
THE SHORTEST PROOF OF RIEMANN HYPOTHESIS
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Abstract. The purpose of this article is to prove the Riemann Hypoth-
esis using the analytic property of the Zeta function and the symmetry
of the zeros to the critical line.

Résumé. (La plus courte preuve de l’hypothèse de Riemann).

Le but de cet article est de donner la preuve de l’hypothèse de Riemann
en utilisant la nature analytique de la fonction Zêta de Riemann et la
symétrie des zéros par rapport à la ligne critique.
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1. Introductional theorems

The Riemann Zeta function is defined over the complex plane Re(s) > 1
by

ζ(s) =
∞∑
n=1

1

ns

This function has an analytic continuation over the whole complex plane
except the unique complex point s = 1 + 0.i. The Riemann’s hypothesis,
formulated in 1859 [1], is that the non-trivial zeros of the function are such
that Re(s) = 1

2 , the zeros quoted as trivial being s = −2n, n ∈ N∗.
A well-established result is that all the non-trivial zeros are located within

the critical band 0 ⩽ Re(s) ⩽ 1. In search of zeros, one can reduce the review
to the domain 0 ⩽ α ⩽ 1/2 thanks to the following fact:

Theorem 1. Within the critical band, the non-trivial ζ−function zeros are
symmetrical to the axis s = 1/2.
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Proof. Using the functional equation (see [2])

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s),

Let us write then ξ(s) = (1/2)π−s/2s(s− 1)Γ(s/2)ζ(s). Referring to [6], we
get immediately ξ(s) = ξ(1− s). □

Therefore looking for exception to the Riemann rule is equivalent to ex-
amine the {0 ⩽ s < 1/2} cases.

As a meromorphic function [6], the Zeta function is infinitely derivable
except at its pole. The previous theorem then extends to its derivatives:

Theorem 2. Within the critical band, the non-trivial systematic multiple
zeros of the ζ−function are symmetrical to the axis s = 1/2.

Proof. We refer to [3] which provides the functional equation of the kth

derivative of ζ(s)

(−1)kζ(k)(1−s) = 2(2π)−s
k∑

j=0

k∑
m=0

(ajkm cos
πs

2
+bjkm sin

πs

2
)Γ(j)(s)ζ(m)(s).

Thus ζ(k)(1−s) = 0 if ζ(m)(s) = 0 for each m = 0 to k. Hence the symmetry
with respect to the axis s = 1/2 at step k for a systematic multiple zero up
to k. □

2. Shortest proof

Lemma 1. The non-trivial zeros of the Zeta function are all located on the
critical line except eventually in the case of some double zero s, that is if
ζ(s) = ζ ′(s) = 0 (and σ ̸= 1/2).

Proof. One of the property of an analytic function is the conservation of
angles [4] [7] wherever the derivative doesn’t cancel.
So let us consider a rectangle r in the complex plane not encompassing
the pole (1,0) of the function, this later case being considered in the next
section 3. Applying the function to the rectangle r, the resulting figure
ζ(r) will be a deformed ”rectangle”. If the rectangle is small, the resulting
conformal map [7] is a quasi-rectangle. Local deformation results from non-
null scaling factors. The trajectories of the opposite sides of the initial
rectangle will give local ”parallel” trajectories of the images in the complex
plane. Corresponding opposite points of same abscissa, or of same ordinate,
don’t meet in the image because of the non-null scaling.
A typical example of rectangle deformation is given in figure 1. Of course,
as the figure shows, if the rectangle gets long enough, part of the image set
can overlap. To get a bijection, an artefact would be to add the depth’s
dimension (for example attribute to this extra coordinate the value of the
length along the red line starting at the bottom left vertex), allowing to
unfold the image like a Riemann surface. Going back to the complex plane
(without additional dimension), the non-null scaling ensures that the red
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line stays always on the same side of the blue line (as does the yellow line
in regard of the green one).
Now, let us consider a rectangle r centred on the critical axis. Let us choose
the rectangle so that the abscissa of a non-trivial zero identified on the
lower half of the critical band is on the left side of the said rectangle. By the
functional equation, we know the existence of another zero on the right side
of the rectangle exactly at the same height, giving the same image 0 + i.0,
hence a contradiction with the local bijection.
Of course, to be exhaustive, as said in the first phrase of the argumentation,
we have to be sure that no point within the initial rectangle corresponds to a
zero of the derivative of Zeta causing some eventual havoc to our argument.
If so, one will reduce simply the vertical size of the rectangle r. The set
of real numbers ℜ being dense, this reduction can be as small as needed,
the only way to an exception being that this zero of the Zeta function is
at the same ordinate as the zero of its derivative. In this peculiar case,
one will choose a slightly rounded rectangular shape for the Zeta function’s
domain, or any bounded domain not including the zero of the derivative,
a choice which allows exists because the set of complex numbers is dense.
The conformal map’s argument can then be applied without dispute except
if the zeros to ζ−function and its derivative are the same, the previously
mentioned double zero’s case. □

In figure 1, as the chosen initial rectangle is encompassing two solutions s
to ζ(s) = 0 (the 4521th zero equal approximatively to 1/2 + i.5000.2343169
and the 4522th zero near the complex value 1/2 + i.5000.8343814, we get
two transits around the axis intersection.

Remarkable cases like the Zeta function’s pole (1,0) and the two first of
its trivial zeros (-2,0) and (-4,0), the other trivial zeros being similar, are
displayed in the next section 3.

Figure 1.
Initial rectangle r delimiting

σ = [0.495, 0.505], t = [5000, 5001]
Image ”rectangle” ζ(r)
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Note. Although not crucial to our argument, we give some information in
the next section 3 figures 8 a and b about the pattern in the vicinity of a first
derivative’s cancelling. In a sufficient close-up, there is no difference to the
standard behaviour, a rectangle is still transformed in an almost rectangular
surface. But bereft of a proof to generalize this observation, we resolve to
the following further analysis.

Lemma 2. The non-trivial zeros of the Zeta function are all located on the
critical line except if ζ(s) = ζ ′(s) = ζ ′′(s) = ... ζ(n)(s) ... = 0 for any n ∈ N∗

(and σ ̸= 1/2).

Proof. The Zeta function is an analytic complex meromorphic function. So
it is indefinitely derivable and each derivative is also analytic. The functional
expression of the nth derivative of ζ(s) is provided in the proof of theorem
2. According to that general functional equation, if ζ(s) = 0 and ζ ′(s) = 0
then ζ ′(1 − s) = 0. Then we apply the previous local conformal map’s
argument to ζ ′(s) instead of ζ(s). A potential exception is thereafter the
case ζ(s) = ζ ′(s) = ζ ′′(s) = 0. Recalling that the functional equation implies
the symmetry with respect to the axis s = 1/2 for systematic multiple zeros
and that the conformal map’s argument applies to any analytic function, the
procedure can be repeated as long as the derivative of the current derivative
is null. If not, we get a contradiction to the possibility to have a non-trivial
zero outside the critical line.

Hence the non-trivial zeros of the Zeta function not located on the critical
line are infinite multiple zeros. □

Figures 2 and 3 show the examples of deformation of rectangles by the first
and second derivatives of the Zeta function. In order to collect these graph-
ics, we use the quotient difference’s and the second symmetric derivative’s
approximations (ζ(s+∆ϵ)−ζ(s))/∆ϵ and (ζ(s+∆ϵ)−2ζ(s)+ζ(s−∆ϵ))/∆ϵ2.
The choice of ∆ϵ for these developments is arbitrary as long as small enough.
It can be purely real or purely imaginary or a mix. Here the data collec-
tion was done with ∆ϵ = 0.00001 except for the red curves where we use
∆ϵ = 0.00001i (to show that it has no damaging effect and that the curves
still stay ”parallel” and meet at their vertices).

In these figures, we observe, here and there, places where the red and blue
curves get, for corresponding equal ordinates in the initial rectangle, very
near one to each other. However, as we checked on close-ups, there is no
meeting (nor therefore crossing) of the two curves.

Note. The reader will find an example of second derivative’s cancellation’s
effect on the first derivative of ζ(s) in the next section 3 figures 9 a and b. It
shows the same pattern as the first derivative’s cancellation’s effect on ζ(s).

Theorem 3. The non-trivial zeros of the Zeta function are all located on
the critical line.
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Figure 2.
Initial rectangle r delimiting
σ = [0.495, 0.505], t = [0.2, 21]

Image ”rectangle” ζ ′(r)

Figure 3.
Initial rectangle r delimiting

σ = [0.495, 0.505], t = [0.9, 23.5]
Image ”rectangle” ζ ′′(r)

Proof. The Zeta function is a meromorphic [8] function and holomorphic at
every point except (1,0). Locally at ρ, its identified nth multiple zero, it
can be written as ζ(s) =

∑
m≥n am(s− ρ)m where am are constant complex

coefficients. By the previous lemma however, for any finite n, the coeffi-
cients am remain dependant of s and therefore there is no possible escape to
that dependency, thus a contradiction to the property of holomorphy. The
Riemann hypothesis is therefore true. □

3. More conformal mappings

The case around the pole (see figure 4) could have been an exception to
the general rule as the value of the image diverges in the center. But adding
the correspondence (1, 0) → ∞ preserves the bijection. When oriented,
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Figure 4.
Initial rectangle r delimiting
σ = [0.95, 1.05], t = [−0.1, 0.1]

Image ”rectangle” ζ(r)

the trajectory around the pole of the image is reversed compared to the
trajectory of the initial rectangle.

Around the trivial zeros (see figures 5 and 6), there is no special phenom-
ena.

Figure 5.
Initial rectangle r delimiting

σ = [−2.05,−1.95], t = [−0.1, 0.1]
Image ”rectangle” ζ(r)
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Figure 6.
Initial rectangle r delimiting

σ = [−4.05,−3.95], t = [−0.1, 0.1]
Image ”rectangle” ζ(r)

For a typical case (see figure 7), over a broader interval, including ze-
ros, the surfaces overlap and like Riemann surfaces would unfold and spiral
around some middle axis in a 3D representation. It seems that except for the

Figure 7.
Initial rectangle r delimiting
σ = [1.1, 1.2], t = [1.25, 26]
Image ”rectangle” ζ(r)

pole’s contour, all the other contours are oriented like the initial rectangle.

The event where ζ ′(s0) = ζ ′(σ0 + i.t0) = 0 appears as a limit case of
the general feature. The curve ζ(σ0 + i.t), t ≈ t0 is almost a straight line
inwards and a straight line outwards (red curve). The surrounding curves are
at arbitrary close distances but without ever meeting the limit curve. There
is no crossing locally, every curve staying on its respective side of the other.
Figure 8 a (and its close-up b) is a typical case. Here the derivative cancels
for s0 ≈ 0.84873532 + i.60.14084577857. In this example, we alternate the
sign of ∆σ while we took increasing absolute values. At very large close-up,
a rectangular domain will still give an almost rectangular image.



8 HUBERT SCHAETZEL

Figure 8.
σ0 = 0.84873532 t = [60.140715, 60.140967]

Image ζ(σ0 +∆σ + t)

(a)

(b)

In the case of second derivative’s cancelling, it is this time the first deriv-
ative of ζ that shows the previous pattern. Figure 9 a (and its close-up b)
is a typical case. Here the second derivative cancels for s0 ≈ 0.9691707 +
i.295.16838.

For a curious reader, a relevant remark may be: how to explain the simul-
taneous property of the ζ−function being infinitely derivable and showing



THE SHORTEST PROOF OF RIEMANN HYPOTHESIS 9

Figure 9.
σ0 = 0.9691707 t = [295.16825, 295.1685]

Image ζ ′(σ0 +∆σ + t)

(a)

(b)

in the same time straight lines coming in and going out within the for-
mer graphics? What happens in the vicinity of σ0 + i.t0? The answer is a
size-diminishing node (crunode), barely visible even at high magnification,
therefore avoiding a cusp, and allowing any derivative’s value and a smooth
continuation through the non-singular point σ0 + i.t0.
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