} p

i.n
.{g

0.d[i.n]
, g

1.d[i.n]
, … , g

(Φ(δ-i.n)/d[i.n]-1).d[i.n]
} di.n.p

i.(n-1)
 Φ(δ-i.n)/di.n 

 

Let us have a diophantine equation x
n
 = c mod p

δ
. The target c, being given in advance, has only a finite number of factors 

pi. Therefore, there is only a finite number of solutions to the proposed equation such as #(c) = di.n.p
i.(n-1)

 and i > 0 (that we 

called supernumerary cardinals). When p varies from 2 to infinity, the supernumerary cardinals are therefore of density (or 

frequency) zero. The factors of abundance with non-zero frequency depend only on (n, p-1) ≠ 1, that is meet the arithmetic 

progression p = 1+kpi with pi dividing n. 

The alignments (bijections) between the values #(c) are obvious in the case of the monomials. When we turn to the 

polynomials which are clusters of monomials, the machinery of the previous alignments (bijections) is always in action, but 

the obvious trace of the alignments is lost.  

The following table, which concerns the monomials of degree n, derives from the table (4): 

 

Table (13) 

 

Degree (n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Nb 

solutions 

(m) 

Card(n,m) =  Proportions of solutions (before ratio to total of proportions)  

0 0 1 2 5 4 8 6 16 20 24 10 27 12 48 56 

1 1 0 3 0 15 0 35 21 27 0 99 12 143 0 45 

2  1 0 2 0 3 0 0 0 15 0 0 0 35 0 

3   1 0 0 0 0 8 6 0 0 0 0 0 15 

4    1 0 0 0 0 0 0 0 6 0 0 0 

5     1 0 0 2 0 0 0 0 0 0 3 

6      1 0 0 0 0 0 2 0 0 0 

7       1 0 0 0 0 0 0 0 0 

8        1 0 0 0 0 0 0 0 

9         1 0 0 0 0 0 0 

10          1 0 0 0 0 0 

11 
         

 1 0 0 0 0 

12 
         

  1 0 0 0 

13 
         

   1 0 0 

14 
         

   
 

1 0 

15 
         

   
 

 1 

Total 

proportions 
1 2 6 8 20 12 42 48 54 40 110 48 156 84 120 

 

We give some general formulas for higher degrees next. In these, we reduced the proportions #( ) in such a way that their 

sum is equal to 1. To find the values in the preceding table, simply multiply each of the proportions by 1/#(n). 

 

Case n = p, p a prime number (Table (14)) : 

 

div       # 0 1 … p Proportions Arithmetic progressions 

p (p-1)/p   1/p 1/(p-1) 1 mod p 

…       

1 0 1   (p-2)/(p-1) 1 mod 1, ≠ 1 mod p  
 

So that : 

#(0) = 1/p 

#(1) = (p-2)/(p-1) 

#(p) = 1/(p.(p-1)) 

#(others) = 0 

 

Case n = 2p, p a prime number (Table (15)) : 

 

div      # 0 … 2 … 2p Proportions Arithmetic progressions 

2p (2p-1)/(2p)    1/(2p) 1/(p-1) 1 mod 2p 

…        

2 1/2  1/2   (p-2)/(p-1) 1 mod 2, ≠ 1 mod 2p  
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So that : 

#(0) = (p+1)/(2p) 

#(2) = (p-2)/(2(p-1)) 

#(2p) = 1/(2p.(p-1)) 

#( others) = 0 

 

Case n = p
2
, p a prime number (Table (16)) : 

 

div       # 0 1 … p … p
2
 Proportions Arithmetic progressions 

p
2
 (p

2
-1)/p

2
     1/p

2
 1/(p.(p-1)) 1 mod p

2
 

…         

p (p-1)/p   1/p   1/p 1 mod p, ≠ 1 mod p
2
 

…         

1 0 1     (p-2)/(p-1) 1 mod 1, ≠ 1 mod p 
 

So that : 

#(0) = (p
2
+1)/p

3
 

#(1) = (p-2)/(p-1) 

#(p) = 1/p
2
 

#(p
2
) = 1/(p

3
.(p-1)) 

#( others) = 0 

 

Case n = p.q, q > p > 2 two prime numbers (Table (17)) : 

 

div    # 0 1 … p … q … p.q Proportions Arithmetic progressions 

p.q (p.q-1)/(p.q)       1/(p.q) 1/((p-1)(q-1)) 1 mod p.q 

…           

q (q-1)/q     1/q   (p-2)/((p-1)(q-1)) 1 mod q, ≠ 1 mod p.q 

…           

p (p-1)/p   1/p     (q-2)/((p-1)(q-1)) 1 mod p, ≠ 1 mod p.q 

…           

1 0 1       (p.q-2.(p+q)+4)/((p-1)(q-1)) 1 mod 1, ≠ 1 mod p, ≠ 1 mod q 
 

So that : 

#(0) = ((p+q).(p.q+2)-(p²+q²)-3p.q-1)/(p.q.(p-1).(q-1)) 

#(1) = (p.q-2(p+q)+4)/((p-1).(q-1)) 

#(p) = (q-2)/(p.(p-1).(q-1)) 

#(q) = (p-2)/(q.(p-1).(q-1)) 

#(p.q) = 1/(p.q.(p-1).(q-1)) 

#( others) = 0 

 

Case n = p
r
.q

s
, q > p > 2 two prime numbers : 

 

We use here Euler's totient function φ. We have φ(p
r
) = (p-1).p

r-1
, φ(q

s
) = (q-1).q

s-1
 and φ(n) = (p-1).(q-1).p

r-1
.q

s-1
.  

We also the writing shortcuts φr = φ(p
r
), φs = φ(q

s
) et φn = φ(n). 

The corresponding table is then (Table (18)) 

 

div    # 0 1 … p
r
 … q

s
 … n Proportions Arithmetic progressions 

n 1-1/n       1/n 1/φn  1 mod n 

…           

q
s
 1-1/q

s
     1/q

s
   1/φq-1/φn 1 mod q

s
, ≠ 1 mod n 

…           

p
r
 1-1/p

r
   1/p

r
     1/φp-1/φn 1 mod p

r
, ≠ 1 mod n 

…           

1 0 1       1-1/φp-1/φq+1/φn 1 mod 1, ≠ 1 mod p
r
, ≠ 1 mod q

s
 

 

So that : 

#(0) = (1-1/p
r
)/φp+(1-1/q

s
)/φq-(1+1/n-1/p

r
-1/q

s
)/φn 

#(1) = 1-1/φp-1/φq+1/φn 

#(p
r
) = (1/φp-1/φn)/p

r
 

#(q
s
) = (1/φq-1/φn)/q

s
  

#(n) = 1/(n.φn) 

#( others) = 0 

 

The formulations are then complicated with the multiplication of the number of factors of n. Is it possible to obtain a general 

expression (including also the even factors) from the previous examples ? If so, it would certainly require still more than a 

little effort. However, the essential is to have seen that the existence of solutions following arithmetic progressions do pilot 
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cardinals and obtained proportions. In the case of the polynomials (under conditions of single roots given further), a priori 

more complex, we will instead produce such a general expression (without proof however). 

 

2.4.7.4.2 Case of polynomials 

 

Let us have P a given polynomial of degree n. Let us have #(c,p,δ) the number of integer solutions of P(x) = c mod p
δ
. We 

seek the relative frequency freq(n, ve) of  

#(c,p,δ) = ve        (48) 

 

We first have a fundamental result. Namely, the number of integer solutions of P(x) = c mod p
δ
 is equal to the number of 

integer solutions of P(x) = c mod p except for a finite number of sequences p. Indeed, the supernumerary cardinals occur for 

p dividing the discriminant of the equation (as discussed later), discriminant that is a constant for a given target c and has 

thus trivially only finite number of divisors. Except supernumerary cardinals, exceptions are possible for p = 2 (only 1 case) 

and for p \ n, then still in finite number. Let us have q the number of these cases. Their relative frequency is therefore q/∞ ≡ 

0. 

 

It is therefore sufficient to study P(x) = c mod p (δ = 1). As the supernumerary cardinals have a null relative frequency, it 

only remains to study the cases ve = 0 to n.    

 

We then have: 

 

                               freq(n, m = n) = 1/m! = 1/n!                                                                                     (49) 
 

                               freq(n, m = n-1) = 0                                                                                                  (50) 
 

freq(n, m < n-1) = 
1 

( 
1 

- 
1 

+ 
1 

-…+ 
(-1)

n
 

)             (51) 
m! 2 2.3 2.3.4 (n-m)! 

 

Very incomplete proof 

 

Let us have m the number of solutions of P(x)-c = 0 mod p. In the absence of supernumerary cardinals, we can write 

uniquely (to the permutations) the polynomial in the form (x-s1).(x-s2).(x-sm).Q(x) = 0 = 0 mod p where Q(x) is of degree n-

m and cannot be split more (in Z/pZ).  

Obviously, if P(x) = c mod p has n-1 solutions, the polynomial then splits completely, so freq(n, n-1) = 0. 

 

The remainder of our approach is based on a set of heuristic arguments, current process in the presence of prime numbers. 

Let us suppose so that to find the number of solutions of a randomly selected degree n polynomial come up to a blind 

drawing of cubes loose or sticking together and of all eligible configurations within a black box.  

We have the following injection : 

 

             split initial configuration                  effective configuration of the polynomial 

 

11 12 13 … 1n  
→ 

 1 … 1 m-n 1 … 1  
Degrees (total = 

n) 

1 1 1 … 1   1 … 1 #(m-n) 1 … 1  Lengths 

 

We do match here on one side a cube of length 1 with a split solution (distinct or not to others) and on the other side a brick 

of length #(n-m) with a non-split part of Q(x) of degree n-m. The dimensions of the bricks, other than the length, are 

identical and are therefore ignored. To each of the initial configurations, which are permutations of 1i, i = 1 to n and which 

are therefore in quantity n!, we do match a split brick or a not-split brick, the relative weight of the non-split brick being 

correlated in an "adapted" length. 

The determinative hypothesis for this heuristic evaluation is that the length #(n-m) is in no way dependent on n but only the 

difference n-m. It follows, at the right of underneath equality, the first term card (n-m). To draw randomly the brick of 

length #(n-m) also depends on the position of the brick, for which there are n-m combinations among n. It follows the 

second term below.   

We have thus: 

                        (
   

 
)             (52) 

 

We can then deduce all of the cardinals by the following construction : 
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Table (19) 

 

Nb solutions    \   Degree 1 2 3 4 

0 0 1 2 … 

1 1 0 3 … 

2 
 

1 0 … 

3 
  

1 … 

… 
   

… 

 

Each of the cardinals on a diagonal is obtained from the cardinal of the first line in correspondence (or the previous element 

by a combinatorial ratio). The cardinals of degree 1 and 2 are known (and proved). We after that proceed step by step 

according to a diagonal, then the next to his right. At the stage of degree n, there is only a single unknown value (here 

marked in red for the degree 3 stage). This value is obtained simply by difference to the sum of cardinals according to the 

current column, sum which is n!. 

 

Obtaining the formula (51) request some additional calculations that we report after the more complete numerical table 

given below. 

Table (20)  

 

Degrees (n) 1 2 3 4 5 6 7 8 9 10 11 12… 

Nb solutions (m) Card(n,m) =  Proportions of solutions (before dividing by total of proportions) 

0 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 

1 1 0 3 8 45 264 1855 14832 133497 1334960 14684571 176214840 

2 
 

1 0 6 20 135 924 7420 66744 667485 7342280 88107426 

3 
  

1 0 10 40 315 2464 22260 222480 2447445 29369120 

4 
   

1 0 15 70 630 5544 55650 611820 7342335 

5 
    

1 0 21 112 1134 11088 122430 1468368 

6 
     

1 0 28 168 1890 20328 244860 

7 
      

1 0 36 240 2970 34848 

8 
       

1 0 45 330 4455 

9 
        

1 0 55 440 

10 
         

1 0 66 

11 
          

1 0 

12 
           

1 

Total card. = n! 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 

 

Let us recall that, the chosen polynomial being suitable indeed to this table (without proof, the factorization of the 

polynomial P(x) and the sign of the discriminant of P(x) c do intervene), a number of targets will in general make exception 

(and fairly systematically the target c = 0). 

 

Numerical tests confirm the evaluation of these relative frequencies, with calculation errors in focus, because we ought to 

note large saw teeth variations in these values (in the range of available calculations on a standard computer). These tests 

also confirm that the polynomial expression occurs according to the presence of given multiple integer roots, the frequency 

corresponding either to table 20 (single root or irreducibility), either to table 13 (monomials), either to an another form 

(varying according to the multiple roots decomposition).  

 

The table can then be read in different ways : 
 

- according to the lines,   

- according to the main diagonal,   

- according to the columns.   

 

Let us deal successively with these different approaches.  

Let us start with the first line. The expression for the degree n is deduced at the previous column by the basic formula : 

 

card(n,0) = n.card(n-1,0)+(-1)
n
               (53)  

 

Let us suppose that this is the case. We have then under a developed form by adding the case n = 1 and n = 2 : 
 

card(1,0) = 0    

     (54) card(2,0) = 1    

card(n > 2,0) = n.(n-1).(n-2)…3 - n.(n-1).(n-2)…4 + n.(n-1).(n-2)…5 + (-1)
n-1

.n+(-1)
n
 

 

Let us then examine the finite differences according to (non-trivial) diagonals : 
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Tables (21) 
 

#(diag 2) 1 3 6 10 15 21 28 36 45 55 

dif1 

 

2 3 4 5 6 7 8 9 10 

dif2 

  

1 1 1 1 1 1 1 1 

 

#(diag 3) 2 8 20 40 70 112 168 240 330 440 

dif1  6 12 20 30 42 56 72 90 110 

dif2   6 8 10 12 14 16 18 20 

dif3    2 2 2 2 2 2 2 

 

#(diag 4) 9 45 135 315 630 1134 1890 2970 4455 6435 

dif1 
 

36 90 180 315 504 756 1080 1485 1980 

dif2 
  

54 90 135 189 252 324 405 495 

dif3 
   

36 45 54 63 72 81 90 

dif4 
    

9 9 9 9 9 9 

 

#(diag 5) 44 264 924 2464 5544 11088 20328 34848 56628 88088 

dif1  220 660 1540 3080 5544 9240 14520 21780 31460 

dif2   440 880 1540 2464 3696 5280 7260 9680 

dif3    440 660 924 1232 1584 1980 2420 

dif4     220 264 308 352 396 440 

dif5      44 44 44 44 44 

 

This shows that the proportion of solutions following diagonals is represented by a degree n polynomial. More specifically, 

using the choice of m elements among n, it is of the above mentioned form : 

 

                        (
 
 
)             (55) 

 

So that for n > 2 : 
 

                                                                 (
 
 
) 

 

So that also : 
 

                                                                   (
   

 
) 

 

At the degree n, the frequency for m solutions is finally obtained by dividing the cardinal by all possible drawings (here n!), 

so that : 

freq(n,m) = 
(n-m)(n-m-1)…3 - (n-m)(n-m-1)…4+(n-m)(n-m-1)…5 - …+ (-1)

n-1
(n-m) + (-1)

n
 

(n-m)!m! 

 

or otherwise 

1/m! 
(n-m)(n-m-1)…3 - (n-m)(n-m-1)…4+(n-m)(n-m-1)…5 - …+ (-1)

n-1
(n-m) + (-1)

n
 

(n-m)!m! 

 

So that finally (for m < n-1) : 

 

freq(n, m < n-1) = 
1 

( 
1 

- 
1 

+ 
1 

-…+ 
(-1)

n
 

)             (56) 
m! 2 2.3 2.3.4 (n-m)! 

 

Let us note also the limit case : 

freq(n, m)  
= 

1 
              (57) 

n-m → ∞ e.m! 

 

2.4.7.5 Application to equiprobability 

 

Let us note again, as for an above remark for degree 3 polynomials, that for P(x,c) = an.x
n
+an-1.x

n-1
+…+a1.x-c, the only 

targets c, which we are concerned with, are of the form an.i
n
+an-1.i

n-1
+…+a1.i, with i an integer (the other cases 

corresponding to locally null cardinal cases), we can rewrite the polynomial P(x) form by simple Euclidean division P(x,i) = 

(x-i).Q(x,i) with Q(x,i) a polynomial of degree n-1. 

This requires a simple translation (with regard of the polynomial degree) of the data in the table (20) and the addition of the 

"free" solution : 
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Table (22) 

 

Degree (n) 2 3 4 5 6 … 

n-1 1 2 3 4 5 … 

Nb solutions (m) Card(n,m) 

0+1 0 1 2 9 44 … 

1+1 1 0 3 8 45 … 

2+1 
 

1 0 6 20 … 

3+1 
  

1 0 10 … 

4+1 
   

1 0 … 

5+1 
    

1 … 

 

Of course, as we already indicate, there exist polynomials which do not meet this cardinal distribution. We have noticed the 

monomials, but all sorts of intermediate forms can be considered such as x
n-r

(x+a)
 r
. Nevertheless, the essential conclusion 

on equiprobability remains for these intermediate cases (still waiting of demonstration).   

 

This being established, we can eliminate reducing them to 1 by simple division (as in the case de monomials) all the non- 

supernumerary cardinals factors of abundance. 

 

Thus, the product of local factors depends only on the supernumerary cardinals that we study below. 

 

2.4.7.6 Study of supernumerary cardinals 

 

The discriminant of an equation detects multiple roots of a global or local equation. It is null when such roots exist. The null 

value means locally that 

Disc = 0 mod p
δ
 

 

But the converse is false as we saw earlier. 

 

The main difficulty in the handling of the supernumerary cardinals is to identify the standard cardinals they replace. 

 

So even if we completely dominate the subject of the cardinals for the standard targets and those of supernumerary 

cardinals, the impossibility of identifying the underlying replacement is insurmountable. What saves us at least is the simple 

and consensual finitude of cases. This allows us to force the expression "factor x volume" to meet our requirement by 

simple case by case adaptation. We must, however, observe that these supernumerary cardinals are finite numbers (null 

density) and will be without impact at the passage to several variables. The said forcing becomes unnecessary. 

 

All these considerations give us a sufficient basis to address asymptotic equations in several variables. Prior to this, it is 

useful to consider the second category of equations with one variable: the monomials and polynomials of one variable of 

prime numbers. 

 

2.4.8 Reconstruction of the set of prime numbers 

 

2.4.8.1 Minimal needs 

 

We have conducted projections of prime numbers on modulo p
δ
 classes in paragraph 1.2.3. We want now to do the reverse 

and restore this set. It is an essential step without which to reach more generality would be impossible. The equiprobability 

greatly simplifies operations. 

 

2.4.8.2 Implementation  

 

Let us have ε a positive real. Let us build the table below in which we consider a variable "y" describing the set of natural 

numbers. We wish to extract the set of prime umbers via a multiplicative modulo p process. To do this, whenever p divides 

y, we make a weighting ε with a power equal to the valuation of p in y, otherwise we make a weighting of 1, except when y 

= 1 and in which case the weighting will be 1-ε. 
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Table (23) 

 

p \ y 0 1 2 3 4 5 6 7 8 9 10 11 … ∞ 
2 0 

 

1-ε ε 1 ε
2
 1 ε 1 ε

3
 1 ε 1 … … 

3 0 1-ε 1 ε 1 1 ε 1 1 ε
2
 1 1 … … 

5 0 1-ε 1 1 1 ε 1 1 1 1 ε 1 … … 
7 0 1-ε 1 1 1 1 1 ε 1 1 1 1 … … 

11 0 1-ε 1 1 1 1 1 1 1 1 1 ε … … 
… … … … … … … … … … … … … … … 

p 0 1-ε 1 1 1 1 1 1 1 1 1 1 … … 
               

Product Π 0 (1-ε)
t
 ε ε ε

2
 ε ε

2
 ε ε

3
 ε

2
 ε

2
 ε … … 

Π/ε 0 (1-ε)
t
/ε 1 1 ε 1 ε 1 ε

2
 ε ε 1 … … 

 

The weighting in the column of the element 0 is zero because p
k
 divides 0 for all k et we write then ε

k=+∞
 = 0 (for 0 < ε << 

1). If t > 2Ln(ε)/Ln(1-ε) then (1-ε)
t
/ε < ε. As t tends to infinity, it results that (1-ε)

t
/ε tends to 0 for any ε such as 0 < ε << 1. 

 

When ε tends towards 0, the row in the table corresponding to the sequence p tends towards the local variable {1, 2, ..., p-1} 

by assignment of 0 or 1. 

 

After multiplication of the elements of the columns, and division by ε, the last line of the table shows 1 for any prime 

number and a near zero value otherwise when ε is near zero. We realise thus our initial goal. In this way, we can get the list 

of prime numbers with a weighting of 1 and the other numbers with a residual weighting as small as wanted. 

 

2.4.8.3 Theorem of prime numbers local - global reconstruction 
 

The list of prime numbers is asymptotically the product after deployment of (following columns) components of the local 

variables from sequence 2 to ∞ with the same coefficient of density for the entire list. 

 

Note :  

One must keep in memory the shade of writing ε → 0 (instead of ε = 0). Otherwise, all of the set P disappears with the 

product of the representatives. However, in the presence of additional variables, it is not generally useful to maintain this 

subtlety (and then simply take ε = 0). 

 

2.4.9 The example of y
n
 

 

2.4.9.1 Singular series 

 

Let us have to solve 

y
n
 = c mod p

δ
 

 

2.4.9.1.1 Case of odd p 
 

Let us have di = (n,Ф(δ-i)) where Ф(δ-i) = p
δ-i-1

.(p-1) and δn = int((δ-1)/n) the integer part of (δ-1)/n.  

We can then set up the following table : 

Table (24) 

 

y c = y
n
 mod p

δ
 #{c} #{variants de c} 

0 

p
δ-1

.{g
0
, g

1
, … , g

Φ(1)-1
} 

p
δ-2

.{g
0
, g

1
, … , g

Φ(2)-1
} 

… 

p
δn+1

.{g
0
, g

1
, … , g

Φ(δ-(δn+1))-1
} 

0 ε
δn+

.p
δ-δn-1

 1 

p
δn

.{g
0
, g

1
, … , g

Φ(δ-δn)-1
} p

δn.n
.{g

0.d[δn.n]
, g

1.d[δn.n]
, … , g

(Φ(δ-δn.n)/d[δn.n]-1).d[δn.n]
} ε

δn
.dδn.n.p

δn.(n-1)
 Φ(δ-δn.n)/dδn.n 

… … … … 

p
i
.{g

0
, g

1
, … , g

Φ(δ-i)-1
} p

i.n
.{g

0.d[i.n]
, g

1.d[i.n]
, … , g

(Φ(δ-i.n)/d[i.n]-1).d[i.n]
} ε

i
.di.n.p

i.(n-1)
 Φ(δ-i.n)/di.n 

…  … … 

p
1
.{g

0
, g

1
, … , g

Φ(δ-1)-1
} p

n
.{g

0.d[n]
, g

1.d[n]
, … , g

(Φ(δ-n)/d[n]-1).d[n]
} ε

1
.dn.p

(n-1)
 Φ(δ-n)/dn 

p
0
.{g

0
, g

1
, … , g

Φ(δ)-1
} p

0
.{g

0.d[0]
, g

1.d[0]
, … , g

(Φ(δ)/d[0]-1).d[0]
} ε

0
.d0 Φ(δ)/d0 

 

It is a simple copy of the table in paragraph 2.4.4.1.1 adding to #(c) the weighting ε
i
 where i is the valuation of p in y. We 

have, for non-zero ε, ε
0
 = 1. The significance of ε

δn+
 in the previous table is ε

δn+i
 with i ≥ 1 and it does not matter in fact the 

precise value of i. When we give to ε an infinitesimal, the variable y tends then towards the representative {g
0
, g

1
, … , g

Φ(δ)-

1
} which is our goal. 

 

2.4.9.1.2 Case of even p (p=2) 
 

We use the couple of generators (5,-5). 

Let us have di = (n,Ф(δ-i)/2) where Ф(δ-i) = 2
δ-i-1

 and δn = int((δ-1)/n).  
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We can set up again the table of the cardinals of the residues as in the case of odd sequences : 

 

Table (25) 

 

y y
n
 = c mod 2

δ
 #{c} 

0 

2
δ-1

.{5
0
} 

2
δ-2

.{5
0
, 5

1
, … , 5

Φ(2)-1
} 

2
δ-2

.{(-5)
0
, (-5)

1
, … , (-5)

Φ(2)-1
} 

… 

2
δn+1

.{5
0
, 5

1
, … , 5

Φ(δ-(δn+1))-1
} 

2
δn+1

.{(-5)
0
, (-5)

1
, … , (-5)

Φ(δ-(δn+1))-1
} 

0 ε
δn+

.2
δ-δn-1

 

2
δn

.{5
0
, 5

1
, … , 5

Φ(δ-δn)-1
} 

2
δn

.{(-5)
0
, (-5)

1
, … , (-5)

Φ(δ-δn)-1
} 

2
δn.n

.{5
0
, 5

1
, … , 5

(Φ(δ-δn.n)/d[δn.n]-1)
} 

2
δn.n

.{(-5)
0
, (-5)

1
, … , (-5)

(Φ(δ-δn.n)/d[δn.n]-1)
} 

ε
δn

.2
δ-δn-1

 

… … … 

2
i
.{5

0
, 5

1
, … , 5

Φ(δ-i)-1
} 

2
i
.{(-5)

0
, (-5)

1
, … , (-5)

Φ(δ-i)-1
} 

2
i.n

.{5
0.d[i.n]

, 5
1.d[i.n]

, … , 5
(Φ(δ-i.n)/d[i.n]-1).d[i.n]

} 

2
i.n

.{(-5)
0.d[i.n]

, (-5)
1.d[i.n]

, … , (-5)
(Φ(δ-i.n)/d[i.n]-1).d[i.n]

} 

ε
i
.di.n.2

i.(n-1)
 

…  … 

2
1
.{5

0
, 5

1
, … , 5

Φ(δ-1)-1
} 

2
1
.{(-5)

0
, (-5)

1
, … , (-5)

Φ(δ-1)-1
} 

2
n
.{5

0.d[n]
, 5

1.d[n]
, … , 5

(Φ(δ-n)/d[n]-1).d[n]
} 

2
n
.{(-5)

0.d[n]
, (-5)

1.d[n]
, … , (-5)

(Φ(δ-n)/d[n]-1).d[n]
} 

ε
1
.dn.2

(n-1)
 

2
0
.{5

0
, 5

1
, … , 5

Φ(δ)-1
} 

2
0
.{(-5)

0
, (-5)

1
, … , (-5)

Φ(δ)-1
} 

2
0
.{5

0.d[0]
, 5

1.d[0]
, … , 5

(Φ(δ)/d[0]-1).d[0]
} 

2
0
.{(-5)

0.d[0]
, (-5)

1.d[0]
, … , (-5)

(Φ(δ)/d[0]-1).d[0]
} 

ε
0
.d0 

 

Let us have c a mod 2
δ
 residue and let us have m the multiplicity of factor 2 in n. We then have the following summary table 

(the values of column y can be verified by substitution in y
n
 = c mod 2

δ
) : 

 

Table (26) 

 

y Conditions on k,i and n c #{c} #{variants of c} 

2
δn

.(2k) k = 0, 1, …, 2
δ-δn-1

-1 0 ε
δn

.2
δ-δn-1

 1 

2
δn

.(1+2k) k = 0, 1, …, 2
δ-δn-1

-1 2
δn.n

 ε
δn

.2
δ-δn-1

 1 

2
i
.(1+2.(#{1}).k)

1/n 

+2
δ-i.(.n-1)

/(#{1})k’ 

k = 0, 1, …, 2
δ-1-i.n

/(#{1})-1 

i = 0 to δn-1 

k’ = 0 to 2
i.(n-1)

.(#{1})-1 

2
i.n

 (1+2.#{1}.k) 

 

ε
i
.2

i.(n-1)
.(#{1}) 2

δ-1-i.n
/(#{1}) 

 

When we give to ε an infinitesimal weighting, the variable is then tends towards the representative {5
0
, 5

1
, … , 5

Φ(δ)-1
}, 

{(-5)
0
, (-5)

1
, … , (-5)

Φ(δ)-1
} which is our goal. 

 

2.4.9.1.3 Number of solutions of y
n
 = c mod 2

δ
.∏ pi

δi
. 

 

As in the case of an integer variable equation, we will see in the next paragraph the purpose of the below individual cases c 

= 1 and c ≠ 1. 

 

Case c ≠ 0, c ≠ 1, c ≠ y
n
  

 

We apply the Chinese theorem : 

 

#{y
n
 = c mod 2

δ
.∏ pi

δi
} = #{y

n
 = c mod 2

δ
}.∏#{y

n
 = c mod pi

δi
}

 

 

As c ≠ y
n
, one at least of the terms is zero so the product is zero. 

 

Case c ≠ 0, c ≠ 1, c = y
n
  

 

We still apply the Chinese theorem : 

 

#{y
n
 = c mod 2

δ
.∏ pi

δi
} = #{y

n
 = c mod 2

δ
}.∏#{y

n
 = c mod pi

δi
}

 

 

The number of solutions of y
n
 = c mod pi

δi
 is given by the tables presented in paragraphs 2.4.9.1.1et 2.4.9.1.2  If c = 

(2
r
.p1

k1
.p2

k2
…pj

kj
)

n
, we have ε

ki
.dki.n.p

ki.(n-1)
 classes of solutions each time that pi is equal to one of the numbers p1, p2, … or pj 

(with dki.n = 1 in the case of factor 2), otherwise we have d0 classes of solutions when pi is different from the set of the 

numbers p1, p2, … et pj.   . 

Thus : 

 

1 = 
#{y

n
 = c mod p1

δi
} 

= 
#{y

n
 = c mod p2

δi
} 

=…= 
#{y

n
 = c mod pj

δi
} 

= 
#{y

n
 = c mod pi

δi
}  

ε
k1

.dk1.n.p
k1.(n-1)

 ε
k2

.dk2.n.p
k2.(n-1)

 ε
kj
.dkj.n.p

kj.(n-1)
 ε

0
.d0  
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Let us look at the dk.n. We have first of all d0 = #{y
n
 = 1 mod pi

δi
} which is a constant for δi large enough. This hypothesis 

(large enough δi) is well understood now. We simplify the writing of #{y
n
 = 1 mod pi

δi
} into #{1} when no confusion 

results. We always have : 

 

dk.n = (n,Ф(δi-k.n)) = (n, p
δi-k.n-1

.(p-1)) 

and in peculiar 

d0 = (n, p
δi-1

.(p-1)) 

 

It is clear that, for large enough δi, p and (p-1) factors are in the given gcd (n,...), and therefore again : 

 

dk.n = d0 = #{y
n
 = 1 mod pi

δi
} 

So that : 

#{y
n
 = c mod 2

δ
.∏ pi

δi
}  

= ε
r
.ε

k1
.ε

k2
…ε

kj
.2

r.(n-1)
.p

k1.(n-1)
.p

k2.(n-1)
 … p

kj.(n-1)
 = ε

r
.ε

k1
.ε

k2
…ε

kj
.c

(n-1)/n
      (58) 

#{1}
j+1

  

 

Case c = 1 

 

#{y
n
 = 1 mod 2

δ
.∏ pi

δi
} = #{y

n
 = 1 mod 2

δ
}.∏#{y

n
 = 1 mod pi

δi
}       (59)

 

 

The product is used as a reference #(1). Its actual value is not of significant importance. 

 

Case c = 0 

 

The product is null.  

 

2.4.9.2 Function volume and cardinal of product  

 

Again, as in paragraph 2.4.4.2, we assume the generality of the formula that follows, even in a field where this does not 

make sense. Thus as y
n
 = c, it just y = c

1/n
. As y is a prime numbers variable, we have the classic formula of enumeration in 

y/ln (y) given by Gauss, so that : 

V(c) ≈ c
1/n

 /ln(c
1/n

) = n.c
1/n

/ln(c) 

 

Then, neglecting the logarithmic square term : 

V’(c) ≈ n.c
1/n-1

/ln(c)  

 

This is obviously strictly applicable only when c tends towards infinity (asymptotic model). 

 

Case c ≠ 0, c ≠ 1, c ≠ y
n
  

 

The singular series is null. We thus have : 

 

#{x
n
 = c} = 0. V’(c) = 0       (60)

 

It is the sought result. 

 

Case c ≠ 0, c ≠ 1, c = y
n
  

 

With #{y
n
 = c mod 2

δ
.∏ pi

δi
}= ε

r
.ε

k1
.ε

k2
…ε

kj
.c

(n-1)/n
.#{1}

j+1
 and V’(c) = (1/n).c

-(n-1)/n
/ln(c), it follows : 

 

#{y
n
 = c} = ε

r
.ε

k1
.ε

k2
…ε

kj
.(1/n).#{1}

j+1
/ln(c) 

 

The expression right member tends towards 0 when ε is an infinitesimal unless r+k1+k2+…+kj = 0, that is if c has no prime 

factor, that is if c = 1. For discussion of this case, we refer to the next paragraph. 

 

The expression has no meaning either if c = 0.  

The cases c = 0 or c = 1 being eliminated, there remains the situation where r + k1 + k2 +... + kj ≥ 1, then : 

 

#{y
n
 = c}/ε = ε

r+k1+k2+…+kj-1
.(1/n).#{1}

j+1
.c

1/n-1
/ln(c) 

 

Now the second member is different from an infinitesimal and is equal to a constant (1/n).#{1}
j+1

 only when r + k1 + k2 +... 

+ kj = 1, that is when c is a prime number. 

 

It is the constant sought result. Thus the global-local process sieves well the variable y as a variable of prime numbers with 

equiprobability. 
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Case c = 0 

 

The y
n
 = 0 equation makes no sense since y is a prime number.  

In fact, the case c = 0 has no peculiar state in the y
n
 = c exercise. It is simply a case without solution like so many. 

 

Case c = 1 

 

Like the case c = 0 for the equation x
n
 = 0, the c = 1 case is an "obstruction" to the resolution of y

n
 = c. Still, this exception 

is unique. On one hand, the reason for this exception is similar to the one given above and can be translated by  

 

1
n
 = 1 

 

for all n. It is therefore impossible to assign to this target a multiplicity, which can be arbitrary. As said above for the 

equation with integer variable, there is no obstruction but rather an indeterminacy. On the other hand, “obstruction” comes 

also from the volume expression which shows ln(c) = ln (1) = 0 in the denominator which has no meaning. 
 

We will address once more this exception at the end of the article in paragraph 2.6.2.3. Let us note however that in practice, 

this exception is of quite marginal interest as 1 does not have the status of a prime number to start with and we can say that 

the equation has no solution from the starting point. 

 

2.4.10 Case of polynomials. 

 

Studies on the polynomials, similar to those of paragraphs 2.4.5, 2.4.6 and 2.4.7, could be conducted here for prime numbers 

variables. However, they do not gender new discoveries and are thus of minor importance. We therefore happily drop out 

these rough layouts to lighten the text (already sufficiently long after all).   

 

Our study on one variable diophantine equations summarizes to two points, somewhat to the antipodes, concerning the 

phenomenon of obstruction : 
 

- It is latent, meaning it arises as soon as the first variable is on the paper.  

- It is marginal, even in this case (with one variable) where the difficulties were foreseen as the rule (statistical 

distributions are favourable to the enumerations of solutions when the number of variables increases and vice 

versa). 

 

2.5 Local-global enumerations with two or more variables  

 

We make a review, to start with, for cases whose behaviour is clearly established to validate the applicability of the concept 

of local variables. 

 

2.5.1 Case of arithmetic series 
 

Let us recover the equiprobability in arithmetic series from local variables. The formal equation writes as : 

 

p = a.n + c         (61) 

 

Here a is a given positive number, n is a variable taking values in the set N, p is a variable taking values across prime 

numbers. We are seeking then the average arithmetic equivalent of c modulo a. 

 

Let us have a prime number p. The congruency classes formed from a.n modulo p are : 

 

a.N mod p 0.a 1.a 2.a … (p-1).a 

 

We have two cases : 

 

a = 0 mod p 0 0 0 … 0 

a ≠ 0 mod p 0 1 2 … p-1 

 

Let us have Rp the local variable representing P at sequence p. Rp ={1, 2,…,p-1}. 

Let us have c an element of the classes modulo p obtained by subtractive crossing of Rp and a.N. 
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Then, if a ≠ 0 mod p 

Table (27) 

 

Rp – a.N 

mod p 

0 1 … p-1 

1 1 0  2 

2 2 1  3 

… … …  … 

p-2 p-2 p-3  1 

p-1 p-1 p-2  0 

so that  

#{c) = p-1 

 

which means equidensity of the classes of congruencies for all c. 

 

Then, if a = 0 mod p 

Table (28) 

 

Rp – a.N 

mod p 

0 0 … 0 

1 1 1  1 

2 2 2  2 

… … …  … 

p-2 p-2 p-2  p-2 

p-1 p-1 p-1  p-1 

so that 

#{c = 0) = 0 

#{c ≠ 0) = p 

 

which means equidensity of the classes of congruencies for all c except c = 0 with to zero density. 

What can be written also : 
 

   p  P 

#{c \ Rp – a.N = c modulo 2.3…p} =   Π q  Π q-1           (62) 

 q\a  q∤a 

or : 

   P 

#{c \ Rp – a.N = c modulo 2.3…p} =   Π q/(q-1) Π q-1           (63) 

 q\a  2 

 

The second product of the relation (63) is identical, as normalization is concerned, for all sequence c. At given a, we again 

find the expected equidensity. The first product allows also to find density 1/φ(a) by writing a = Π q
k
, φ(a) = Π q

k-1
.(q-1), so 

that a/φ(a) = Πq\a q/(q-1). 

 

Note: There is no need to consider cases modulo p
k
, k > 1, the degree of stability being k = 1. 

 

2.5.2 Polignac, Vinogradov and relatives 

 

A this stage of development of our tools, it takes little effort to solve this degree 1 type of exercises.   

We seek the singular series corresponding to : 

 

p1+p2+…+pi = c         (64) 

 

This is to establish the standardized factors of abundance of targets c generated in a table having two axis crossing 

p1+p2+…+pi-1 and pi : 
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Table (29) 

 

 #(pi) 1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) 

#(p1+p2+…+pi-1) p1+p2+… mod p 1 2 … p-1 

#(0) 0 1 2  p-1 

#(1) 1 2 3  0 

#(2) 2 3 4  1 

… … … …  … 

#(p-2) p-2 p-1 0  p-3 

#(p-1) p-1 0 1  p-2 

 

Let us note again that, to make this calculation, we use the fact that the degree of stability of the variables pk is 1.   

Let us then proceed by induction to find these occurrences.  

For i = 1, we have two cases for targets : 

 

c #(c) 

c = 0 mod p  0 

c ≠ 0 mod p  p/(p-1) 

 

Let us suppose made i-1 crossings and let us still assume two cases for targets. Let us note also that the case i = 1 meets the 

hypothesis : 

c #(c) 

c = 0 mod p  1-(-1)
i-1

/(p-1)
i-1

 

c ≠ 0 mod p  1-(-1)
i
/(p-1)

i
 

 

This means that #(c ≠ 0 mod p) = #(1). 

Let us note ##(c) the new values to the stage i and by #(c) the previous ones. We also write to simplify #(c = 0 mod p) = 

#(0) and #(c ≠ 0 mod p) = #(1).  

We will have then : 

 

##(0) = #(0).(p-1)/(p-1) 

##(1) = #(0).1/(p-1)+#(1).(p-2)/(p-1) 

So that also 

##(0) = 1-(-1)
i+1-1

/(p-1)
i+1-1

   

##(1) = (1-(-1)
i-1

/(p-1)
i-1

/(p-1)+(1-(-1)
i
/(p-1)

i
.(p-2)/(p-1) = 1-(-1)

i+1
/(p-1)

i+1
   

 

We check well the hypothesis of recurrence.  

Thus, taking account of the volume available V’(c) = (1/c).(c/ln(c))
i
 for the target c : 

 

lim #{(p1, p2, …, pi) \ p1+p2+…+pi = c } = П (1- 
(-1)

i
 

) П (1- 
(-1)

i-1
 

) . c
i-1

/ln
i
(c)       (65) 

 

(p-1)
i
 (p-1)

i-1
  

c → ∞ p ∤ c     p ∖ c    

 

This is the formula of the mathematical literature. It is only true asymptotically, the enumerations for finite c and a small 

number of variables being very far away from this formula. 

 

2.5.3 Case of polynomials with more than two variables 

 

 

When three variables, or more, appear in a diophantine equation with non-symmetrical asymptotic branches, numerical 

verifications fail in general. Indeed, in the numerical approach to three variables or more, there are multiple ways (an 

infinite) to define the volume in its progression to infinity. If the distribution of solutions is not homogeneous following the 

various axis (that is the different variables), all choices of volumes are not suitable.  

The choice of a given volume in the search for the number of solutions comes up to add new equations in the original 

equation R(x,y,z,...) = c, hence the system of equations : 

 

R(x,y,z,…) = c 

L(x,y,z,…) = 0 

… 

 

However, the proposed method is not made for these cases.  

We have developed the point, in another article, some sophisticated matrix methods to evaluate the singular series in the 

presence of multiple variables. One must keep in memory the present reserve on the choice of the volume in the case of 

failures in numerical verifications as volume choice must be adapted. 
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2.6 Obstructions to enumerations 

 

In part I devoted to the problem of existence of solutions, we could not highlight strong obstruction, making sense, taking 

into account the trivial solutions, nor for a few examples of mathematical literature, neither for a particular case of our own 

production.   

Now, we are going to go back to the cases described in table (1) with an aim to enumerate solutions. 

 

2.6.1 The examples to exclude 

 

The enumerations, that we aim, use the identification of variables with representatives by projection of an infinite number of 

values. Only asymptotic branches equations allow using the chosen method. The examples to exclude are therefore already : 

 

Table (30) 

 

a.x
3
+b.y

3
+e.z

3
 = c for any triplet of integers (a,b,e)  

x
2
+y

2
+(z

2
-3).(z

2
-2) = c 

x
2
+y

2
+(z

2
+1).(z

2
+3).(z

2
-3)

2
.(z

2
+23) = c 

x
4
+17y

4
-2(4z

2
+t

2
)

2
 = c 

 

2.6.2 The remaining examples 

 

The remaining examples include : 

Table (31) 

 

Equations 

5x
3
+9y

3
-10z

3
-12t

3
 = c 

9x
2
-2x.y-7y

2
-2z

2
+1 = c 

 

2.6.2.1 Cassels et Guy equation 

 

That is : 

5x1
3
+9x2

3
 = 10x3

3
+12x4

3
 

 

Here we have an equation with more than two variables. Despite the subject to subsection 2.5.3, it is simple enough to bend 

to a consistent numerical verification. 

We therefore study target c parameterized equations c = 5x1
3
+9x2

3
-(10x3

3
+12x4

3
). We seek the approximated abundance 

factors for different values of c as well as the number of solutions for quadruplets (x1, x2, x3, x4) limited to the field of values 

-u ≤ x1 ≤ u, -u ≤ x2 ≤ u, -u ≤ x3 ≤ u, -u ≤ x4 ≤ u. 

Table (32) 

 

  
targets c  

  0 1 2 3 4 5 6 7 8 9 

p δ Number of local solutions (nsl) 

2 1 8 8 8 8 8 8 8 8 8 8 

3 2 729 729 729 729 729 729 729 729 729 729 

5 3 2265625 1953125 1953125 1953125 1953125 1953125 1953125 1953125 1953125 1953125 

7 2 76489 129654 151263 93639 93639 151263 129654 74088 129654 151263 

11 1 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 

13 2 4853173 4541199 4969614 4969614 4969614 4541199 4969614 4969614 4541199 4969614 

17 1 4913 4913 4913 4913 4913 4913 4913 4913 4913 4913 

19 1 6859 6726 6726 6726 7125 6726 7125 6726 6726 7125 

23 1 12167 12167 12167 12167 12167 12167 12167 12167 12167 12167 

29 1 24389 24389 24389 24389 24389 24389 24389 24389 24389 24389 

31 1 27001 30132 30132 30783 30132 28737 30783 30783 30132 28737 

37 1 50653 51060 49839 51060 51060 51060 51060 51060 51060 49839 

41 1 68921 68921 68921 68921 68921 68921 68921 68921 68921 68921 

43 1 74089 78948 78948 81657 78948 81657 81657 78303 78948 78303 

47 1 103823 103823 103823 103823 103823 103823 103823 103823 103823 103823 

53 1 148877 148877 148877 148877 148877 148877 148877 148877 148877 148877 

p δ normalized proportions (pn = nsl/p2δ) 

2 1 1 1 1 1 1 1 1 1 1 1 

3 2 1 1 1 1 1 1 1 1 1 1 
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5 3 1,1600 1 1 1 1 1 1 1 1 1 

7 2 0,6501 1,1020 1,2857 0,7959 0,7959 1,2857 1,1020 0,6297 1,1020 1,2857 

11 1 1 1 1 1 1 1 1 1 1 1 

13 2 1,0055 0,9408 1,0296 1,0296 1,0296 0,9408 1,0296 1,0296 0,9408 1,0296 

17 1 1 1 1 1 1 1 1 1 1 1 

19 1 1 0,9806 0,9806 0,9806 1,0388 0,9806 1,0388 0,9806 0,9806 1,0388 

23 1 1 1 1 1 1 1 1 1 1 1 

29 1 1 1 1 1 1 1 1 1 1 1 

31 1 0,9063 1,0114 1,0114 1,0333 1,0114 0,9646 1,0333 1,0333 1,0114 0,9646 

37 1 1 1,0080 0,9839 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 0,9839 

41 1 1 1 1 1 1 1 1 1 1 1 

43 1 0,9319 0,9930 0,9930 1,0270 0,9930 1,0270 1,0270 0,9849 0,9930 0,9849 

47 1 1 1 1 1 1 1 1 1 1 1 

53 1 1 1 1 1 1 1 1 1 1 1 

            
 c 0 1 2 3 4 5 6 7 8 9 

  
singular series = ∏ pn 

  
0,6404 1,0293 1,2828 0,8596 0,8618 1,1846 1,2609 0,6522 1,0293 1,2854 

            

 
domain u #(effective solutions) 

 
1000 1 1398 1697 1142 1160 1592 1783 902 1445 1719 

 
300 1 411 476 334 333 454 505 260 444 481 

 100 1 134 164 100 102 152 163 78 153 158 

 30 1 41 48 33 33 43 52 27 45 48 

            

 
domain u ratio singular series / #(effective solutions) 

 
1000 1,6 1358,2 1322,9 1328,5 1346,0 1343,9 1414,1 1383,0 1403,8 1337,4 

 
300 1,6 270,1 244,0 268,7 242,5 272,7 274,4 243,8 286,6 259,8 

 
100 1,6 130,2 127,8 116,3 118,4 128,3 129,3 119,6 148,6 122,9 

 
30 1,6 39,8 37,4 38,4 38,3 36,3 41,2 41,4 43,7 37,3 

 

By extending the range of targets c from 0 to 99, we obtain the two graphs that follow : 

 

Graphics (3) 

 

Domain u = 30 Domain u = 1000 

  
 

The dispersion of the values is related to at least three reasons :  

- the test sample (x1, x2, x3, x4) is finite (with no hope to test one day the non-finite sample) 

- the singular series is an approximation (sequences p ≤ 53 instead of p = 2 à ∞) 

- some degrees of stability δs are here possibly not achieved for certain sequences (for example p = 5) 

 

With sample increases and more accurate singular series (the reader may look at our article on asymptotic enumerations 

which will give all the ingredients to calculate it with the desired accuracy), the dispersion will be reduced (a priori given 

reason one). 

 

The only exception to the anticipated enumeration is here the target c = 0. However, we can then write 5(x1
3
-2x3

3
) = 3(3x2

3
-

4x4
3
), and thus reformulate a system of two (homogeneous) equations : 
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x1
3
-2x3

3
 = 3r 

3x2
3
-4x4

3
 = 5r 

 

Thus, the initial equation writes down another way which is an explanation of the noted exception. The Cassels and Guy 

equation is not isolated. We can see the same phenomenon, for example, with c = a.x1
3
+9x2

3
-(2a.x3

3
+12x4

3
) where a = 5, 13, 

19, 23, 31, 41 or 43, but not with a = 7, 17, 29 or 37 (where the solution c is not unique). These cases may seem less 

convincing on the matter of decomposition in several equations, but the following example, with richer exceptions, will feed 

our argument. 

 

2.6.2.2 Borovoi equation 

 

2.6.2.2.1 Variables of integers 

 

The proposed equation is extracted from a Jean-Louis Colliot-Thélène and Fei Xu article and attributed to Mikhail Borovoi. 

It is the diophantine equation -9x
2
+2x.y+7y

2
+2z

2
-1 = 0 which has no integer solution and, there again, has more than two 

variables. It is a most interesting example as we shall discover.  

To do this, we have c = -9x
2
+2x.y+7y

2
+2z

2
-1 and are looking for the number of local solutions (modulo p

δ
) according to 

target c. We get the following table : 

Table (33) 

 
p 2 3 5 7 11 13 17 19 23 2 3 5 7 11 13 17 19 23 

S
in

g
u
la

r 
se

ri
es

 

=
 ∏

 p
n
 

#
(e

ff
ec

ti
v

e 

so
lu

ti
o
n

s)
 

R
at

io
 s

in
g

u
la

r 

se
ri

es
 /

 #
 δ 6 5 3 2 2 2 2 2 2 6 5 3 2 2 2 2 2 2 

c number of local solutions (nsl) normalized proportions (pn = nsl/p2δ) 

0 8192 39366 12500 2744 13310 26364 88434 123462 292008 2 0,667 0,8 1,143 0,909 0,923 1,059 0,947 1,043 1,071 0 0 

1 8192 78732 18750 2744 15972 30758 88434 137180 292008 2 1,333 1,2 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1148 230 

2 0 52488 18750 2058 13310 26364 78608 137180 292008 0 0,889 1,2 0,857 0,909 0,923 0,941 1,053 1,043 0 0 
 

3 8192 39366 12500 2744 13310 26364 88434 123462 292008 2 0,667 0,8 1,143 0,909 0,923 1,059 0,947 1,043 1,071 130 121 

4 0 78732 15000 2058 13310 30758 78608 123462 267674 0 1,333 0,960 0,857 0,909 1,077 0,941 0,947 0,957 0 0 
 

5 0 52488 12500 2058 15972 30758 78608 123462 292008 0 0,889 0,8 0,857 1,091 1,077 0,941 0,947 1,043 0 0 
 

6 8192 39366 18750 2352 15972 30758 78608 123462 267674 2 0,667 1,2 0,980 1,091 1,077 0,941 0,947 0,957 1,570 185 118 

7 8192 78732 18750 2744 15972 30758 88434 137180 292008 2 1,333 1,2 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1070 214 

8 8192 65610 12500 2744 13310 26364 88434 123462 292008 2 1,111 0,8 1,143 0,909 0,923 1,059 0,947 1,043 1,785 346 194 

…                      

 

In the preceding table, #(effective solutions) are the number of solutions of the proposed equation limiting triplets (x,y,z) to 

- 2000/3 ≤ x ≤ 2000/3,-2000/√7 ≤ y ≤ 2000/√7-2000/√2 ≤ z ≤ 2000/√2, which is enough to expose our case. 

The results, for target 0 to 81, are graphically more speaking (see also a more complete table in appendix 5) : 

 

Graphic (4) 

 

 
 

If we do not take into account the sorting in three types made in this graph, we may regard that as a "messy thing”. But this 

case is interesting precisely because this hotch-potch gets good reasons.   
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First, we detect type 1 (diamond-shaped blue characters). It is corresponding to an a priori expected result, which is a ratio 

"#(effective solutions) / singular series" reasonably fluctuating around a constant value (here in the order of 125, but this 

very value as little immediate interest), the differences to the average being due, as in the Cassels and Guy example, to the 

rough calculation (finite sample (x, y, z), approximate singular series, stability degrees not possibly achieved). We observe 

this constant ratio for the majority of the targets.  
 

Then, we also find many exceptions that we have identified above indicating the abscissa values c on the chart. These 

exceptions are explained as follows after rewriting the equation in the form : 

 

c = -9x
2
+2x.y+7y

2
+2z

2
-1 = (y-x)(9x+7y)+2z

2
-1             (66) 

 

The first type of exceptions (in red squares) corresponds to : 

 

c = 2t²-1            (67) 

 

We then have  (y-x)(9x+7y)+2z
2
-1 = 2t²-1 and there is a line of "trivial" solution of degree 1  

 

t = ±z  

and  

{x = y or 9x+7y = 0} 

 

who strengthen thus the "normal" value at degree 2. 

 

The second type of exceptions (in green triangles) is a little better hidden. 

It corresponds to the target of the form : 
 

c = (1+2t)²-1               (68) 

 

We then write (y-x)(9x+7y)+2z
2
-1 = (1+2t)²-1, so that (y-x)(9x+7y)+2z

2
-(1+2t)² = 0. If z = ±(1+2t), then (x-y)(9x+7y) = z

2
 

= (z/r).(z.r). In the latter part of equality, r is any divisor of z. Hence the new first degree equations : x-y = (z/r) and 9x+7y = 

(z.r), and hence the system of equations in integers : 
 

x = (7(z/r)+(z.r))/16  

and  

y = (-9(z/r)+(z.r))/16 

 

There is a constraint because of the divisions by r and 16, where a possibility of lesser quantity of solutions (even with 

respect to an second degree equation).     
 

The first type always displays an excess of solutions. But, it is important to note that the reduction to the lower level (here 

the level 2 to level 1 passage) is not necessarily accompanied with a surplus as shows the second type at c = 0, c = 48 and c 

= 80. The explanation for target c = 0 without solution was already given in part I by considering the point of view of the 

prime number variables. The case of target c = 48 is described in same manner. However, if a target c is prohibited for the 

prime numbers variables, solutions are possible (in integers) which allows a case like c = 80 with non-zero number of 

solutions. 

Let us note that other exceptions may be present which we do not suspect here the linearization.    
 

La position à adopter, à la fois la plus simple et la plus adaptée, par rapport à toutes ces exceptions est en fait de dire que le 

procédé global-local ne s’applique en aucune manière, dès lors qu’une réduction de l’équation initiale est possible :  

 

The position to be adopted, both the simplest and the most suitable, to all these exceptions is in fact to say that the global-

local process applies in no way as soon as a reduction of the initial equation is possible : 

 

- reduction into several equations (2 or more) of lower degrees 

- discriminant of the equation equal to zero 

- ... 

 

2.6.2.2.2 Variables of prime numbers 

 

We can confirm this approach using the same diophantine equation but considering not integer variables, but prime numbers 

variables. We still studied the target 0 to 81.   

 

Here, they are divided into four categories : 

 

- Cat. 1 : those, the more numerous, for which no solution is detected and the singular series is zero (c = 0, 2, 3, 4, 5, 

6, 9, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 

44, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 and 

80), 
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- Cat. 2 : those for which the number of solutions is low and appears to be reduced to this small number (and 

therefore finite quantities) and whose singular series is zero (c = 8, 16, 40, 46, 56 and 64), 

- Cat. 3 : those for which the number of solutions increases with the volume (and therefore a priori in infinite 

amount) and the singular series is non-null (c = 1, 13, 33, 45, 49, 61 and 81), 

- Cat. 4 : those for which the number of solutions increases with the volume (and therefore a priori in infinite 

amount) and the singular series is null (c = 7 and 17). 

The first category is in the logic of things. It is the main stream because the number of variables is small relative to the 

degree of the equation.   

For a finite number of solutions, it is expected to have a singular series equal to zero, which is expressed in the second 

category of targets.   

The third category is the “reverse” of the first one.  

We examine the very particular case of the fourth category a little later on.   

 

We excluded trivial (zero) results of the first category in the table below representing the ratio of the number of solutions 

versus singular series : 

 

Table (34) 

 

Targets 1 7 8 13 16 17 33 40 45 46 49 56 61 64 81 

Singular series 54,197 0 0 4,330 0 0 6,348 0 7,810 0 21,679 0 16,559 0 13,021 

Definition domain 
# 

solutions               

2 ≤ x ≤ 229, 2 ≤ y ≤ 263, 

2 ≤ z ≤ 577 
4 50 1 1 1 50 1 1 5 1 52 2 11 1 6 

2 ≤ x ≤ 983, 2 ≤ y ≤ 1123, 

2 ≤ z ≤ 2381 
21 166 1 4 1 166 3 1 10 1 172 2 19 1 18 

2 ≤ x ≤ 3571, 2 ≤ y ≤ 

4111, 2 ≤ z ≤ 8501 
45 500 1 8 1 500 11 1 24 1 520 2 42 1 29 

 Ratio               

2 ≤ x ≤ 229, 2 ≤ y ≤ 263, 

2 ≤ z ≤ 577 
0,07 ∞ → ∞ 0,23 → ∞ ∞ 0,16 → ∞ 0,64 → ∞ 2,40 → ∞ 0,66 → ∞ 0,46 

2 ≤ x ≤ 983, 2 ≤ y ≤ 1123, 

2 ≤ z ≤ 2381 
0,39 ∞ → ∞ 0,92 → ∞ ∞ 0,47 → ∞ 1,28 → ∞ 7,93 → ∞ 1,15 → ∞ 1,38 

2 ≤ x ≤ 3571, 2 ≤ y ≤ 

4111, 2 ≤ z ≤ 8501 
0,83 ∞ → ∞ 1,85 → ∞ ∞ 1,73 → ∞ 3,07 → ∞ 23,99 → ∞ 2,54 → ∞ 2,23 

 

Appendix 6 provides more details on how to obtain this table.  

The report on a graph of the precedent results gives, when excepting category 2 : 

 

Graphic (5) 

 

  
 

 

The fourth category is incoherent. This is however not an event of type "obstruction", namely a lack of solutions with a non-

zero singular series, but precisely the opposite, namely, a phenomenon of  " influx " (an infinite number of solutions with a 

singular zero, what the numerical example makes understand without proving it). We can again give an " simple explanation 

" since these targets correspond to the type c = 2t²-1 family identified in the case of the variables of integers and therefore to 
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be rejected in our method at the same time as targets c = 1 and c = 49 which on the chart are either in a too low positions 

(for c = 1), or a too high position (for c = 49). After elimination (of the red points), we see that the positions of the 

remaining targets (in green) are close to a horizontal line, what is expected a priori. Moreover, when the chosen volume for 

numerical computation increases, we ought to see an evolution towards a smaller dispersion. 

 

Let us note also, that the case of the Borovoi equation is not isolated among the equations of the type c = 

α.x
2
+β.x.y+γ.y

2
+δ.z

2
 where many similar cases can be easily obtained (for example among the equation c = (y-

x)(9x+(7+16.a).y)+2z
2
-1 where a is an integer parameter (but without all integers suitable for a)). The principle of accurate 

enumeration of these equations is developed in another of our articles. 

 

2.6.2.3 Reduction of equations 

 

The Borovoi equation shows that apart from the reduction to specific systems of equations, the points describing the number 

of solutions are placed on a horizontal line in charts (or, what is the same thing, obey the relation #(c) = singular series x 

volume). For Borovoi equation, recalling exceptions, the two found types belong, according to relations (67) and (68), to 

second degree curves, for which we verified in paragraph 2.4.5 an equivalent Hensel lemma applied to enumeration (and 

therefore such as #(c) = singular series x volume). For the Cassels and Guy equation of, the alignment of the exception point 

is trivial (since we have only one point). 

 

Let us recall, before ending up this article the imbroglio, at paragraphs 2.4.4.2 and 2.4.9.2, to treat the two cases x
n
 = c with 

c = 0 for the variable of integers x and y
n
 = c with c = 1 for the prime numbers variable y. The example of Mikhail Borovoi 

fully provides the way to process these cases "correctly". 

To write down  

x
n
 = c       (69) 

comes up to write down a system of equations  

 

x = 0, x = 0, …, ou x = 0        (70). 

To write down  

y
n
 = 1       (71) 

 

again comes up to write down a system of equations  

 

y = 1, y = 1, …, ou y = 1        (72). 

 

According to our discussion, it can no longer be question to solve the initial equations (69) et (71) because they decompose 

into systems of equations and it can be neither to solve systems of equations because we do not know how to establish 

singular series of systems of equations (nor volumes for systems). 

Correct treatment therefore normally leads to a stalemate.  

By chance here, the equations are identical and boil down to  

 

x = 0 

on one side and  

y = 1 

 

on the other side, which allows however to finish the job. 

 

2.6.3 Obstruction or influx 

 

Our examples have highlighted a whole field of standards expected results from obstruction to influx with all possible 

intermediaries but only when the studied diophantine equation can be rewritten in a different way. Obstruction (strong) 

cases are only obvious, a priori, when equations are formed with integer variables, while cases of influx occur in those 

formed with prime numbers variables (related to weak obstruction).  

Outside this context (that is for equations that we will call "irreducible"), we have lost track of any exception. 

 

2.7 Conclusion and prelude 

 

Our approach is against the current common approach. It seems natural to erect the global equation as the centre of a given 

problem and to "pester" against obstructions that are found in the local equations (while studying them thoroughly). The 

global equation is an absolute, the road is one-way with no return, and there is no questioning of hypothesis (the global 

equation).   

We prefer an alternative way. We always start from the global equation but it is the local equations, infinitely more 

numerous, that form our reference centre. For a given target, they indicate if the way to write the global equation is sound or 

not. In fact, "obstructions" disappear since any particular target (and thus the corresponding equation) enacted locally as 

non-legitimate is being "scrapped" or the less classified in a new special family for enumeration. 

 

More precisely, it turns out that there is no obstruction into asymptotic branches diophantine equations but situations where 
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the choice of the target c reduces the given equation to one or more smaller degree equations (that is with members of 

smaller degree). The problem is then to be reconsider in this new situation. The concept of obstruction with that point of 

view has more meaning. One of the simplest example is p-q = 2c corresponding to the problem of twin and relative primes. 

If c = 0, then p = q, so that p = p, or also 0.p = 0. So the equation is no more of degree 1 but of degree 0. For any other 

integer c, we cannot do this reduction and the result is that of Polignac. 

 

We should pursue our investigations in a third part by further developing the tools for evaluation of the number of solutions 

of diophantine equations. We have seen that, a priori, according to the chosen method, only the resolution of diophantine 

equations with asymptotic branches offers a fertile ground. Even so, it is customary to think that each of these diophantine 

equations is a specific problem. In fact, this is not the case. It is possible to construct basic bricks of results and assemble 

them relying on special matrices. The ranks and the terms of these matrices can be studied in an environment of classes 

modulo pi
ki
 and depend on degrees of stability of the chosen equations. However, their evolution with ki is "easily" 

described by the terms of the said matrices or by their eigenvalues and eigenvectors and is deduced at infinity if necessary. 

The aggregation of variables in a diophantine equation comes up to mere products of these matrices. This construction is 

fascinating. Euler products are extracted from these matrices responding to many types of problems such as p = x
2
+x

4
+c 

with any c, generalizing the results found by Friendlander and Iwaniec for c = 0, such as p
j
 = ∑xi

(i)
+∑yi

(i)
+c where the sums 

relate to any number of terms and the integer powers are distinct or not, or even such as more general polynomial 

expressions (with more development required). The interested reader can refer to our paper "Asymptotic enumerations. 

Hypervolumes method" for this purpose. It is necessary of course to remember that thus found formulas are meaningful only 

"off reduction” of the proposed equation. 
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Appendix 1 

 

Product of cardinals relative to integers 

 

Let us have an example for the clarity of the presentation: P(n) = n², mi = 2², mj = 3². 
 

                                                     Table 1                           Truth table 1 
 

n P(n) mod 36 P(n) mod 4 P(n) mod 9  P(n) #P(n) mod 36 #P(n) mod 4 #P(n) mod 9  

0 0 0 0  0 6 2 3 True 

1 1 1 1  1 4 2 2 True 

2 4 0 4  2 0 0 0 True 
3 9 1 0  3 0 0 0 True 

4 16 0 7  4 4 2 2 True 

5 25 1 7  5 0 2 0 True 
6 0 0 0  6 0 0 0 True 

7 13 1 4  7 0 0 2 True 

8 28 0 1  8 0 2 0 True 

9 9 1 0  9 6 2 3 True 

10 28 0 1  10 0 0 2 True 
11 13 1 4  11 0 0 0 True 

12 0 0 0  12 0 2 0 True 

13 25 1 7  13 4 2 2 True 

14 16 0 7  14 0 0 0 True 
15 9 1 0  15 0 0 0 True 

16 4 0 4  16 4 2 2 True 

17 1 1 1  17 0 2 0 True 

18 0 0 0  18 0 0 3 True 

19 1 1 1  19 0 0 2 True 

20 4 0 4  20 0 2 0 True 
21 9 1 0  21 0 2 0 True 

22 16 0 7  22 0 0 2 True 

23 25 1 7  23 0 0 0 True 

24 0 0 0  24 0 2 0 True 
25 13 1 4  25 4 2 2 True 

26 28 0 1  26 0 0 0 True 

27 9 1 0  27 0 0 3 True 

28 28 0 1  28 4 2 2 True 

29 13 1 4  29 0 2 0 True 
30 0 0 0  30 0 0 0 True 

31 25 1 7  31 0 0 2 True 

32 16 0 7  32 0 2 0 True 

33 9 1 0  33 0 2 0 True 
34 4 0 4  34 0 0 2 True 

35 1 1 1  35 0 0 0 True 

 

 

Product of cardinals relative to prime numbers 

 

Let us reuse the precedent example removing the multiples of the divisors of mi and mj (that is of 2 and 3).  
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                                               Table 2                         Truth table 2 (identical to 1 with lines without objet (W.O.)) 
 

n P(n) mod 36 P(n) mod 4 P(n) mod 9  P(n) #P(n) mod 36 #P(n) mod 4 #P(n) mod 9  

0 0 0 0  0 6 2 3 True → W.O. 

1 1 1 1  1 4 2 2 True 

2 4 0 4  2 0 0 0 True → W.O. 

3 9 1 0  3 0 0 0 True → W.O. 

4 16 0 7  4 4 2 2 True → W.O. 

5 25 1 7  5 0 2 0 True 
6 0 0 0  6 0 0 0 True → W.O. 

7 13 1 4  7 0 0 2 True 

8 28 0 1  8 0 2 0 True → W.O. 

9 9 1 0  9 6 2 3 True → W.O. 

10 28 0 1  10 0 0 2 True → W.O. 
11 13 1 4  11 0 0 0 True 

12 0 0 0  12 0 2 0 True → W.O. 

13 25 1 7  13 4 2 2 True 

14 16 0 7  14 0 0 0 True → W.O. 
15 9 1 0  15 0 0 0 True → W.O. 

16 4 0 4  16 4 2 2 True → W.O. 

17 1 1 1  17 0 2 0 True 

18 0 0 0  18 0 0 3 True → W.O. 

19 1 1 1  19 0 0 2 True 

20 4 0 4  20 0 2 0 True → W.O. 
21 9 1 0  21 0 2 0 True → W.O. 

22 16 0 7  22 0 0 2 True → W.O. 

23 25 1 7  23 0 0 0 True 

24 0 0 0  24 0 2 0 True → W.O. 
25 13 1 4  25 4 2 2 True 

26 28 0 1  26 0 0 0 True → W.O. 

27 9 1 0  27 0 0 3 True → W.O. 

28 28 0 1  28 4 2 2 True → W.O. 

29 13 1 4  29 0 2 0 True 
30 0 0 0  30 0 0 0 True → W.O. 

31 25 1 7  31 0 0 2 True 

32 16 0 7  32 0 2 0 True → W.O. 

33 9 1 0  33 0 2 0 True → W.O. 
34 4 0 4  34 0 0 2 True → W.O. 

35 1 1 1  35 0 0 0 True 
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Appendix 2 

 

Stability of the variable of prime numbers y
6
. 

 
p = 2  

y = [1] mod 2  

y6 = [1] mod 2 Initial 

y = [1,3] mod 4 ≡ [1] mod 2  

y6 = [1,1] mod 4 ≡ [1] mod 4 Evolution1 

y = [1,3,5,7] mod 8 ≡ [1] mod 2  

y6 = [1,1,1,1] mod 8 ≡ [1] mod 8 Evolution2 

y = [1,3,5,7,9,11,13,15] mod 16 ≡ [1] mod 2  

y6 = [1,9,9,1,1,9,9,1] mod 16 ≡ [1] mod 8 Stabilized 

y = [1,3,5,…,2δ-1] mod 2δ ≡ [1] mod 2  

y6 ≡ [1] mod 23 si δ ≥ 3 = 1+2 (21 = max(6,2δ-1), δb = 2)  

 
p = 3  

y = [1,2] mod 3  

y6 = [1,1] mod 3 ≡ [1] mod 3 Initial 

y = [1,2,4,5,7,8] mod 9 ≡ [1,2] mod 3  

y6 = [1,1,1,1,1,1] mod 9 ≡ [1] mod 9 Evolution1 

y = [1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26] mod 27 ≡ [1,2] mod 3  

y6 = [1,10,19,19,10,1,1,10,19,19,10,1,1,10,19,19,10,1,1,10,19,19,10,1] mod 27 ≡ [1,10,19] mod 27 ≡ [1] mod 9 Stabilized 

y = [1,2,4,5,…] mod 3δ ≡ [1,2] mod 3  

y6 ≡ [1] mod 32 if δ ≥ 2 = 2+0 (31.2 = max(6,3δ-1.(3-1)), δb = 2)  

 
p = 5  

y = [1,2,3,4] mod 5  

y6 = [1,4,4,1] mod 5 ≡ [1,4] mod 5 Initial 

y = [1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24] mod 25 ≡ [1,2,3,4] mod 5  

y6 = [1,14,4,21,6,24,19,16,11,9,9,11,16,19,24,6,21,4,14,1] mod 25 ≡ [1,4,6,9,11,14,16,19,21,24] mod 25 ≡ [1,4] mod 5 Stabilized 

y = [1,2,3,4,…] mod 5δ ≡ [1,2,3,4] mod 5  

y6 ≡ [1,4] mod 51 δ ≥ 1 = 1+0 (50.2 = max(6,5δ-1), δb = 1)  

 

The sign of equivalence is placed here whenever the proportion of occurrences of each element remains the same. 
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Appendix 3 

 
 p 2 3 5 7 11 13 17 19 23 29  p 2 3 5 7 11 13 17 19 23 29 

c                                            
0 #(c) 1 1 1 1 1 1 1 1 1 1  #(c) 2 3 5 7 11 13 17 19 23 29 

1 mod p1 1 2 2 2 2 2 2 2 2 2  mod p2 2 2 2 2 2 2 2 2 2 2 

2  1 0 0 2 0 0 2 0 2 0   0 0 0 2 0 0 2 0 2 0 

3  1 1 0 0 2 2 0 0 2 0   0 0 0 0 2 2 0 0 2 0 

4  1 2 2 2 2 2 2 2 2 2   2 2 2 2 2 2 2 2 2 2 

5  1 0 1 0 2 0 0 2 0 2   2 0 0 0 2 0 0 2 0 2 

6  1 1 2 0 0 0 0 2 2 2   0 0 2 0 0 0 0 2 2 2 

7  1 2 0 1 0 0 0 2 0 2   0 2 0 0 0 0 0 2 0 2 

8  1 0 0 2 0 0 2 0 2 0   2 0 0 2 0 0 2 0 2 0 

9  1 1 2 2 2 2 2 2 2 2   2 3 2 2 2 2 2 2 2 2 

10  1 2 1 0 0 2 0 0 0 0   0 2 0 0 0 2 0 0 0 0 

11  1 0 2 2 1 0 0 2 0 0   0 0 2 2 0 0 0 2 0 0 

12  1 1 0 0 2 2 0 0 2 0   2 0 0 0 2 2 0 0 2 0 

13  1 2 0 0 0 1 2 0 2 2   2 2 0 0 0 0 2 0 2 2 

14  1 0 2 1 2 2 0 0 0 0   0 0 2 0 2 2 0 0 0 0 

15  1 1 1 2 2 0 2 0 0 0   0 0 0 2 2 0 2 0 0 0 

16  1 2 2 2 2 2 2 2 2 2   2 2 2 2 2 2 2 2 2 2 

17  1 0 0 0 0 2 1 2 0 0   2 0 0 0 0 2 0 2 0 0 

18  1 1 0 2 0 0 2 0 2 0   0 3 0 2 0 0 2 0 2 0 

19  1 2 2 0 0 0 2 1 0 0   0 2 2 0 0 0 2 0 0 0 

20  1 0 1 0 2 0 0 2 0 2   2 0 0 0 2 0 0 2 0 2 

21  1 1 2 1 0 0 2 0 0 0   2 0 2 0 0 0 2 0 0 0 

22  1 2 0 2 1 2 0 0 0 2   0 2 0 2 0 2 0 0 0 2 

23  1 0 0 2 2 2 0 2 1 2   0 0 0 2 2 2 0 2 0 2 

24  1 1 2 0 0 0 0 2 2 2   2 0 2 0 0 0 0 2 2 2 

25  1 2 1 2 2 2 2 2 2 2   2 2 5 2 2 2 2 2 2 2 

26  1 0 2 0 2 1 2 2 2 0   0 0 2 0 2 0 2 2 2 0 

27  1 1 0 0 2 2 0 0 2 0   0 3 0 0 2 2 0 0 2 0 

28  1 2 0 1 0 0 0 2 0 2   2 2 0 0 0 0 0 2 0 2 

29  1 0 2 2 0 2 0 0 2 1   2 0 2 2 0 2 0 0 2 0 

30  1 1 1 2 0 2 2 2 0 2   0 0 0 2 0 2 2 2 0 2 

31  1 2 2 0 2 0 0 0 2 0   0 2 2 0 2 0 0 0 2 0 

32  1 0 0 2 0 0 2 0 2 0   2 0 0 2 0 0 2 0 2 0 

33  1 1 0 0 1 0 2 0 0 2   2 0 0 0 0 0 2 0 0 2 

34  1 2 2 0 2 0 1 0 0 2   0 2 2 0 2 0 0 0 0 2 

35  1 0 1 1 0 2 2 2 2 2   0 0 0 0 0 2 2 2 2 2 

36  1 1 2 2 2 2 2 2 2 2   2 3 2 2 2 2 2 2 2 2 

37  1 2 0 2 2 0 0 0 0 0   2 2 0 2 2 0 0 0 0 0 

38  1 0 0 0 2 2 2 1 0 2   0 0 0 0 2 2 2 0 0 2 

39  1 1 2 2 0 1 0 2 2 0   0 0 2 2 0 0 0 2 2 0 

40  1 2 1 0 0 2 0 0 0 0   2 2 0 0 0 2 0 0 0 0 

41  1 0 2 0 0 0 0 0 2 0   2 0 2 0 0 0 0 0 2 0 

42  1 1 0 1 2 2 2 2 0 2   0 0 0 0 2 2 2 2 0 2 

43  1 2 0 2 0 2 2 2 0 0   0 2 0 2 0 2 2 2 0 0 

44  1 0 2 2 1 0 0 2 0 0   2 0 2 2 0 0 0 2 0 0 

45  1 1 1 0 2 0 0 2 0 2   2 3 0 0 2 0 0 2 0 2 

46  1 2 2 2 0 0 0 0 1 0   0 2 2 2 0 0 0 0 0 0 

47  1 0 0 0 2 0 2 2 2 0   0 0 0 0 2 0 2 2 2 0 

48  1 1 0 0 2 2 0 0 2 0   2 0 0 0 2 2 0 0 2 0 

49  1 2 2 1 2 2 2 2 2 2   2 2 2 7 2 2 2 2 2 2 

50  1 0 1 2 0 0 2 0 2 0   0 0 5 2 0 0 2 0 2 0 

51  1 1 2 2 0 2 1 0 0 2   0 0 2 2 0 2 0 0 0 2 

52  1 2 0 0 0 1 2 0 2 2   2 2 0 0 0 0 2 0 2 2 

53  1 0 0 2 2 2 2 0 0 2   2 0 0 2 2 2 2 0 0 2 

54  1 1 2 0 0 0 0 2 2 2   0 3 2 0 0 0 0 2 2 2 

55  1 2 1 0 1 2 2 2 2 0   0 2 0 0 0 2 2 2 2 0 

56  1 0 2 1 2 2 0 0 0 0   2 0 2 0 2 2 0 0 0 0 

57  1 1 0 2 0 0 0 1 0 2   2 0 0 2 0 0 0 0 0 2 

58  1 2 0 2 2 0 0 2 2 1   0 2 0 2 2 0 0 2 2 0 

59  1 0 2 0 2 0 2 0 2 2   0 0 2 0 2 0 2 0 2 2 

60  1 1 1 2 2 0 2 0 0 0   2 0 0 2 2 0 2 0 0 0 

61  1 2 2 0 0 2 0 2 0 0   2 2 2 0 0 2 0 2 0 0 

62  1 0 0 0 0 2 0 2 2 2   0 0 0 0 0 2 0 2 2 2 

63  1 1 0 1 0 0 0 2 0 2   0 3 0 0 0 0 0 2 0 2 

64  1 2 2 2 2 2 2 2 2 2   2 2 2 2 2 2 2 2 2 2 

 

  



P 51/68                                                    

 p 2 3 5 7 11 13 17 19 23 29  p 2 3 5 7 11 13 17 19 23 29 

c                                            
0 #(c) 2 3 5 7 11 13 17 19 23 29  #(c) 4 9 25 49 121 169 289 361 529 841 

1 mod p3 4 2 2 2 2 2 2 2 2 2  mod p4 4 2 2 2 2 2 2 2 2 2 

2  0 0 0 2 0 0 2 0 2 0   0 0 0 2 0 0 2 0 2 0 

3  0 0 0 0 2 2 0 0 2 0   0 0 0 0 2 2 0 0 2 0 

4  2 2 2 2 2 2 2 2 2 2   4 2 2 2 2 2 2 2 2 2 

5  0 0 0 0 2 0 0 2 0 2   0 0 0 0 2 0 0 2 0 2 

6  0 0 2 0 0 0 0 2 2 2   0 0 2 0 0 0 0 2 2 2 

7  0 2 0 0 0 0 0 2 0 2   0 2 0 0 0 0 0 2 0 2 

8  2 0 0 2 0 0 2 0 2 0   0 0 0 2 0 0 2 0 2 0 

9  4 6 2 2 2 2 2 2 2 2   4 6 2 2 2 2 2 2 2 2 

10  0 2 0 0 0 2 0 0 0 0   0 2 0 0 0 2 0 0 0 0 

11  0 0 2 2 0 0 0 2 0 0   0 0 2 2 0 0 0 2 0 0 

12  2 0 0 0 2 2 0 0 2 0   0 0 0 0 2 2 0 0 2 0 

13  0 2 0 0 0 0 2 0 2 2   0 2 0 0 0 0 2 0 2 2 

14  0 0 2 0 2 2 0 0 0 0   0 0 2 0 2 2 0 0 0 0 

15  0 0 0 2 2 0 2 0 0 0   0 0 0 2 2 0 2 0 0 0 

16  2 2 2 2 2 2 2 2 2 2   4 2 2 2 2 2 2 2 2 2 

17  4 0 0 0 0 2 0 2 0 0   4 0 0 0 0 2 0 2 0 0 

18  0 0 0 2 0 0 2 0 2 0   0 0 0 2 0 0 2 0 2 0 

19  0 2 2 0 0 0 2 0 0 0   0 2 2 0 0 0 2 0 0 0 

20  2 0 0 0 2 0 0 2 0 2   4 0 0 0 2 0 0 2 0 2 

21  0 0 2 0 0 0 2 0 0 0   0 0 2 0 0 0 2 0 0 0 

22  0 2 0 2 0 2 0 0 0 2   0 2 0 2 0 2 0 0 0 2 

23  0 0 0 2 2 2 0 2 0 2   0 0 0 2 2 2 0 2 0 2 

24  2 0 2 0 0 0 0 2 2 2   0 0 2 0 0 0 0 2 2 2 

25  4 2 10 2 2 2 2 2 2 2   4 2 10 2 2 2 2 2 2 2 

26  0 0 2 0 2 0 2 2 2 0   0 0 2 0 2 0 2 2 2 0 

27  0 3 0 0 2 2 0 0 2 0   0 0 0 0 2 2 0 0 2 0 

28  2 2 0 0 0 0 0 2 0 2   0 2 0 0 0 0 0 2 0 2 

29  0 0 2 2 0 2 0 0 2 0   0 0 2 2 0 2 0 0 2 0 

30  0 0 0 2 0 2 2 2 0 2   0 0 0 2 0 2 2 2 0 2 

31  0 2 2 0 2 0 0 0 2 0   0 2 2 0 2 0 0 0 2 0 

32  2 0 0 2 0 0 2 0 2 0   4 0 0 2 0 0 2 0 2 0 

33  4 0 0 0 0 0 2 0 0 2   4 0 0 0 0 0 2 0 0 2 

34  0 2 2 0 2 0 0 0 0 2   0 2 2 0 2 0 0 0 0 2 

35  0 0 0 0 0 2 2 2 2 2   0 0 0 0 0 2 2 2 2 2 

36  2 6 2 2 2 2 2 2 2 2   4 6 2 2 2 2 2 2 2 2 

37  0 2 0 2 2 0 0 0 0 0   0 2 0 2 2 0 0 0 0 0 

38  0 0 0 0 2 2 2 0 0 2   0 0 0 0 2 2 2 0 0 2 

39  0 0 2 2 0 0 0 2 2 0   0 0 2 2 0 0 0 2 2 0 

40  2 2 0 0 0 2 0 0 0 0   0 2 0 0 0 2 0 0 0 0 

41  4 0 2 0 0 0 0 0 2 0   4 0 2 0 0 0 0 0 2 0 

42  0 0 0 0 2 2 2 2 0 2   0 0 0 0 2 2 2 2 0 2 

43  0 2 0 2 0 2 2 2 0 0   0 2 0 2 0 2 2 2 0 0 

44  2 0 2 2 0 0 0 2 0 0   0 0 2 2 0 0 0 2 0 0 

45  0 0 0 0 2 0 0 2 0 2   0 0 0 0 2 0 0 2 0 2 

46  0 2 2 2 0 0 0 0 0 0   0 2 2 2 0 0 0 0 0 0 

47  0 0 0 0 2 0 2 2 2 0   0 0 0 0 2 0 2 2 2 0 

48  2 0 0 0 2 2 0 0 2 0   4 0 0 0 2 2 0 0 2 0 

49  4 2 2 14 2 2 2 2 2 2   4 2 2 14 2 2 2 2 2 2 

50  0 0 0 2 0 0 2 0 2 0   0 0 0 2 0 0 2 0 2 0 

51  0 0 2 2 0 2 0 0 0 2   0 0 2 2 0 2 0 0 0 2 

52  2 2 0 0 0 0 2 0 2 2   4 2 0 0 0 0 2 0 2 2 

53  0 0 0 2 2 2 2 0 0 2   0 0 0 2 2 2 2 0 0 2 

54  0 3 2 0 0 0 0 2 2 2   0 0 2 0 0 0 0 2 2 2 

55  0 2 0 0 0 2 2 2 2 0   0 2 0 0 0 2 2 2 2 0 

56  2 0 2 0 2 2 0 0 0 0   0 0 2 0 2 2 0 0 0 0 

57  4 0 0 2 0 0 0 0 0 2   4 0 0 2 0 0 0 0 0 2 

58  0 2 0 2 2 0 0 2 2 0   0 2 0 2 2 0 0 2 2 0 

59  0 0 2 0 2 0 2 0 2 2   0 0 2 0 2 0 2 0 2 2 

60  2 0 0 2 2 0 2 0 0 0   0 0 0 2 2 0 2 0 0 0 

61  0 2 2 0 0 2 0 2 0 0   0 2 2 0 0 2 0 2 0 0 

62  0 0 0 0 0 2 0 2 2 2   0 0 0 0 0 2 0 2 2 2 

63  0 6 0 0 0 0 0 2 0 2   0 6 0 0 0 0 0 2 0 2 

64  2 2 2 2 2 2 2 2 2 2   4 2 2 2 2 2 2 2 2 2 
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 p 2 3 5 7 11 13 17 19 23 29  p 2 3 5 7 

c                                
0 #(c) 4 9 25 49 121 169 289 361 529 841  #(c) 8 27 125 343 

1 mod p5 4 2 2 2 2 2 2 2 2 2  mod p6 4 2 2 2 

2  0 0 0 2 0 0 2 0 2 0   0 0 0 2 

3  0 0 0 0 2 2 0 0 2 0   0 0 0 0 

4  8 2 2 2 2 2 2 2 2 2   8 2 2 2 

5  0 0 0 0 2 0 0 2 0 2   0 0 0 0 

6  0 0 2 0 0 0 0 2 2 2   0 0 2 0 

7  0 2 0 0 0 0 0 2 0 2   0 2 0 0 

8  0 0 0 2 0 0 2 0 2 0   0 0 0 2 

9  4 6 2 2 2 2 2 2 2 2   4 6 2 2 

10  0 2 0 0 0 2 0 0 0 0   0 2 0 0 

11  0 0 2 2 0 0 0 2 0 0   0 0 2 2 

12  0 0 0 0 2 2 0 0 2 0   0 0 0 0 

13  0 2 0 0 0 0 2 0 2 2   0 2 0 0 

14  0 0 2 0 2 2 0 0 0 0   0 0 2 0 

15  0 0 0 2 2 0 2 0 0 0   0 0 0 2 

16  4 2 2 2 2 2 2 2 2 2   8 2 2 2 

17  4 0 0 0 0 2 0 2 0 0   4 0 0 0 

18  0 0 0 2 0 0 2 0 2 0   0 0 0 2 

19  0 2 2 0 0 0 2 0 0 0   0 2 2 0 

20  0 0 0 0 2 0 0 2 0 2   0 0 0 0 

21  0 0 2 0 0 0 2 0 0 0   0 0 2 0 

22  0 2 0 2 0 2 0 0 0 2   0 2 0 2 

23  0 0 0 2 2 2 0 2 0 2   0 0 0 2 

24  0 0 2 0 0 0 0 2 2 2   0 0 2 0 

25  4 2 10 2 2 2 2 2 2 2   4 2 10 2 

26  0 0 2 0 2 0 2 2 2 0   0 0 2 0 

27  0 0 0 0 2 2 0 0 2 0   0 0 0 0 

28  0 2 0 0 0 0 0 2 0 2   0 2 0 0 

29  0 0 2 2 0 2 0 0 2 0   0 0 2 2 

30  0 0 0 2 0 2 2 2 0 2   0 0 0 2 

31  0 2 2 0 2 0 0 0 2 0   0 2 2 0 

32  4 0 0 2 0 0 2 0 2 0   0 0 0 2 

33  4 0 0 0 0 0 2 0 0 2   4 0 0 0 

34  0 2 2 0 2 0 0 0 0 2   0 2 2 0 

35  0 0 0 0 0 2 2 2 2 2   0 0 0 0 

36  8 6 2 2 2 2 2 2 2 2   8 6 2 2 

37  0 2 0 2 2 0 0 0 0 0   0 2 0 2 

38  0 0 0 0 2 2 2 0 0 2   0 0 0 0 

39  0 0 2 2 0 0 0 2 2 0   0 0 2 2 

40  0 2 0 0 0 2 0 0 0 0   0 2 0 0 

41  4 0 2 0 0 0 0 0 2 0   4 0 2 0 

42  0 0 0 0 2 2 2 2 0 2   0 0 0 0 

43  0 2 0 2 0 2 2 2 0 0   0 2 0 2 

44  0 0 2 2 0 0 0 2 0 0   0 0 2 2 

45  0 0 0 0 2 0 0 2 0 2   0 0 0 0 

46  0 2 2 2 0 0 0 0 0 0   0 2 2 2 

47  0 0 0 0 2 0 2 2 2 0   0 0 0 0 

48  4 0 0 0 2 2 0 0 2 0   0 0 0 0 

49  4 2 2 14 2 2 2 2 2 2   4 2 2 14 

50  0 0 0 2 0 0 2 0 2 0   0 0 0 2 

51  0 0 2 2 0 2 0 0 0 2   0 0 2 2 

52  0 2 0 0 0 0 2 0 2 2   0 2 0 0 

53  0 0 0 2 2 2 2 0 0 2   0 0 0 2 

54  0 0 2 0 0 0 0 2 2 2   0 0 2 0 

55  0 2 0 0 0 2 2 2 2 0   0 2 0 0 

56  0 0 2 0 2 2 0 0 0 0   0 0 2 0 

57  4 0 0 2 0 0 0 0 0 2   4 0 0 2 

58  0 2 0 2 2 0 0 2 2 0   0 2 0 2 

59  0 0 2 0 2 0 2 0 2 2   0 0 2 0 

60  0 0 0 2 2 0 2 0 0 0   0 0 0 2 

61  0 2 2 0 0 2 0 2 0 0   0 2 2 0 

62  0 0 0 0 0 2 0 2 2 2   0 0 0 0 

63  0 6 0 0 0 0 0 2 0 2   0 6 0 0 

64  4 2 2 2 2 2 2 2 2 2   8 2 2 2 
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p 2 3 5 7  p 2 3 5 7  p 2 3 5 7 

c                              
0 #(c) 8 27 125 343  #(c) 16 81 625 2401  #(c) 16 81 625 2401 

1 mod p7 4 2 2 2  mod p8 4 2 2 2  mod p9 4 2 2 2 

2  0 0 0 2   0 0 0 2   0 0 0 2 

3  0 0 0 0   0 0 0 0   0 0 0 0 

4  8 2 2 2   8 2 2 2   8 2 2 2 

5  0 0 0 0   0 0 0 0   0 0 0 0 

6  0 0 2 0   0 0 2 0   0 0 2 0 

7  0 2 0 0   0 2 0 0   0 2 0 0 

8  0 0 0 2   0 0 0 2   0 0 0 2 

9  4 6 2 2   4 6 2 2   4 6 2 2 

10  0 2 0 0   0 2 0 0   0 2 0 0 

11  0 0 2 2   0 0 2 2   0 0 2 2 

12  0 0 0 0   0 0 0 0   0 0 0 0 

13  0 2 0 0   0 2 0 0   0 2 0 0 

14  0 0 2 0   0 0 2 0   0 0 2 0 

15  0 0 0 2   0 0 0 2   0 0 0 2 

16  16 2 2 2   16 2 2 2   16 2 2 2 

17  4 0 0 0   4 0 0 0   4 0 0 0 

18  0 0 0 2   0 0 0 2   0 0 0 2 

19  0 2 2 0   0 2 2 0   0 2 2 0 

20  0 0 0 0   0 0 0 0   0 0 0 0 

21  0 0 2 0   0 0 2 0   0 0 2 0 

22  0 2 0 2   0 2 0 2   0 2 0 2 

23  0 0 0 2   0 0 0 2   0 0 0 2 

24  0 0 2 0   0 0 2 0   0 0 2 0 

25  4 2 10 2   4 2 10 2   4 2 10 2 

26  0 0 2 0   0 0 2 0   0 0 2 0 

27  0 0 0 0   0 0 0 0   0 0 0 0 

28  0 2 0 0   0 2 0 0   0 2 0 0 

29  0 0 2 2   0 0 2 2   0 0 2 2 

30  0 0 0 2   0 0 0 2   0 0 0 2 

31  0 2 2 0   0 2 2 0   0 2 2 0 

32  0 0 0 2   0 0 0 2   0 0 0 2 

33  4 0 0 0   4 0 0 0   4 0 0 0 

34  0 2 2 0   0 2 2 0   0 2 2 0 

35  0 0 0 0   0 0 0 0   0 0 0 0 

36  8 6 2 2   8 6 2 2   8 6 2 2 

37  0 2 0 2   0 2 0 2   0 2 0 2 

38  0 0 0 0   0 0 0 0   0 0 0 0 

39  0 0 2 2   0 0 2 2   0 0 2 2 

40  0 2 0 0   0 2 0 0   0 2 0 0 

41  4 0 2 0   4 0 2 0   4 0 2 0 

42  0 0 0 0   0 0 0 0   0 0 0 0 

43  0 2 0 2   0 2 0 2   0 2 0 2 

44  0 0 2 2   0 0 2 2   0 0 2 2 

45  0 0 0 0   0 0 0 0   0 0 0 0 

46  0 2 2 2   0 2 2 2   0 2 2 2 

47  0 0 0 0   0 0 0 0   0 0 0 0 

48  0 0 0 0   0 0 0 0   0 0 0 0 

49  4 2 2 14   4 2 2 14   4 2 2 14 

50  0 0 0 2   0 0 0 2   0 0 0 2 

51  0 0 2 2   0 0 2 2   0 0 2 2 

52  0 2 0 0   0 2 0 0   0 2 0 0 

53  0 0 0 2   0 0 0 2   0 0 0 2 

54  0 0 2 0   0 0 2 0   0 0 2 0 

55  0 2 0 0   0 2 0 0   0 2 0 0 

56  0 0 2 0   0 0 2 0   0 0 2 0 

57  4 0 0 2   4 0 0 2   4 0 0 2 

58  0 2 0 2   0 2 0 2   0 2 0 2 

59  0 0 2 0   0 0 2 0   0 0 2 0 

60  0 0 0 2   0 0 0 2   0 0 0 2 

61  0 2 2 0   0 2 2 0   0 2 2 0 

62  0 0 0 0   0 0 0 0   0 0 0 0 

63  0 6 0 0   0 6 0 0   0 6 0 0 

64  8 2 2 2   16 2 2 2   32 2 2 2 
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One uses x² = c, x = c
1/2

, x’(c) = V’(c) = (1/2).c
-1/2

 
 

 delta 1 2 3 4 5 6 7 8 9  V'(c) = (1/2).c-1/2 Product.V'(c)/8  

c                         
0 product #(c) 1 210 210 44100 44100 9261000 9261000 1944810000 1944810000  ∞ ∞ 

1 sequences 2, 3,  8 16 32 32 32 32 32 32 32  0,500 2 

2 5 et 7 0 0 0 0 0 0 0 0 0  0,354 0 

3  0 0 0 0 0 0 0 0 0  0,289 0 

4  8 16 16 32 64 64 64 64 64  0,250 2 

5  0 0 0 0 0 0 0 0 0  0,224 0 

6  0 0 0 0 0 0 0 0 0  0,204 0 

7  0 0 0 0 0 0 0 0 0  0,189 0 

8  0 0 0 0 0 0 0 0 0  0,177 0 

9  4 24 96 96 96 96 96 96 96  0,167 2 

10  0 0 0 0 0 0 0 0 0  0,158 0 

11  0 0 0 0 0 0 0 0 0  0,151 0 

12  0 0 0 0 0 0 0 0 0  0,144 0 

13  0 0 0 0 0 0 0 0 0  0,139 0 

14  0 0 0 0 0 0 0 0 0  0,134 0 

15  2 0 0 0 0 0 0 0 0  0,129 0 

16  8 16 16 32 32 64 128 128 128  0,125 2 

17  0 0 0 0 0 0 0 0 0  0,121 0 

18  0 0 0 0 0 0 0 0 0  0,118 0 

19  0 0 0 0 0 0 0 0 0  0,115 0 

20  0 0 0 0 0 0 0 0 0  0,112 0 

21  2 0 0 0 0 0 0 0 0  0,109 0 

22  0 0 0 0 0 0 0 0 0  0,107 0 

23  0 0 0 0 0 0 0 0 0  0,104 0 

24  0 0 0 0 0 0 0 0 0  0,102 0 

25  4 40 160 160 160 160 160 160 160  0,100 2 

26  0 0 0 0 0 0 0 0 0  0,098 0 

27  0 0 0 0 0 0 0 0 0  0,096 0 

28  0 0 0 0 0 0 0 0 0  0,094 0 

29  0 0 0 0 0 0 0 0 0  0,093 0 

30  2 0 0 0 0 0 0 0 0  0,091 0 

31  0 0 0 0 0 0 0 0 0  0,090 0 

32  0 0 0 0 0 0 0 0 0  0,088 0 

33  0 0 0 0 0 0 0 0 0  0,087 0 

34  0 0 0 0 0 0 0 0 0  0,086 0 

35  0 0 0 0 0 0 0 0 0  0,085 0 

36  4 24 48 96 192 192 192 192 192  0,083 2 

37  0 0 0 0 0 0 0 0 0  0,082 0 

38  0 0 0 0 0 0 0 0 0  0,081 0 

39  4 0 0 0 0 0 0 0 0  0,080 0 

40  0 0 0 0 0 0 0 0 0  0,079 0 

41  0 0 0 0 0 0 0 0 0  0,078 0 

42  0 0 0 0 0 0 0 0 0  0,077 0 

43  0 0 0 0 0 0 0 0 0  0,076 0 

44  0 0 0 0 0 0 0 0 0  0,075 0 

45  0 0 0 0 0 0 0 0 0  0,075 0 

46  8 0 0 0 0 0 0 0 0  0,074 0 

47  0 0 0 0 0 0 0 0 0  0,073 0 

48  0 0 0 0 0 0 0 0 0  0,072 0 

49  4 56 224 224 224 224 224 224 224  0,071 2 

50  0 0 0 0 0 0 0 0 0  0,071 0 

51  4 0 0 0 0 0 0 0 0  0,070 0 

52  0 0 0 0 0 0 0 0 0  0,069 0 

53  0 0 0 0 0 0 0 0 0  0,069 0 

54  0 0 0 0 0 0 0 0 0  0,068 0 

55  0 0 0 0 0 0 0 0 0  0,067 0 

56  0 0 0 0 0 0 0 0 0  0,067 0 

57  0 0 0 0 0 0 0 0 0  0,066 0 

58  0 0 0 0 0 0 0 0 0  0,066 0 

59  0 0 0 0 0 0 0 0 0  0,065 0 

60  2 0 0 0 0 0 0 0 0  0,065 0 

61  0 0 0 0 0 0 0 0 0  0,064 0 

62  0 0 0 0 0 0 0 0 0  0,064 0 

63  0 0 0 0 0 0 0 0 0  0,063 0 

64  8 16 16 32 32 64 64 128 256  0,063 2 

 

Thus if  c ≠ 0,  

 p = 7  

#(c) = V'(c) . Π 
#(c) mod p9 

2 
 p = 2  
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Appendix 4 

 

Numerical examples with P(x) = x
4
+x

3
+x

2
+x :  

p = 3 

Conditions #(c = P(x)) 

Disc = {1} mod 3 1 

Disc = {2} mod 3 2 

Disc = {Ø}  4 

Disc = {(0)} mod 3 {Ø} 
 

p = 5 

Conditions #(c = P(x)) 

Disc = {Ø} 1 

Disc = {Ø} 2 

Disc = {4} mod 5 4 

Disc = {(0), 1, 2, 3} mod 5 {Ø} 
 

p = 7 

Conditions #(c = P(x)) 

Disc = {4} mod 7 1 

Disc = {5, 6} mod 7 2 

Disc = {Ø} 4 

Disc = {(0), 1, 2, 3} mod 7 {Ø} 

Disc = {3, 5, 6} mod 7 14 

Disc = {5} mod 7 49 
 

p = 11 

Conditions #(c = P(x)) 

Disc = {1, 3, 9} mod 11 1 

Disc = {6} mod 11 2 

Disc = {4} mod 11 4 

Disc = {(0), 2, 5, 7, 8, 10} mod 11 {Ø} 
 

p = 13 

Conditions #(c = P(x)) 

Disc = {3, 4, 10} mod 13 1 

Disc = {7} mod 13 2 

Disc = {10} mod 13 4 

Disc = {(0), 1, 2, 5, 6, 8, 9, 11, 12} mod 13 {Ø} 

Disc = {1} mod 13, k = 3 13 

Disc = {2, 5, 7, 8, 11} mod 13, k = 2 26 
 

p = 17 

Conditions #(c = P(x)) 

Disc = {2, 8, 9, 13, 15} mod 17 1 

Disc = {5, 6} mod 17 2 

Disc = {1} mod 17 4 

Disc = {(0), 3, 4, 7, 10, 11, 12, 14, 16} mod 17 {Ø} 
 

p = 19 

Conditions #(c = P(x)) 

Disc = {1, 6, 7, 9} mod 19 1 

Disc = {3, 8, 14, 15, 18} mod 19 2 

Disc = {Ø} mod 19 4 

Disc = {(0), 1, 2, 4, 5, 7, 10, 11, 12, 13, 16, 17} mod 19 {Ø} 
 

p = 23 

Conditions #(c = P(x)) 

Disc = {2, 8, 9, 12, 16} mod 23 1 

Disc = {5, 7, 10, 15, 20, 21} mod 23 2 

Disc = {Ø} mod 23 4 

Disc = {(0), 1, 3, 4, 6, 11, 13, 14, 17, 18, 19, 22} mod 23 {Ø} 

Disc = {5} mod 23 23 
 

p = 29 
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Conditions #(c = P(x)) 

Disc = {4, 13, 16, 22, 23, 24, 28} mod 29 1 

Disc = {2, 3, 10, 15, 17, 26, 27} mod 29 2 

Disc = {13} mod 29 4 

Disc = {(0), 1, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 20, 21, 25} mod 29 {Ø} 

Disc = {25} mod 29 29 
 

p = 31 

Conditions #(c = P(x)) 

Disc = {1, 4, 7, 10, 16, 18, 20, 24, 28} mod 31 1 

Disc = {3, 6, 15, 17, 21, 26, 29} mod 31 2 

Disc = {1, 11} mod 31 4 

Disc = {(0), 2, 5, 8, 9, 12, 13, 14, 19, 22, 23, 25, 27, 30} mod 31 {Ø} 

 

 

Appendix 5 

 

Equation of Borovoi. Case of variables of integers 

 

p 2 3 5 7 11 13 17 19 23 2 3 5 7 11 13 17 19 23 

S
in

g
u
la

r 
se

ri
es

  
=

 

∏
 p

n
 

#
(e

ff
ec

ti
v

e 

so
lu

ti
o
n

s)
 

ra
ti

o
 s

in
g
u

la
r 

se
ri

es
 /

 #
 δ 6 5 3 2 2 2 2 2 2 6 5 3 2 2 2 2 2 2 

c Number of local solutions (nsl) Normalized proportions (pn = nsl/p2δ) 

0 8192 39366 12500 2744 13310 26364 88434 123462 292008 2,000 0,667 0,800 1,143 0,909 0,923 1,059 0,947 1,043 1,071 0 0 

1 8192 78732 18750 2744 15972 30758 88434 137180 292008 2,000 1,333 1,200 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1148 230 

2 0 52488 18750 2058 13310 26364 78608 137180 292008 0,000 0,889 1,200 0,857 0,909 0,923 0,941 1,053 1,043 0,000 0 
 

3 8192 39366 12500 2744 13310 26364 88434 123462 292008 2,000 0,667 0,800 1,143 0,909 0,923 1,059 0,947 1,043 1,071 130 121 

4 0 78732 15000 2058 13310 30758 78608 123462 267674 0,000 1,333 0,960 0,857 0,909 1,077 0,941 0,947 0,957 0,000 0 
 

5 0 52488 12500 2058 15972 30758 78608 123462 292008 0,000 0,889 0,800 0,857 1,091 1,077 0,941 0,947 1,043 0,000 0 
 

6 8192 39366 18750 2352 15972 30758 78608 123462 267674 2,000 0,667 1,200 0,980 1,091 1,077 0,941 0,947 0,957 1,570 185 118 

7 8192 78732 18750 2744 15972 30758 88434 137180 292008 2,000 1,333 1,200 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1070 214 

8 8192 65610 12500 2744 13310 26364 88434 123462 292008 2,000 1,111 0,800 1,143 0,909 0,923 1,059 0,947 1,043 1,785 346 194 

9 0 39366 15000 2058 15972 26364 78608 137180 267674 0,000 0,667 0,960 0,857 1,091 0,923 0,941 1,053 0,957 0,000 0 
 

10 0 78732 12500 2744 14520 30758 78608 123462 267674 0,000 1,333 0,800 1,143 0,992 1,077 0,941 0,947 0,957 0,000 0 
 

11 0 52488 18750 2058 13310 26364 78608 137180 292008 0,000 0,889 1,200 0,857 0,909 0,923 0,941 1,053 1,043 0,000 0 
 

12 0 39366 18750 2058 15972 28392 88434 137180 292008 0,000 0,667 1,200 0,857 1,091 0,994 1,059 1,053 1,043 0,000 0 
 

13 8192 78732 12500 2352 13310 26364 78608 137180 267674 2,000 1,333 0,800 0,980 0,909 0,923 0,941 1,053 0,957 1,662 220 132 

14 8192 52488 15000 2744 13310 30758 88434 137180 267674 2,000 0,889 0,960 1,143 0,909 1,077 1,059 1,053 0,957 2,036 229 112 

15 4096 39366 12500 2744 13310 26364 88434 123462 292008 1,000 0,667 0,800 1,143 0,909 0,923 1,059 0,947 1,043 0,535 68 127 

16 8192 78732 18750 2058 15972 26364 83232 123462 267674 2,000 1,333 1,200 0,857 1,091 0,923 0,997 0,947 0,957 2,494 295 118 

17 8192 78732 18750 2744 15972 30758 88434 137180 292008 2,000 1,333 1,200 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1104 221 

18 0 39366 12500 2058 15972 30758 88434 129960 267674 0,000 0,667 0,800 0,857 1,091 1,077 1,059 0,997 0,957 0,000 0 
 

19 0 78732 15000 2058 13310 30758 78608 123462 267674 0,000 1,333 0,960 0,857 0,909 1,077 0,941 0,947 0,957 0,000 0 
 

20 0 52488 12500 2352 15972 30758 88434 137180 267674 0,000 0,889 0,800 0,980 1,091 1,077 1,059 1,053 0,957 0,000 0 
 

21 0 39366 18750 2744 14520 26364 78608 137180 267674 0,000 0,667 1,200 1,143 0,992 0,923 0,941 1,053 0,957 0,000 0 
 

22 8192 78732 18750 2744 13310 26364 78608 123462 279312 2,000 1,333 1,200 1,143 0,909 0,923 0,941 0,947 0,998 2,731 330 121 

23 0 52488 12500 2058 15972 30758 78608 123462 292008 0,000 0,889 0,800 0,857 1,091 1,077 0,941 0,947 1,043 0,000 0 
 

24 8192 39366 17500 2744 13310 26364 88434 123462 292008 2,000 0,667 1,120 1,143 0,909 0,923 1,059 0,947 1,043 1,499 312 208 

25 0 78732 12500 2058 13310 28392 88434 123462 292008 0,000 1,333 0,800 0,857 0,909 0,994 1,059 0,947 1,043 0,000 0 
 

26 0 69984 18750 2058 13310 26364 78608 137180 292008 0,000 1,185 1,200 0,857 0,909 0,923 0,941 1,053 1,043 0,000 0 
 

27 8192 39366 18750 2352 15972 30758 78608 123462 267674 2,000 0,667 1,200 0,980 1,091 1,077 0,941 0,947 0,957 1,570 194 124 

28 0 78732 12500 2744 15972 26364 78608 137180 292008 0,000 1,333 0,800 1,143 1,091 0,923 0,941 1,053 1,043 0,000 0 
 

29 8192 52488 15000 2744 15972 26364 88434 123462 267674 2,000 0,889 0,960 1,143 1,091 0,923 1,059 0,947 0,957 1,885 226 120 

30 8192 39366 12500 2058 13310 30758 78608 137180 292008 2,000 0,667 0,800 0,857 0,909 1,077 0,941 1,053 1,043 0,925 127 137 

31 4096 78732 18750 2744 15972 30758 88434 137180 292008 1,000 1,333 1,200 1,143 1,091 1,077 1,059 1,053 1,043 2,498 1002 401 

32 8192 52488 18750 2058 14520 30758 88434 137180 267674 2,000 0,889 1,200 0,857 0,992 1,077 1,059 1,053 0,957 2,082 252 121 

33 8192 39366 12500 2058 13310 30758 83232 137180 267674 2,000 0,667 0,800 0,857 0,909 1,077 0,997 1,053 0,957 0,898 109 121 

34 0 78732 15000 2352 15972 26364 88434 123462 292008 0,000 1,333 0,960 0,980 1,091 0,923 1,059 0,947 1,043 0,000 0 
 

35 8192 65610 12500 2744 13310 26364 88434 123462 292008 2,000 1,111 0,800 1,143 0,909 0,923 1,059 0,947 1,043 1,785 214 120 
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36 0 39366 18750 2744 13310 30758 78608 137180 267674 0,000 0,667 1,200 1,143 0,909 1,077 0,941 1,053 0,957 0,000 0 
 

37 0 78732 18750 2058 13310 26364 88434 129960 267674 0,000 1,333 1,200 0,857 0,909 0,923 1,059 0,997 0,957 0,000 0 
 

38 8192 52488 12500 2744 15972 28392 78608 123462 292008 2,000 0,889 0,800 1,143 1,091 0,994 0,941 0,947 1,043 1,640 222 135 

39 0 39366 15000 2058 15972 26364 78608 137180 267674 0,000 0,667 0,960 0,857 1,091 0,923 0,941 1,053 0,957 0,000 0 
 

40 8192 78732 12500 2058 15972 30758 78608 137180 292008 2,000 1,333 0,800 0,857 1,091 1,077 0,941 1,053 1,043 2,221 270 122 

41 0 52488 18750 2352 13310 26364 88434 123462 267674 0,000 0,889 1,200 0,980 0,909 0,923 1,059 0,947 0,957 0,000 0 
 

42 0 39366 18750 2744 15972 26364 88434 123462 267674 0,000 0,667 1,200 1,143 1,091 0,923 1,059 0,947 0,957 0,000 0 
 

43 0 78732 12500 2744 14520 30758 78608 123462 267674 0,000 1,333 0,800 1,143 0,992 1,077 0,941 0,947 0,957 0,000 0 
 

44 0 78732 15000 2058 13310 30758 78608 123462 267674 0,000 1,333 0,960 0,857 0,909 1,077 0,941 0,947 0,957 0,000 0 
 

45 8192 39366 12500 2744 15972 30758 78608 137180 279312 2,000 0,667 0,800 1,143 1,091 1,077 0,941 1,053 0,998 1,416 167 118 

46 8192 78732 18750 2058 13310 30758 88434 123462 292008 2,000 1,333 1,200 0,857 0,909 1,077 1,059 0,947 1,043 2,811 319 113 

47 4096 52488 18750 2058 13310 26364 78608 137180 292008 1,000 0,889 1,200 0,857 0,909 0,923 0,941 1,053 1,043 0,793 100 126 

48 8192 39366 12500 2695 13310 26364 88434 123462 292008 2,000 0,667 0,800 1,122 0,909 0,923 1,059 0,947 1,043 1,052 0 0 

49 8192 78732 18750 2744 15972 30758 88434 137180 292008 2,000 1,333 1,200 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1109 222 

50 0 52488 12500 2744 15972 26364 83232 137180 267674 0,000 0,889 0,800 1,143 1,091 0,923 0,997 1,053 0,957 0,000 0 
 

51 0 39366 18750 2058 15972 28392 88434 137180 292008 0,000 0,667 1,200 0,857 1,091 0,994 1,059 1,053 1,043 0,000 0 
 

52 0 78732 18750 2744 13310 26364 88434 137180 267674 0,000 1,333 1,200 1,143 0,909 0,923 1,059 1,053 0,957 0,000 0 
 

53 0 69984 12500 2058 15972 30758 78608 123462 292008 0,000 1,185 0,800 0,857 1,091 1,077 0,941 0,947 1,043 0,000 0 
 

54 8192 39366 15000 2058 14520 26364 88434 123462 292008 2,000 0,667 0,960 0,857 0,992 0,923 1,059 0,947 1,043 1,051 151 144 

55 8192 78732 12500 2352 13310 26364 78608 137180 267674 2,000 1,333 0,800 0,980 0,909 0,923 0,941 1,053 0,957 1,662 217 131 

56 8192 52488 18750 2744 15972 30758 78608 129960 267674 2,000 0,889 1,200 1,143 1,091 1,077 0,941 0,997 0,957 2,571 297 115 

57 0 39366 18750 2744 13310 30758 78608 123462 292008 0,000 0,667 1,200 1,143 0,909 1,077 0,941 0,947 1,043 0,000 0 
 

58 0 78732 12500 2058 13310 30758 88434 137180 292008 0,000 1,333 0,800 0,857 0,909 1,077 1,059 1,053 1,043 0,000 0 
 

59 8192 52488 15000 2744 13310 30758 88434 137180 267674 2,000 0,889 0,960 1,143 0,909 1,077 1,059 1,053 0,957 2,036 232 114 

60 0 39366 12500 2058 15972 26364 78608 123462 267674 0,000 0,667 0,800 0,857 1,091 0,923 0,941 0,947 0,957 0,000 0 
 

61 8192 78732 18750 2058 15972 26364 78608 123462 292008 2,000 1,333 1,200 0,857 1,091 0,923 0,941 0,947 1,043 2,570 300 117 

62 8192 65610 18750 2352 15972 30758 78608 123462 267674 2,000 1,111 1,200 0,980 1,091 1,077 0,941 0,947 0,957 2,617 317 121 

63 4096 39366 12500 2744 13310 26364 88434 123462 292008 1,000 0,667 0,800 1,143 0,909 0,923 1,059 0,947 1,043 0,535 65 121 

64 8192 78732 15000 2744 15972 28392 78608 137180 267674 2,000 1,333 0,960 1,143 1,091 0,994 0,941 1,053 0,957 3,007 344 114 

65 8192 52488 12500 2058 14520 26364 88434 123462 267674 2,000 0,889 0,800 0,857 0,992 0,923 1,059 0,947 0,957 1,071 140 131 

66 0 39366 18750 2744 13310 30758 88434 137180 267674 0,000 0,667 1,200 1,143 0,909 1,077 1,059 1,053 0,957 0,000 0 
 

67 8192 78732 18750 2058 15972 26364 83232 123462 267674 2,000 1,333 1,200 0,857 1,091 0,923 0,997 0,947 0,957 2,494 300 120 

68 0 52488 12500 2058 13310 26364 88434 137180 279312 0,000 0,889 0,800 0,857 0,909 0,923 1,059 1,053 0,998 0,000 0 
 

69 0 39366 15000 2352 13310 30758 88434 137180 292008 0,000 0,667 0,960 0,980 0,909 1,077 1,059 1,053 1,043 0,000 0 
 

70 8192 78732 12500 2744 13310 30758 78608 137180 292008 2,000 1,333 0,800 1,143 0,909 1,077 0,941 1,053 1,043 2,468 302 122 

71 8192 78732 18750 2744 15972 30758 88434 137180 292008 2,000 1,333 1,200 1,143 1,091 1,077 1,059 1,053 1,043 4,997 1036 207 

72 8192 39366 18750 2058 15972 30758 78608 123462 292008 2,000 0,667 1,200 0,857 1,091 1,077 0,941 0,947 1,043 1,499 198 132 

73 0 78732 12500 2744 15972 26364 78608 123462 267674 0,000 1,333 0,800 1,143 1,091 0,923 0,941 0,947 0,957 0,000 0 
 

74 0 52488 18750 2058 13310 26364 78608 137180 292008 0,000 0,889 1,200 0,857 0,909 0,923 0,941 1,053 1,043 0,000 0 
 

75 0 39366 12500 2058 15972 30758 88434 129960 267674 0,000 0,667 0,800 0,857 1,091 1,077 1,059 0,997 0,957 0,000 0 
 

76 0 78732 18750 2352 14520 26364 88434 123462 292008 0,000 1,333 1,200 0,980 0,992 0,923 1,059 0,947 1,043 0,000 0 
 

77 8192 52488 18750 2744 13310 28392 78608 137180 292008 2,000 0,889 1,200 1,143 0,909 0,994 0,941 1,053 1,043 2,278 255 112 

78 8192 39366 12500 2744 15972 26364 78608 137180 267674 2,000 0,667 0,800 1,143 1,091 0,923 0,941 1,053 0,957 1,163 162 139 

79 4096 78732 15000 2058 13310 30758 78608 123462 267674 1,000 1,333 0,960 0,857 0,909 1,077 0,941 0,947 0,957 0,916 118 129 

80 8192 74358 12500 2744 13310 26364 88434 123462 292008 2,000 1,259 0,800 1,143 0,909 0,923 1,059 0,947 1,043 2,023 116 57 

81 8192 39366 18750 2058 13310 26364 78608 123462 292008 2,000 0,667 1,200 0,857 0,909 0,923 0,941 0,947 1,043 1,071 134 125 
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Appendix 6 

 

Equation of Borovoi. Case of prime numbers variables 

 

  Targets               

p δ 1 7 8 13 16 17 33 40 45 46 49 56 61 64 81 

  
Abundance 

factors               

2 8 65536 0 0 65536 0 65536 65536 0 65536 0 65536 0 65536 0 65536 

3 5 26244 26244 0 26244 26244 0 26244 26244 26244 26244 26244 0 26244 26244 26244 

5 4 312500 312500 125000 125000 312500 312500 125000 125000 125000 312500 125000 312500 312500 125000 312500 

7 3 76832 76832 76832 57624 76832 76832 76832 76832 76832 76832 76832 76832 76832 76832 76832 

11 2 12584 12584 9196 9196 12584 12584 9196 12584 12584 9196 12584 12584 12584 12584 9196 

13 2 25012 25012 20280 20280 20280 25012 25012 25012 25012 25012 25012 25012 20280 20280 20280 

17 2 75140 75140 75140 64736 64736 75140 64736 64736 64736 75140 75140 64736 64736 64736 64736 

19 2 118408 118408 103968 118408 103968 118408 118408 118408 118408 103968 118408 103968 103968 118408 103968 

23 2 258152 258152 258152 234876 234876 258152 234876 258152 209484 258152 258152 234876 258152 234876 258152 

29 2 659344 659344 612248 659344 659344 659344 612248 659344 659344 659344 659344 612248 612248 612248 612248 

31 1 904 904 904 904 840 904 840 904 840 904 904 840 840 840 904 

37 1 1296 1296 1224 1296 1296 1296 1224 1224 1224 1224 1296 1296 1224 1224 1296 

41 1 1604 1604 1604 1520 1520 1604 1520 1520 1604 1520 1604 1604 1604 1520 1520 

43 1 1768 1768 1676 1676 1676 1768 1768 1676 1768 1676 1768 1676 1768 1768 1768 

47 1 2120 2120 2120 2120 2120 2120 2120 2024 2024 2024 2120 2024 2024 2120 2024 

53 1 2704 2704 2600 2704 2600 2704 2704 2704 2600 2600 2704 2600 2600 2704 2600 

59 1 3368 3368 3248 3368 3248 3368 3368 3248 3248 3368 3368 3248 3248 3368 3368 

61 1 3604 3604 3480 3480 3604 3604 3480 3480 3480 3480 3604 3480 3480 3480 3604 

67 1 4360 4360 4220 4220 4220 4360 4360 4360 4360 4220 4360 4360 4220 4220 4220 

71 1 4904 4904 4904 4764 4764 4904 4764 4764 4764 4764 4904 4904 4764 4764 4764 

73 1 5188 5188 5188 5040 5040 5188 5040 5188 5188 5040 5188 5188 5040 5188 5188 

79 1 6088 6088 6088 5932 5932 6088 5932 5932 6088 5932 6088 5932 6088 6088 5932 

83 1 6728 6728 6560 6728 6560 6728 6728 6560 6728 6728 6728 6728 6728 6560 6728 

89 1 7748 7748 7748 7568 7748 7748 7748 7568 7568 7748 7748 7748 7568 7568 7568 

97 1 9220 9220 9220 9024 9024 9220 9024 9024 9024 9220 9220 9024 9220 9220 9024 

101 1 10004 10004 9800 9800 9800 10004 10004 10004 10004 9800 10004 10004 10004 9800 9800 

103 1 10408 10408 10408 10408 10408 10408 10408 10408 10408 10200 10408 10200 10200 10200 10408 

107 1 11240 11240 11020 11020 11240 11240 11020 11020 11240 11020 11240 11020 11020 11240 11240 

109 1 11664 11664 11448 11664 11664 11664 11448 11664 11448 11664 11664 11664 11664 11664 11448 

113 1 12552 12552 12552 12552 12320 12552 12320 12552 12320 12320 12552 12552 12552 12320 12552 

127 1 15880 15880 15880 15628 15880 15880 15880 15880 15628 15880 15880 15628 15880 15628 15880 

131 1 16904 16904 16640 16904 16904 16904 16640 16640 16640 16904 16904 16904 16640 16640 16904 

137 1 18504 18504 18504 18504 18504 18504 18504 18224 18224 18224 18504 18224 18224 18504 18224 

139 1 19048 19048 18768 19048 19048 19048 18768 18768 18768 18768 19048 18768 19048 18768 19048 

149 1 21904 21904 21608 21904 21608 21904 21904 21904 21608 21608 21904 21904 21904 21904 21608 

151 1 22504 22504 22504 22204 22504 22504 22504 22204 22204 22504 22504 22204 22504 22204 22204 

157 1 24340 24340 24024 24024 24024 24340 24340 24340 24024 24024 24340 24024 24340 24340 24024 

163 1 26248 26248 25916 25916 26248 26248 25916 25916 25916 25916 26248 25916 25916 25916 26248 

167 1 27560 27560 27560 27560 27224 27560 27224 27224 27224 27560 27560 27560 27560 27560 27224 

173 1 29588 29588 29240 29240 29588 29588 29240 29240 29588 29240 29588 29240 29588 29588 29588 

179 1 31688 31688 31324 31324 31324 31688 31688 31688 31324 31324 31688 31324 31688 31324 31324 

181 1 32404 32404 32040 32040 32404 32404 32040 32404 32040 32404 32404 32404 32040 32040 32040 

191 1 36104 36104 36104 35724 36104 36104 36104 35724 36104 35724 36104 35724 35724 36104 35724 

193 1 36872 36872 36872 36872 36480 36872 36480 36480 36872 36480 36872 36480 36872 36872 36480 

197 1 38416 38416 38024 38416 38416 38416 38024 38024 38416 38024 38416 38416 38024 38024 38416 

199 1 39208 39208 39208 39208 38808 39208 38808 38808 39208 39208 39208 39208 39208 39208 38808 

211 1 44104 44104 43676 43676 44104 44104 43676 44104 43676 43676 44104 44104 43676 43676 43676 

223 1 49288 49288 49288 49288 49288 49288 49288 49288 48840 49288 49288 48840 49288 49288 49288 

227 1 51080 51080 50624 51080 51080 51080 50624 51080 51080 50624 51080 50624 50624 50624 50624 

229 1 51988 51988 51528 51528 51528 51988 51988 51988 51528 51988 51988 51528 51528 51988 51528 
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233 1 53832 53832 53832 53832 53360 53832 53360 53360 53832 53360 53832 53360 53832 53360 53360 

239 1 56648 56648 56648 56172 56648 56648 56648 56172 56172 56172 56648 56172 56648 56172 56172 

241 1 57604 57604 57604 57120 57120 57604 57120 57604 57120 57604 57604 57120 57120 57120 57604 

251 1 62504 62504 62000 62504 62000 62504 62504 62000 62504 62504 62504 62504 62504 62000 62504 

257 1 65540 65540 65540 65024 65540 65540 65540 65024 65540 65024 65540 65540 65540 65024 65024 

263 1 68648 68648 68648 68124 68648 68648 68648 68124 68648 68124 68648 68124 68648 68124 68124 

269 1 71828 71828 71288 71288 71828 71828 71288 71288 71828 71288 71828 71288 71288 71288 71828 

271 1 72904 72904 72904 72904 72904 72904 72904 72904 72360 72360 72904 72904 72904 72360 72904 

277 1 76176 76176 75624 76176 76176 76176 75624 75624 76176 75624 76176 75624 75624 76176 76176 

281 1 78408 78408 78408 78408 78408 78408 78408 77840 77840 77840 78408 78408 78408 77840 77840 

283 1 79528 79528 78960 79528 79528 79528 78960 78960 79528 79528 79528 78960 78960 79528 79528 

293 1 85268 85268 84680 84680 84680 85268 85268 85268 84680 85268 85268 84680 85268 84680 84680 

307 1 93640 93640 93024 93640 93024 93640 93640 93024 93024 93640 93640 93640 93024 93024 93640 

311 1 96104 96104 96104 96104 95480 96104 95480 95480 95480 96104 96104 95480 95480 96104 95480 

313 1 97348 97348 97348 96720 96720 97348 96720 96720 96720 96720 97348 97348 96720 96720 96720 

317 1 99856 99856 99224 99856 99856 99856 99224 99856 99856 99856 99856 99224 99856 99224 99224 

331 1 108904 108904 108236 108236 108236 108904 108904 108904 108236 108904 108904 108904 108904 108904 108236 

337 1 112904 112904 112904 112904 112224 112904 112224 112904 112224 112904 112904 112224 112224 112224 112904 

347 1 119720 119720 119020 119020 119720 119720 119020 119720 119020 119720 119720 119720 119720 119720 119020 

349 1 121108 121108 120408 120408 120408 121108 121108 120408 121108 121108 121108 120408 121108 121108 121108 

353 1 123908 123908 123908 123200 123908 123908 123908 123908 123908 123908 123908 123200 123200 123908 123908 

359 1 128168 128168 128168 127452 128168 128168 128168 128168 128168 128168 128168 127452 127452 127452 128168 

367 1 133960 133960 133960 133960 133224 133960 133224 133960 133960 133960 133960 133960 133960 133224 133960 

373 1 138384 138384 137640 138384 137640 138384 138384 137640 137640 138384 138384 138384 138384 138384 138384 

379 1 142888 142888 142124 142124 142888 142888 142124 142124 142888 142888 142888 142888 142124 142888 142888 

383 1 145928 145928 145928 145928 145928 145928 145928 145160 145928 145160 145928 145928 145928 145928 145160 

389 1 150544 150544 149768 150544 149768 150544 150544 149768 149768 150544 150544 150544 149768 149768 150544 

397 1 156820 156820 156024 156024 156820 156820 156024 156820 156820 156024 156820 156024 156820 156024 156024 
                 

  Targets               

p δ 1 7 8 13 16 17 33 40 45 46 49 56 61 64 81 

  
Normalized 

factors               

2 8 8 0 0 8 0 8 8 0 8 0 8 0 8 0 8 

3 5 1,5 1,5 0 1,5 1,5 0 1,5 1,5 1,5 1,5 1,5 0 1,5 1,5 1,5 

5 4 1,5625 1,5625 0,625 0,625 1,5625 1,5625 0,625 0,625 0,625 1,5625 0,625 1,5625 1,5625 0,625 1,5625 

7 3 1,037 1,037 1,037 0,778 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 

11 2 1,144 1,144 0,836 0,836 1,144 1,144 0,836 1,144 1,144 0,836 1,144 1,144 1,144 1,144 0,836 

13 2 1,113 1,113 0,903 0,903 0,903 1,113 1,113 1,113 1,113 1,113 1,113 1,113 0,903 0,903 0,903 

17 2 1,079 1,079 1,079 0,930 0,930 1,079 0,930 0,930 0,930 1,079 1,079 0,930 0,930 0,930 0,930 

19 2 1,069 1,069 0,938 1,069 0,938 1,069 1,069 1,069 1,069 0,938 1,069 0,938 0,938 1,069 0,938 

23 2 1,054 1,054 1,054 0,959 0,959 1,054 0,959 1,054 0,855 1,054 1,054 0,959 1,054 0,959 1,054 

29 2 1,036 1,036 0,962 1,036 1,036 1,036 0,962 1,036 1,036 1,036 1,036 0,962 0,962 0,962 0,962 

31 1 1,038 1,038 1,038 1,038 0,964 1,038 0,964 1,038 0,964 1,038 1,038 0,964 0,964 0,964 1,038 

37 1 1,028 1,028 0,971 1,028 1,028 1,028 0,971 0,971 0,971 0,971 1,028 1,028 0,971 0,971 1,028 

41 1 1,028 1,028 1,028 0,974 0,974 1,028 0,974 0,974 1,028 0,974 1,028 1,028 1,028 0,974 0,974 

43 1 1,026 1,026 0,973 0,973 0,973 1,026 1,026 0,973 1,026 0,973 1,026 0,973 1,026 1,026 1,026 

47 1 1,024 1,024 1,024 1,024 1,024 1,024 1,024 0,977 0,977 0,977 1,024 0,977 0,977 1,024 0,977 

53 1 1,019 1,019 0,980 1,019 0,980 1,019 1,019 1,019 0,980 0,980 1,019 0,980 0,980 1,019 0,980 

59 1 1,018 1,018 0,982 1,018 0,982 1,018 1,018 0,982 0,982 1,018 1,018 0,982 0,982 1,018 1,018 

61 1 1,018 1,018 0,983 0,983 1,018 1,018 0,983 0,983 0,983 0,983 1,018 0,983 0,983 0,983 1,018 

67 1 1,016 1,016 0,983 0,983 0,983 1,016 1,016 1,016 1,016 0,983 1,016 1,016 0,983 0,983 0,983 

71 1 1,015 1,015 1,015 0,986 0,986 1,015 0,986 0,986 0,986 0,986 1,015 1,015 0,986 0,986 0,986 

73 1 1,015 1,015 1,015 0,986 0,986 1,015 0,986 1,015 1,015 0,986 1,015 1,015 0,986 1,015 1,015 

79 1 1,013 1,013 1,013 0,988 0,988 1,013 0,988 0,988 1,013 0,988 1,013 0,988 1,013 1,013 0,988 

83 1 1,013 1,013 0,988 1,013 0,988 1,013 1,013 0,988 1,013 1,013 1,013 1,013 1,013 0,988 1,013 

89 1 1,012 1,012 1,012 0,988 1,012 1,012 1,012 0,988 0,988 1,012 1,012 1,012 0,988 0,988 0,988 

97 1 1,011 1,011 1,011 0,989 0,989 1,011 0,989 0,989 0,989 1,011 1,011 0,989 1,011 1,011 0,989 

101 1 1,010 1,010 0,990 0,990 0,990 1,010 1,010 1,010 1,010 0,990 1,010 1,010 1,010 0,990 0,990 
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103 1 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 1,010 0,990 1,010 0,990 0,990 0,990 1,010 

107 1 1,010 1,010 0,990 0,990 1,010 1,010 0,990 0,990 1,010 0,990 1,010 0,990 0,990 1,010 1,010 

109 1 1,009 1,009 0,991 1,009 1,009 1,009 0,991 1,009 0,991 1,009 1,009 1,009 1,009 1,009 0,991 

113 1 1,010 1,010 1,010 1,010 0,991 1,010 0,991 1,010 0,991 0,991 1,010 1,010 1,010 0,991 1,010 

127 1 1,008 1,008 1,008 0,992 1,008 1,008 1,008 1,008 0,992 1,008 1,008 0,992 1,008 0,992 1,008 

131 1 1,008 1,008 0,992 1,008 1,008 1,008 0,992 0,992 0,992 1,008 1,008 1,008 0,992 0,992 1,008 

137 1 1,008 1,008 1,008 1,008 1,008 1,008 1,008 0,993 0,993 0,993 1,008 0,993 0,993 1,008 0,993 

139 1 1,007 1,007 0,993 1,007 1,007 1,007 0,993 0,993 0,993 0,993 1,007 0,993 1,007 0,993 1,007 

149 1 1,007 1,007 0,993 1,007 0,993 1,007 1,007 1,007 0,993 0,993 1,007 1,007 1,007 1,007 0,993 

151 1 1,007 1,007 1,007 0,993 1,007 1,007 1,007 0,993 0,993 1,007 1,007 0,993 1,007 0,993 0,993 

157 1 1,007 1,007 0,994 0,994 0,994 1,007 1,007 1,007 0,994 0,994 1,007 0,994 1,007 1,007 0,994 

163 1 1,006 1,006 0,994 0,994 1,006 1,006 0,994 0,994 0,994 0,994 1,006 0,994 0,994 0,994 1,006 

167 1 1,006 1,006 1,006 1,006 0,994 1,006 0,994 0,994 0,994 1,006 1,006 1,006 1,006 1,006 0,994 

173 1 1,006 1,006 0,994 0,994 1,006 1,006 0,994 0,994 1,006 0,994 1,006 0,994 1,006 1,006 1,006 

179 1 1,006 1,006 0,994 0,994 0,994 1,006 1,006 1,006 0,994 0,994 1,006 0,994 1,006 0,994 0,994 

181 1 1,006 1,006 0,994 0,994 1,006 1,006 0,994 1,006 0,994 1,006 1,006 1,006 0,994 0,994 0,994 

191 1 1,005 1,005 1,005 0,995 1,005 1,005 1,005 0,995 1,005 0,995 1,005 0,995 0,995 1,005 0,995 

193 1 1,005 1,005 1,005 1,005 0,995 1,005 0,995 0,995 1,005 0,995 1,005 0,995 1,005 1,005 0,995 

197 1 1,005 1,005 0,995 1,005 1,005 1,005 0,995 0,995 1,005 0,995 1,005 1,005 0,995 0,995 1,005 

199 1 1,005 1,005 1,005 1,005 0,995 1,005 0,995 0,995 1,005 1,005 1,005 1,005 1,005 1,005 0,995 

211 1 1,005 1,005 0,995 0,995 1,005 1,005 0,995 1,005 0,995 0,995 1,005 1,005 0,995 0,995 0,995 

223 1 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 0,995 1,005 1,005 0,995 1,005 1,005 1,005 

227 1 1,005 1,005 0,996 1,005 1,005 1,005 0,996 1,005 1,005 0,996 1,005 0,996 0,996 0,996 0,996 

229 1 1,004 1,004 0,996 0,996 0,996 1,004 1,004 1,004 0,996 1,004 1,004 0,996 0,996 1,004 0,996 

233 1 1,004 1,004 1,004 1,004 0,996 1,004 0,996 0,996 1,004 0,996 1,004 0,996 1,004 0,996 0,996 

239 1 1,004 1,004 1,004 0,996 1,004 1,004 1,004 0,996 0,996 0,996 1,004 0,996 1,004 0,996 0,996 

241 1 1,004 1,004 1,004 0,996 0,996 1,004 0,996 1,004 0,996 1,004 1,004 0,996 0,996 0,996 1,004 

251 1 1,004 1,004 0,996 1,004 0,996 1,004 1,004 0,996 1,004 1,004 1,004 1,004 1,004 0,996 1,004 

257 1 1,004 1,004 1,004 0,996 1,004 1,004 1,004 0,996 1,004 0,996 1,004 1,004 1,004 0,996 0,996 

263 1 1,004 1,004 1,004 0,996 1,004 1,004 1,004 0,996 1,004 0,996 1,004 0,996 1,004 0,996 0,996 

269 1 1,004 1,004 0,996 0,996 1,004 1,004 0,996 0,996 1,004 0,996 1,004 0,996 0,996 0,996 1,004 

271 1 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 0,996 0,996 1,004 1,004 1,004 0,996 1,004 

277 1 1,004 1,004 0,996 1,004 1,004 1,004 0,996 0,996 1,004 0,996 1,004 0,996 0,996 1,004 1,004 

281 1 1,004 1,004 1,004 1,004 1,004 1,004 1,004 0,996 0,996 0,996 1,004 1,004 1,004 0,996 0,996 

283 1 1,004 1,004 0,996 1,004 1,004 1,004 0,996 0,996 1,004 1,004 1,004 0,996 0,996 1,004 1,004 

293 1 1,003 1,003 0,997 0,997 0,997 1,003 1,003 1,003 0,997 1,003 1,003 0,997 1,003 0,997 0,997 

307 1 1,003 1,003 0,997 1,003 0,997 1,003 1,003 0,997 0,997 1,003 1,003 1,003 0,997 0,997 1,003 

311 1 1,003 1,003 1,003 1,003 0,997 1,003 0,997 0,997 0,997 1,003 1,003 0,997 0,997 1,003 0,997 

313 1 1,003 1,003 1,003 0,997 0,997 1,003 0,997 0,997 0,997 0,997 1,003 1,003 0,997 0,997 0,997 

317 1 1,003 1,003 0,997 1,003 1,003 1,003 0,997 1,003 1,003 1,003 1,003 0,997 1,003 0,997 0,997 

331 1 1,003 1,003 0,997 0,997 0,997 1,003 1,003 1,003 0,997 1,003 1,003 1,003 1,003 1,003 0,997 

337 1 1,003 1,003 1,003 1,003 0,997 1,003 0,997 1,003 0,997 1,003 1,003 0,997 0,997 0,997 1,003 

347 1 1,003 1,003 0,997 0,997 1,003 1,003 0,997 1,003 0,997 1,003 1,003 1,003 1,003 1,003 0,997 

349 1 1,003 1,003 0,997 0,997 0,997 1,003 1,003 0,997 1,003 1,003 1,003 0,997 1,003 1,003 1,003 

353 1 1,003 1,003 1,003 0,997 1,003 1,003 1,003 1,003 1,003 1,003 1,003 0,997 0,997 1,003 1,003 

359 1 1,003 1,003 1,003 0,997 1,003 1,003 1,003 1,003 1,003 1,003 1,003 0,997 0,997 0,997 1,003 

367 1 1,003 1,003 1,003 1,003 0,997 1,003 0,997 1,003 1,003 1,003 1,003 1,003 1,003 0,997 1,003 

373 1 1,003 1,003 0,997 1,003 0,997 1,003 1,003 0,997 0,997 1,003 1,003 1,003 1,003 1,003 1,003 

379 1 1,003 1,003 0,997 0,997 1,003 1,003 0,997 0,997 1,003 1,003 1,003 1,003 0,997 1,003 1,003 

383 1 1,003 1,003 1,003 1,003 1,003 1,003 1,003 0,997 1,003 0,997 1,003 1,003 1,003 1,003 0,997 

389 1 1,003 1,003 0,997 1,003 0,997 1,003 1,003 0,997 0,997 1,003 1,003 1,003 0,997 0,997 1,003 

397 1 1,003 1,003 0,997 0,997 1,003 1,003 0,997 1,003 1,003 0,997 1,003 0,997 1,003 0,997 0,997 
                 

Targets 
 

1 7 8 13 16 17 33 40 45 46 49 56 61 64 81 

p = 2 

∏ 

normalized 

factors 

8 0 0 8 0 8 8 0 8 0 8 0 8 0 8 

p = 3 
∏ 

normalized 

factors 
1,5 1,5 0 1,5 1,5 0 1,5 1,5 1,5 1,5 1,5 0 1,5 1,5 1,5 
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p = 5 à 397 

∏ 

normalized 

factors 
4,516 4,516 0,494 0,361 1,349 4,516 0,529 0,787 0,651 1,435 1,807 1,535 1,380 0,563 1,085 

Singular series  

p = 2 à 397  
54,197 0 0 4,330 0 0 6,348 0 7,810 0 21,679 0 16,559 0 13,021 

Definition 

domain                 

2 ≤ x ≤ 229,  

2 ≤ y ≤ 263,  

2 ≤ z ≤ 577 

# solutions 
at c 

4 50 1 1 1 50 1 1 5 1 52 2 11 1 6 

2 ≤ x ≤ 983,  
2 ≤ y ≤ 1123,  

2 ≤ z ≤ 2381 

# solutions 

at c 
21 166 1 4 1 166 3 1 10 1 172 2 19 1 18 

2 ≤ x ≤ 3571,  
2 ≤ y ≤ 4111,  

2 ≤ z ≤ 8501 

# solutions 

at c 
45 500 1 8 1 500 11 1 24 1 520 2 42 1 29 

Domain of 
definition 

Ratio                

2 ≤ x ≤ 229,  

2 ≤ y ≤ 263,  

2 ≤ z ≤ 577 

#(c)/sing. 
series 

0,07 ∞ → ∞ 0,23 → ∞ ∞ 0,16 → ∞ 0,64 → ∞ 2,40 → ∞ 0,66 → ∞ 0,46 

2 ≤ x ≤ 983,  

2 ≤ y ≤ 1123,  

2 ≤ z ≤ 2381 

#(c)/sing. 
series 

0,39 ∞ → ∞ 0,92 → ∞ ∞ 0,47 → ∞ 1,28 → ∞ 7,93 → ∞ 1,15 → ∞ 1,38 

2 ≤ x ≤ 3571,  
2 ≤ y ≤ 4111,  

2 ≤ z ≤ 8501 

#(c)/sing. 

series 
0,83 ∞ → ∞ 1,85 → ∞ ∞ 1,73 → ∞ 3,07 → ∞ 23,99 → ∞ 2,54 → ∞ 2,23 
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Appendix 7 

 
Quadratic reciprocal classes 

 

A “cumbersome” item in the research of abundance factors of quadratic equations is the systematic need of evaluation of 

squares to check existence or not of residues. It would be interesting for more effectiveness to anticipate this existence 

property. We will devote ourselves to this point in the next course. Thus, we ask the question 

 

 ? x integer \ c = x
2
 mod p 

and seek a condition on p  

p c G(c) (or p c H(c)) 

equivalent to  

c c C(p) (or c c D(p)) 

 

Inventory of the classes 

 

We observe the following cases for equation c = x
2
 mod p : 

 

Case G(c) H(c) 

c = 1 1 mod 1 vide 

c = -1 1 mod 4 3 mod 4 

c = 2 {1,7} mod 8 {3,5} mod 8 

c > 0 prime 1 mod 4 

U{g4c
2i

, 2c+g4c
2i

} mod 4c 

≡ 

U{g4c
2i

} mod c 

U{g4c
2i+1

, 2c+g4c
2i+1

} mod 4c 

≡ 

U{g4c
2i+1

} mod c 

c > 0 prime 3 mod 4 U{g4c
i
} mod 4c U{2c+g4c

i
} mod 4c 

c > 0 square 1 mod 1 void 

c = α.β 

(α,β) = 1 

G(α.β) = U(∩(G(α),G(β)), ∩(H(α),H(β)) 

mod 4α.β 

H(α.β) = U(∩(G(α),H(β)), ∩(H(α),G(β)) 

mod 4α.β 

 

When the target is formed of more than two relative prime numbers factors, the last relation is put in the form : 

 

G(c) = U(∩(Gi, …,Hj, …)) mod 4c, {i …, j …}≡{1,2,...t}, #{Hj} even 

H(c) = U(∩(Gi, …,Hj, …)) mod 4c, {i …, j …}≡{1,2,...t}, #{Hj} odd 

 

This writing means that G, respectively H, are the union of the set of the t combinations of classes at the same time of type 

Gi and Hj provided that the number of selected Hj families is even, respectively odd. 

 

The cases deduced from the decomposition c = α.β with gcd(α,β) = 1 (using in particular β = -1) are :  

 

Case G(c) H(c) 

c < 0, prime 1 mod 4 U{g4c
i
} mod 4c U{2c+g4c

i
} mod 4c 

c < 0, prime 3 mod 4 U{g4c
2i

} mod c U{g4c
2i+1

} mod c 

c = α.f
2
 G(c/f²) H(c/f²) 

 

The first table calls for several observations concerning the use of the operators of union (U), of intersection (∩) and the 

term with index g4c.  

The intersection of two families of numbers G(α) modulo q and G(β) modulo r is obtained as follows. Let us have t the 

greatest common multiple of q and r. We then express G(α) and G(β) in an equivalent way modulo t. The intersection is 

obtained by the choice of the elements common to G(α) modulo t and G(β) modulo t. The union is carried out on the same 

model except that all the elements modulo t are taken into account.  

The table below illustrates the point. 

 

3 
G(3) = {1,11} mod 12 

= {1,11,13,23,25,35,37,47,49,59} mod 60 

H(3) = {5,7} mod 12 

= {5,7,17,19,29,31,41,43,53,55} mod 60 

5 
G(5) = {1,9} mod 10 

= {1,9,11,19,21,29,31,39,41,49,51,59} mod 60 

H(5) = {3,7} mod 10 

= {3,7,13,17,23,27,33,37,43,47,53,57} mod 60 

∩ Part G(3.5) = {1,11,49,59} mod 60 Part G(3.5) = {7,17,43,53} mod 60 

U G(15) = {1,7,11,17,43,49,53,59} mod 60 

 

Let us explain now the meaning of g4c. We used until now notation g for a prime number p primitive root. The property of 

primitive roots is to generate by exponentiation the whole set of non-null classes modulo p (1 to p-1). In the case of g4c, 

where c is a prime number, we are interested by a behaviour modulo 4c, namely (c prime number replaced by letter p) the 

values of g4p
i
 mod 4p, i = 1 to 4p-1. 

The primitive roots modulo 4p are those which generate p-1 distinct classes including 1 and 4p-1.      
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Primitive roots modulo 4p 

 

Definition 
 

The set of the primitive roots modulo 4p is the set of the primitive roots modulo p carried to 3 modulo 4 by successive 

additions of p (mod 4p).  

 

Properties 
 

The set {g4p
i
} mod 4p is a cyclic group of order p-1.  

We have g4p
p-1

 = 1mod 4p. 

If p = 1 mod 4 then g4p
(p-1)/2

 = -1+2p mod 4p. 

If p = 3 mod 4 then g4p
(p-1)/2

 = -1 mod 4p. 

Only primitive roots modulo 4p have all of these properties.   

 

Let us take example p = 31. 

 

 g 3 11 12 13 17 21 22 24 

G+p 34 42 43 44 48 52 53 55 

G+2p 65 73 74 75 79 83 84 86 

G+3p 96 104 105 106 110 114 115 117 

 

For each preceding numbers {3,11,43,75,79,83,115,55}, we have well g4p
(p-1)/2

 = 4p-1 (but not for example for p = 7) and 

g4p
p-1

 = 1 when p = 31. 

The even numbers of this table cannot, self-evidently, generate 1 mod 4p. 

The numbers n = {65,73,105,13,17,21,53,117} are such as n
p-1

 = 1, but n
(p-1)/2

 = 2p-1 (for p = 31). 

In addition among {1,3,5,…,123}, we also find the family n = {7,19,51,59,71,103,107,111} such as n
p-1

 = 1, but n
(p-1)/2

 = 

2p+1. 

After ascending the numbers, only the family {3,11,43,55,75,79,83,115} is correct.  

By exponentiation, all the generated classes g4p
i
, i = 1 to p-1 is identical to the preceding one whatever the chosen generator 

in the family of the primitive roots modulo 4p. 

Here with g4p = 3, we get : 
    

{3,9,27,81,119,109,79,113,91,25,75,101,55,41,123,121,115,97,43,5,15,45,11,33,99,49,23,69,83,1} 
 

Let us have in ascending order : 
 

G(31) = {1,3,5,9,11,15,23,25,27,33,41,43,45,49,55,69,75,79,81,83,91,97,99,101,109,113,115,119,121,123} 
 

The other classes modulo 4p relative prime (which are always odd) to 4p are : 
  

H(31) = {7,13,17,19,21,29,35,37,39,47,51,53,57,59,61,63,65,67,71,73,77,85,87,89,95,103,105,107,111,117} 

 

Foot-note: Concepts of primitive roots are possible modulo 2
n
p. For lack of a particular utility here, we do not develop this 

point here. However, it is useful to say, that for current interest, we must work modulo 4p and not modulo 2p. 

 

Proofs 

 

Proof 0  
 

Let us start by demonstrating that : 

U{g4c
2i

, 2c+g4c
2i

} mod 4c ≡ U{g4c
2i

} mod c 
 

U{g4c
2i+1

, 2c+g4c
2i+1

} mod 4c ≡ U{g4c
2i+1

} mod c 

 

Self-evidently U{g4c
2i

, 2c+g4c
2i

} mod 4c ≡ U{g4c
2i

} mod 2c. The powers of g4c are odd numbers since this number is 3 mod  

4 and does not generate even numbers. Thus U{g4c
2i

} mod 2c ≡ U{g4c
2i

} mod c. The same arguments apply to the second 

expression.    

  

 

Proof 1  
 

Let us have to prove if p = 1 mod 4 then g4p
(p-1)/2

 = -1+2p mod 4p, otherwise if p = 3 mod 4 then g4p
(p-1)/2

 = -1 mod 4p.  

We have g4p
p-1

 = 1 mod 4p as well if g4p = 1 mod 4 or if g4p = 3 mod 4. Indeed, g4p = g+t.p where t is an integer between 0 

and 3. Thus g4p =g mod p, hence g4p
p-1

 = g
p-1

 = 1 mod p what involves self-evidently g4p
p-1

 = 1 mod 4p.   

In addition g
(p-1)/2

 = -1 mod p, hence g
(p-1)/2

 = -1+m.p mod p, m an integer ranging between 0 and 3.  

Let us calculate g4p
(p-1)/2

 = (3+4u)
(p-1)/2

 = (-1)
(p-1)/2

+4n = (g+t.p)
(p-1)/2

 = g
(p-1)/2

+k.p = -1+(k+m).p mod 4p  

Then if (p-1)/2 is odd, (k+m).p = -4n+r.4p = 4q, then k+m is multiple of 4, henceg4p
(p-1)/2

 = -1 mod 4p. If (p-1)/2 is even, 

1+4n = -1+(k+m).p+r.4p, hence 2 = (k+m).p+4q. Only k+m = 2 mod 4 is a solution of this equation. Henceg4p
(p-1)/2

 = -1+2p 

mod 4p. 
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Then, let us show that {g4p
i
} mod 4p is cyclic of order p-1 exactly. 

We have g4p
i
 = (3+4u)

i
 = (-1)

i
+4n = (g+t.p)

i
 = g

i
+k.p mod 4p and g

i
 ≠ 1+m.p mod 4p if 0 < i < p-1 for any m. 

Hence g4p
i
 ≠ 1+(m+k).p mod 4p if 0 < i < p-1. If at this time g4p

i
 = 1 mod 4p, that involves 0 ≠ (m+k).p mod 4p, so that m+k 

≠ 0 mod 4 for any m what is false. Hence g4p
i
 ≠ 1 mod 4p for any i, 0 < i <p-1. As g4p

p-1
 = 1 mod 4p, {g4p

i
} mod 4p is cyclic 

of order p-1 exactly. 

 

Proof 2  
 

We like to answer the question of existence (or not) of a solution to equation x
2
 = c mod p pending on the value of c.  

The case c = 1 is self-evident since x = 1 is always solution, therefore any number p is appropriate for given c.  

The case c = -1 is written x
2
 = -1 = g

(p-1)/2
 mod p which has a solution if (p-1)/2 is square, hence p = 1 mod  4.  

The case c = 2 results from Legendre relation (2/p) = (-1)
(p^2-1)/8

 mod p. If p = 1 mod 8 or p = 7 mod 8 then (2/p) = 1 mod p 

(existence of a residue), if not if p = 3 mod 8 or p = 5 mod 8 then (2/p) = -1 mod p (non-existence of a residue).    
 

If c is an odd prime number, we consider two cases. We check the solutions proposed in the table and we show that there are 

no others what suffice here. We use for that Legendre notation and the law of quadratic reciprocity where c and p are 

relative primes : 
  

     (c-1)  

. 
(p-1)  

( 
c 

) = ( 
p 

)(-1) 
   2    2  

mod p p c    

We have the equivalences : 
 

p c G(c)  ( 
c  

) = 1 mod p p 
 

 

p c H(c)  ( 
c  

) = -1 mod p p 

 

Then, if c = 1 mod 4 and if G(c) ≡ {g4c
2i

, 2c+g4c
2i

} mod 4c, we may write : 

 

     (c-1). (g4c
2i+k.4c-1)             

( 
c 

) = ( 
c 

) = (-1) 
2 2 

.( 
g4c

2i
+k.4c 

) = (-1) 
(0+2n).t 

( 
g4c

2i
 
) = 1 mod p 

   

p g4c
2i

+k.4c   c  c    

 

Here, as (c-1)/2 is 0 mod 2, it does not matter if (g4c
2i

-1)/2 is even or odd. 

In the same way :  

     (c-1). (g4c
2i+2c+k.4c-1)             

( 
c 

) = ( 
c 

) = (-1) 
2 2 

.( 
g4c

2i
+2c+k.4c 

) = (-1) 
(0+2n).(t+c) 

( 
g4c

2i
 
) = 1 mod p 

   

p g4c
2i

+2c+k.4c   c  c    

 

Then, if c = 1 mod 4 and if H(c) ≡ {g4c
2i+1

, 2c+g4c
2i+1

} mod 4c, we may write : 

 

     (c-1). (g4c
2i+1+k.4c-1)             

( 
c 

) = ( 
c 

) = (-1) 
2 2 

.( 
g4c

2i+1
+k.4c 

) = (-1) 
(0+2n).t’ 

( 
g4c ) = -1 mod p 

   

p g4c
2i+1

+k.4c   c  c    

 

This time, in addition to preceding remarks, we use the primitive roots fundamental property :  

 

( 
g 

) = -1  mod p 
   

p    

As g4c =g+t.c, t an integer, it follows : 
 

( 
g4c+t.c 

) = ( 
g4c ) = -1 

c c 

In the same way : 
 

     (c-1). (g4c
2i+1+2c+k.4c-1)             

( 
c 

) = ( 
c 

) = (-1) 
2 2 

. ( 
g4c

2i+1
+2c+k.4c 

) = (-1) 
(0+2n).(t’+c) 

( 
g4c ) = -1 mod p 

   

p g4c
2i+1

+2c+k.4c   c  c    

 

Let us examine now c = 3 mod 4. 

If G(c) ≡ {g4c
i
} mod 4c, we may write : 

 

     (c-1). (g4c
i+k.4c-1)             

( 
c 

) = ( 
c 

) = (-1) 
2 2 

.( 
g4c

i
+k.4c 

) = (-1) 
(1+2n).(g4c

i-1)/2 
( 

g4c
i
 
) = 1 mod p 

   

p g4c
i
+k.4c   c  c    
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Indeed, the parity of the product (1+2n).(g4c
i
-1)/2 depends only on the parity of (g4c

i
-1)/2. The primitive g4c is 3 mod 4 by 

definition. Thus, if i is odd, (g4c
i
-1)/2 is odd and Legendre symbol (g4c

i
/c) is worth -1. Otherwise, if i is even, (g4c

i
-1)/2 is 

even, while the Legendre symbol (g4c
i
/c) is worth 1. Hence the preceding result.   

 

If H(c) ≡ {2c+g4c
i
} mod 4c, we can write: 

 

     (c-1) . (g4c
i+2c+k.4c-1)             

( 
c 

) = ( 
c 

) = (-1) 
2 2 

. ( 
g4c

i
+2c+k.4c 

) = (-1) 
(1+2n).(c+(g4c

i-1)/2) 
( 

g4c
i
 
) = -1 mod p 

   

p g4c
i
+2c+k.4c   c  c    

 

Indeed, compared to the expression interesting G(c), the last expression presents a multiplication by (-1)
(1+2n).c

 where c is 3 

mod 4, that is by (-1)
(1+2n).c

 = -1. Hence the result.  

Having checked the inclusion of the candidate families respectively in G(c) and H (c), it remains us to prove that there are 

no other solutions. Let us consider the case c = 3 mod 4 (where c is a prime number) and the set {g4c
i
} mod 4c. Let us have 

x = g4c
i
 mod 4c and y = g4c

j
 mod 4c. If x = y, then g4c

i
 = g4c

j
 mod 4c, then g4c

i-j
 = 1 mod 4c. There is t an integer such as g4c = 

g+t.c. Thus (g+t.c)
i-j

 = g
i-j

+m.c = 1 mod 4c, m an integer. Hence g
i-j

 = 1 mod c. Hence i = j mod p-1. The set {g4c
i
} mod 4c 

thus has c-1 distinct elements. In the same way {2c+g4c
i
} mod 4c has c-1 distinct elements. U{G(c),H(c)} gathering all the 

classes relative prime with 4c, that is φ(4c) = φ(4)φ(c) =2(c-1), there are no other solutions. In the case of c = 1 mod  4, we 

can use the same arguments without new difficulties.   
 

If c contains a square, let us have α.β
2
 its decomposition into non-square and square. The equation becomes x

2
 = α.β

2
 mod p. 

Existence of a solution with this equation rests self-evidently on existence of a solution, pending on p, for equation (x/β)
2
 = 

α mod p knowing that a reverse always exists mod p (if the number is non-null), the equation transforms into y
2
 = α mod p 

what proves the previous suggested simplification.       
 

If c is positive and is the product of two relative primes factors, c = α.β. Then, we study equation x
2
 = α.β mod p seeking set 

G(α.β) = {p} with residue c. We suppose equation x
2
 = α mod p solved, that is set G(α) mod 4α for existence and set H(α) 

mod 4α for non-existence of a residue. In the same way, for x
2
 = β mod p, we have sets G(β) mod 4β and H(β) mod 4β. Let 

us have p a prime number. If there is x such as x
2
 = α mod p, i.e. if α is a square modulo p, and if, for any x, we have x

2
 ≠ β 

mod p, i.e. β is not a square modulo p then clearly αβ is not a square modulo p and, for any x, x
2
 ≠ αβ mod  p (this can be 

shown rigorously by using the primitive roots of p). The reasoning is the same one when permuting α and β. In addition, 

self-evidently, if α and β are squares modulo p, the product αβ is a square modulo p. If α and β are non-squares modulo p, 

then there is a primitive root g of p and an integer i such as α = g.g
2i

 mod p and a primitive root g' of p and an integer j such 

as β = g’.g’
2j

 mod p. We express then g' according to g by g’ = g
k
 mod p. A primitive root is expressed according to another 

with k relative prime with p-1, therefore k odd. It follows β = g
k
.g

2j.k
 = g.g

2m
 mod p. Thus α.β = g

2(1+i+m)
 mod p is a square 

modulo p. This argument is summarized according to the table : 

 

 x \ x
2
 = α.β mod p  

{ x \ x
2
 = α mod p and  x \ x

2
 = β mod p} 

or 

{x, x
2
 ≠ α mod p and x, x

2
 ≠ β mod p} 

x, x
2
 ≠ α.β mod p  

{ x \ x
2
 = α mod p and x, x

2
 ≠ β mod p} 

or 

{x, x
2
 ≠ α mod p and  x \ x

2
 = β mod p} 

 

As  x \ x
2
 = α mod p is equivalent to p c G(α) and x, x

2
 ≠ α mod p is equivalent to p c H(α), ), it follows immediately 

with our rules for intersections and unions : 
  

G(α.β) = U(∩(G(α),G(β)),∩(H(α),H(β)) 

H(α.β) = U(∩(G(α),H(β)),∩(H(α),G(β)) 

 

In addition, these rules come from modulo 4α and modulo 4β results for prime α and β numbers, results which are naturally 

prolonged modulo 4αβ to order αβ. 

    

For any c, we withdraw the set of the square factors and get a decomposition in factors c’ = ±  ∏ fi. We apply the routines to 

the various factors of this number. It does not matter, except possibly for the size of calculations, the order and the signs 

used (provided that the product corresponds well to c).   

 

Let us approach the passage of c with -c when c is a prime number. We use G(-c) = U(∩(G(c),G(-1)),∩(H(c),H(-1)) mod 4c 

and H(-c) = U(∩(G(c),H(-1)), ∩(H(c),G(-1)) mod 4c. The table for these cases is easily written recalling that g4c = 3 mod 4 : 
 

 G(c) H(c) 

c > 0 prime 1 mod 4 

U{g4c
2i

 mod 4c, 2c+g4c
2i

 mod 4c} 

c 

U{1 mod 4, 3 mod 4} 

U{g4c
2i+1

 mod 4c, 2c+g4c
2i+1

 mod 4c} 

c 

U{3 mod 4, 1 mod 4} 

c > 0 prime 3 mod 4 

U{g4c
2i

 mod 4c, g4c
2i+1

 mod 4c} 

c 

U{1 mod 4, 3 mod 4} 

U{2c+g4c
2i

 mod 4c, 2c+g4c
2i+1

 mod 4c} 

c 

U{3 mod 4, 1 mod 4} 
 



P 66/68                                                    

Then : 

G(-c (c = 1 mod 4)) = U{g4c
2i

, g4c
2i+1

} = U{g4c
i
} mod 4c 

H(-c (c = 1 mod 4)) = U{2c+g4c
2i

, 2c+g4c
2i+1

} = U{2c+g4c
i
} mod 4c 

G(-c (c = 3 mod 4)) = U{g4c
2i

, 2c+g4c
2i

} mod 4c 

H(-c (c = 3 mod 4)) = U{g4c
2i+1

, 2c+g4c
2i+1

} mod 4c 

 

What shows our matter completely. 

 

Examples of evaluation 

 

We illustrate our study for the following examples.  

For c = 3, prime number we have only one primitive root modulo 3 which is g= 2. We reason then modulo 12 (4c = 12). 

Then g4c = 2+3p = 11 is worth 3 mod 4, then G(c) = {11
0
,11

1
} = {1,11} mod 12. The other relative primes to 12 are then 

H(c) = {5,7} mod 12.    

For c = -3, two possibilities arise. Either the direct reading of the table where G(-3) = U{g12
2i

 mod 12,6+g12
2i

 mod 12} = 

{1,7} mod 12, or to consider product 3.(- 1).  

Hence : 
 

For G(-3) 
 

3 G(3) = {1,11} mod 12 H(3) = {5,7} mod 12 

-1 G(-1) = {1} mod 4 = {1,5,9} mod 12 H(-1) = {3} mod 4 = {3,7,11} mod 12 

∩ Part G(-3) = {1} mod 12 Part G(-3) = {7} mod 12 

U G(-3) = {1,7} mod 12 
 

For H(-3) 
 

3 G(3) = {1,11} mod 12 H({5,7} mod 12 

-1 H(-1) = {3} mod 4 = {3,7,11} mod 12 G(-1) = {1} mod 4 = {1,5,9} mod 12 

∩ Part H(-3) = {11} mod 12 Part H(-3) = {5} mod 12 

U H(-3) = {5,11} mod 12 

 

We can form in the same way G(5) = {1,9,11,19} mod 20 = {1,9} mod 10 and G(-5) = {3,7,13,17} mod 20 = {3,7} mod 10. 

We can then evaluate G(15) and H(15), either by considering that 15 = 3.5 or that 15 = (-3).(-5).  

Let us adopt this last way. 
 

For G(15) 
 

-3 
G(-3) = {1,7} mod 12 

= {1,7,13,19,25,31,37,43,49,55} mod 60 
H(-3) = {5,11} mod 12 

= {5,11,17,23,29,35,41,47,53,59} mod 60 

-5 
G(-5) = {1,3,7,9} mod 20 

= {1,3,7,9,21,23,27,29,41,43,47,49} mod 60 

H(-5) = {11,13,17,19} mod 20 

= {11,13,17,19,31,33,37,39,51,53,57,59} mod 60 

∩ Part G(-3.-5) = {1,7,43,49} mod 60 Part G(-3.-5) = {11,17,53,59} mod 60 

U G(15) = {1,7,11,17,43,49,53,59} mod 60 
 

For H(15) 
 

-3 G(-3) = {1,7,13,19,25,31,37,43,49,55} mod 60 H(-3) = {5,11,17,23,29,35,41,47,53,59} mod 60 

-5 H(-5) = {11,13,17,19,31,33,37,39,51,53,57,59} mod 60 G(-5) = {1,3,7,9,21,23,27,29,41,43,47,49} mod 60 

∩ Part H(-3.-5) = {13,19,31,37} mod 60 Part H(-3.-5) = {23,29,41,47} mod 60 

U H(15) = {13,19,23,29,31,37,41,47} mod 60 
 

The set G(15) U H(15 contains well the set of relative prime numbers to 15. The reader will be able to verify that we get the 

same families by using such other decompositions of c = 15 : 15 = 3.5 = -1.3.-5…   

 

If we continue then with the case c = 105 = 3.5.7, we proceed at the stage c = (3.5).7 knowing that 3.5 and 7 are relative 

prime numbers, that is using the general formula of intersections and unions : 
 

G(105) = U(G(3)∩G(5)∩G(7),G(3)∩H(5)∩H(7),H(3)∩G(5)∩H(7),H(3)∩H(5)∩G(7)) mod 420 

H(105) = U(G(3)∩G(5)∩H(7),G(3)∩H(5)∩G(7),H(3)∩G(5)∩G(7),H(3)∩H(5)∩H(7)) mod 420 
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Appendix 8 

 

The following table gives to the number of solutions of equation P(x) = c mod p
2
 with P(x) = x

4
+3x

3
+4x

2
+7x by varying x 

from 0 to p
2
-1 and adequate. The non-integer ratios #(i)/p correspond to contributions of supernumerary cardinals. We 

define also #(T) = #(1) + #(2) + #(4) 

 

p #(1) #(2) #(4)  6.#(1)/#(T) 6.#(2)/#(T) 6.#(4) )/#(T) 

3 3 6 0  2,00 4,00 0,00 
5 0 0 20  0,00 0,00 6,00 
7 0 26 0  0,00 6,00 0,00 

11 44 42 0  3,07 2,93 0,00 
13 52 104 0  2,00 4,00 0,00 
17 85 136 68  1,76 2,82 1,41 
19 114 226 0  2,01 3,99 0,00 
23 115 322 92  1,30 3,65 1,04 
29 319 522 0  2,28 3,72 0,00 
31 279 682 0  1,74 4,26 0,00 
37 555 370 444  2,43 1,62 1,95 
41 615 902 164  2,20 3,22 0,59 
43 774 516 516  2,57 1,71 1,71 
47 846 1128 188  2,35 3,13 0,52 
53 1166 742 848  2,54 1,62 1,85 
59 885 2360 236  1,53 4,07 0,41 
61 1525 1708 488  2,46 2,75 0,79 
67 1340 2546 536  1,82 3,45 0,73 
71 1704 2698 568  2,06 3,26 0,69 
73 1898 2774 584  2,17 3,17 0,67 
79 2528 2368 1264  2,46 2,31 1,23 
83 2406 3318 996  2,15 2,96 0,89 
89 2492 3558 1780  1,91 2,73 1,36 
97 3104 4266 1940  2,00 2,75 1,25 
101 3434 4644 2020  2,04 2,76 1,20 
103 3090 5768 1648  1,76 3,29 0,94 
107 4494 4280 2568  2,38 2,26 1,36 
109 3597 5668 2616  1,82 2,86 1,32 
113 4972 4744 2712  2,40 2,29 1,31 
127 5461 7112 3556  2,03 2,65 1,32 
131 6419 8646 2096  2,24 3,02 0,73 
137 6576 7670 4384  2,12 2,47 1,41 
139 6116 8618 4448  1,91 2,70 1,39 
149 7450 10430 4172  2,03 2,84 1,14 
151 7701 12684 2416  2,03 3,34 0,64 
157 8792 11302 4396  2,15 2,77 1,08 
163 8476 12712 5216  1,93 2,89 1,19 
167 10020 14024 3340  2,20 3,07 0,73 
173 9861 14532 5536  1,98 2,91 1,11 
179 11098 16466 4296  2,09 3,10 0,81 
181 11946 14840 5792  2,20 2,73 1,07 
191 12797 16044 7640  2,10 2,64 1,26 
193 13896 17368 5404  2,27 2,84 0,88 
197 12017 21276 5516  1,86 3,29 0,85 
199 12935 21890 4776  1,96 3,32 0,72 
211 14770 20256 9284  2,00 2,74 1,26 
223 14718 29434 5352  1,78 3,57 0,65 
227 15663 26786 9080  1,82 3,12 1,06 
229 19465 21984 10992  2,23 2,52 1,26 
233 17708 28890 7456  1,97 3,21 0,83 
239 21032 25332 10516  2,22 2,67 1,11 

    ∑    

Total 297353 424720 147960 870033    

Men value     2,0062 2,9802 1,0136 

Ratio 

 
2,051 2,929 1,020 6    

At infinity 

awaited value 
2 3 1 6 2 3 1 

Difference 2,53% -2,37% 2,04%  0,31% -0,66% 1,36% 

 

We have the same trend towards an equiprobability with proportions (2,3,1) that for equation x
4
+x

3
+x

2
+x that we have seen 

above in the body of text. 
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