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1.Introduction. 
 

“Mathematics consists in proving the most obvious thing in the least obvious way.” George Pólya. 

 

Indeed, the mathematical literature abounds in clues and evidence in favour of Riemann's hypothesis [1]. One of these is 

the strict adherence to the hypothesis of billions of zeroes obtained by numerical evaluation. Limiting yourself to the 

accounting of the first zeros, regardless of their number, however, does not give any general property which enables to 

deduct for sure a rule for those coming next. Therefore, we are expanding the study by looking at all the points of the 

critical strip and in particular the bottom half of that band. The results brought to light in this way being general apply to 

the zeros themselves.  

 

Our investigation is based on one among the analytical extensions of Riemann's series, the Dirichlet Eta function. It 

establishes the existence of a lower boundary for an indicative function of (positive) convexity deduced from it, resulting 

in the impossibility of symmetrical Riemann zeros on either side of the critical line.  

 

Addressing a wide audience, many graphic illustrations are given here to make the thread of ideas as accessible and clear 

as possible. Despite all these additions, the article remains relatively short. Can its content then be worth a million of some 

other one ? 

 

2.Analytic continuations. 
 

Let us have s = a+i.b some complex number.  

The parameters a, b and s are taken in the same context throughout this presentation. 

The Riemann Zeta function is defined for Re(s) > 1 by the entire function : 

 

 ∞   

ζ(s) = ∑ 
1 

               (1) 
ms 

 m = 1   

 

The function diverges roughly in the form of an exponentially growing sinusoid for Re(s) < 1 for a given value of the 

parameter a, the real part of s, and the zeros of this function, called here (non-trivial) zeros of Riemann, correspond to 

numbers s such as the middle axis of this sinusoid aligns asymptotically with the axis y = 0.  

 

 
Graphic 1 

ζ(s) = C0+i.S0,  

s = 1/2+i.14.347251 

 

Note that it is impossible to find precisely the zeros of this function by exploiting only this remark. 

 

Riemann's Zeta function, however, admits, for Re(s) > 0, an analytical continuation based on Dirichlet's entire function 

Eta η(s). 

η(s) = (1-21-s).ζ(s)           (2) 

 

This equality shows that the zeros of Dirichlet's Eta function are the union of zeros of 1-21-s and zeros of Riemann's Zeta 

function. We call the first nominees, the Dirichlet’s zeros.  

So, we have the solutions sets : 

 

{Eta function’s zeroes} = {Dirichlet zeroes} U {Riemann zeroes}          (3) 
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The Dirichlet zeros are equal to  

s = 1+i.2π.k/Ln(2)          (4) 

 

where k describes the relative integers Z.  

These zeros, with constant real value (a = 1), are genuine Siamese brothers of Riemann zeros as we showed in another 

article (see reference [[6]). The formers are inseparable from the latter and allow us to anticipate the behaviour of 

Riemann's zeros. They are the trivial image of the veracity of Riemann's hypothesis. Unsurprisingly, we will find them 

again the upcoming numerical illustrations and elsewhere in this text. 

 

Let us now introduce the functional equation (see reference [2]) : 

 

ζ(s) = 2s.πs-1.sin(π.s/2).Γ(1-s).ζ(1-s)           (5) 

 

This further analytical continuation introduces, due to the sinus, additional zeros -2n, called trivial zeros, for any natural 

(thus positive) integer that are absent in previous functions. This last continuation is essential to our argument because we 

can state the following theorem : 

 

Theorem 1 
 

The non-trivial Riemann zeros are symmetrical to the axis s = 1/2 in the critical band. 

 

Proof 
 

Let us have ξ(s) = (1/2).s.(1-s).π-s/2.Γ(s/2).ζ(s). We get (see reference [3]) immediately ξ(s) = ξ(1-s).  

Hence the theorem. 

 

Theorem 2  
 

If the set of all Riemann's zeroes such as 0 < a < 1/2 is empty, then Riemann's zeros are all on the 1/2 axis.  

 

Proof 
 

This is a trivial consequence of theorem 1.  

 

In 1896, Hadamard and La Vallée-Poussin3] independently proved that no zero could be on the Re(s) = 1 line, and therefore 

that all non-trivial zeros should be in the interior of the critical band 0 < Re(s) < 1. For this reason, we have chosen 

previously to write 0 < a < 1/2 instead of 0 ≤ a < 1/2, although this second way doesn’t in any way hinder us here, quite 

the contrary, since it allows us to confirm the work of the authors cited simply by examining case a = 0 (which is actually 

done in this article). 

 

3.Explicit equations of the Dirichlet Eta function and more expressions. 
 

Let us have Ln(x) the Napierian logarithm of x. 

The Eta function writes as :  

 ∞   

η(s) = ∑ 
(-1)m-1 

         (6) 
ms 

 m = 1   

We thus get :  

 

 ∞ ∞  

η(s) = ∑ (-1)m-1.m-a.cos(b.Ln(m))+i. ∑ (-1)m-1.m-a.sin(b.Ln(m))          (7) 

 m = 1 m = 1  

 

The search for η(s) zeros is therefore tantamount to solving the two equations : 

 

∞ 

∑ (-1)m-1.m-a.cos(b.Ln(m)) = 0        (8) 

m = 1 

and 

∞ 

∑ (-1)m-1.m-a.sin(b.Ln(m)) = 0        (9) 

m = 1 
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Let us have  

 ∞ 

C0(a,b) = ∑ (-1)m-1.m-a.cos(b.Ln(m))         (10) 

 m = 1 

and 

 ∞ 

S0(a,b) = ∑ (-1)m-1.m-a.sin(b.Ln(m))         (11) 

 m = 1 

 

Then the cancellation of η(s) is equivalent to the following cancellation : 

 

(C0(a,b))2+(S0(a,b))2 = 0          (12) 

 

Let us have  

D0(a,b) = (1/2).(C0(a,b))2+(S0(a,b))2          (13) 

 

Theorem 3 
 

If the partial second derivative of D0(a,b), versus parameter a, is strictly positive for 0 ≤ a ≤ 1/2, then Riemann's hypothesis 

is true. 

 

Proof  
 

Let us have some given b. Let us place ourselves at a0 = 1/2. By our hypothesis, the second partial derivative versus a is 

strictly positive in a0-ε, ε > 0. The D0(a,b) function, positive or null as a sum of squares, is then convex (and therefore the 

first partial derivative is of constant sign). It necessarily increases on the constant b line when a decreased from a0 = -1/2 

to a = 0. The expression D0(a,b) can then be null only for a0 = 1/2. 

 

We note the expressions of successive partial derivatives of C0(a,b) and S0(a,b) versus a as follows: 

 

 ∞ 

Ck(a,b) = ∑ (-1)m-1+k.(Ln(m))k.m-a.cos(b.Ln(m))         (14) 

 m = 1 

and 

 ∞ 

Sk(a,b) = ∑ (-1)m-1+k.(Ln(m))k.m-a.sin(b.Ln(m))         (15) 

 m = 1 

 

This allows us to write successive partial derivatives, versus a, of D0(a,b) as follows:  

 

D1(a,b) = C0(a,b).C1(a,b)+S0(a,b).S1(a,b)          (16) 

and 

D2(a,b) = C0(a,b).C2(a,b)+S0(a,b).S2(a,b)+(C1(a,b))2+(S1(a,b))2          (17) 

 

Our objective is to prove that D2(a,b) > 0 for 0 ≤ a ≤ 1/2.  

 

There is a trivially positive part to D2(a,b) that is P2(a,b) = (C1(a,b))2+(S1(a,b))2. It ought to be compared to the 

complementary part Q(a,b) = C0(a,b).C2(a,b)+S0(a,b).S2(a,b). As long as Q(a,b) is positive, everything is fine. If Q(a,b) 

is negative and we have |Q (a,b)| < P(a,b), then the D2(a,b) expression remains positive and Riemann's hypothesis stems 

from it. It is therefore wise to examine the evolution within the lower critical band of the ratio : 

 

R2(a,b) = 
C0(a,b).C2(a,b)+S0(a,b).S2(a,b) 

                   (18) 
(C1(a,b))2+(S1(a,b))2 

 

From this argument results the following theorem equivalent to theorem 3 : 

 

Theorem 4 
 

If R2(a,b) > -1 for 0 ≤ a ≤ 1/2, b any given real number, then Riemann hypothesis is true. 

 

Note  
 

This is a sufficient (and not necessary) condition : A contradictory b (giving R2(a,b) ≤ -1) only excludes the desired result 

in that value b and its immediate vicinity. We will see below that, indeed, there are b values such as the expression R2(a,b) 
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is less than the -1 value, for 0 ≤ a ≤ 1/2, near the origin to abscissas smaller than that of the first Riemann zero (and the 

first Dirichlet zero). 

 

It should also be noted that because of the symmetry of the functional equation, we only look at the b ≥ 0 values, the 

arguments being in any way identical to b ≤ 0 case. 

 

4.Numerical illustrations. 
 

The reader will refer to Appendix 1 for the conditions to ensure the consistency and accuracy of numerical assessments. 

All illustrations are given with an interval between points equal to Δb = 1/10 when not otherwise specified. 

 

The study concerns the critical half-band 0 ≤ a ≤ 1/2. However, as Riemann's zeros, at least for those known, are all on the 

critical line a = 1/2, the highlighted expressions are necessarily at their climax and therefore the most prominent on this 

critical line. Thus, the reader will not be surprised if some calculations focus solely on this line. On a parallel line < 1/2 of 

the critical band, the situation is similar but rapidly with a (very) smaller magnitude. 

 

The content of this paragraph 4, called as "illustrations", as well as Appendix 8, contains a set of relationships that are 

sufficient to show the evidence of the hypothesis. This evidence is overwhelming, the zeros and the neighbourhoods of 

these zeroes offering only a paroxysm. However, the proof of these relations, for the current paragraph except for the 

indispensable part 4.1, would surely be a real "tour de force" and is not undertaken here. Hence the obvious need for 

paragraph 5 that will follow it.  

 

4.1 Staggering of the sums of squares SCk(a,b). 

 

We compare the functions based on sums of Ck(a,b) and Sk(a,b) squares, the latter being defined from relationships (14) 

and (15) :  

SCk(a,b) = (Ck(a,b))2+(Sk(a,b))2                (19) 

 

The graphics representations clearly show that, above b ≈ 20, the SCk+1(a,b) curves are above the SCk(a,b) curves in 

relatively nesting positions.   

 

  
Graphic 2 

a = 1/2 

Graphic 3 

a = 1/2 

 

 

Graphic 4 

a = 1/2 
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We get immediately :  

 

Theorem 5  
 

We have almost everywhere : 

SCk+1(a,b) > SCk(a,b)                 (20) 

 

Note 1: 
 

The curves are given with our standard step Δb = 1/10. The downwards peaks are not necessarily fully formed here. 

Nevertheless, one can see clearly the peak of SC1(a,b) at the level of Riemann's zero corresponding to b ≈ 5010,9331981. 

The nesting does not prevent in any way to have, close to the Riemann zeros, very small values for SCk(a,b), whatever k 

> 0, and this especially for SC1(a,b) = (C1(a,b))2+(S1(a,b))2. This effectively allows us to find increasingly larger R2(a,b) 

values here or there, since SC1(a,b) is the denominator of that expression. 

 

Note 2: 
 

The terminology "almost everywhere" is not that of the probability theory. The term only means very often, thus without 

a strict notion of density, as the study is not completed at this stage. 

 

To improve accuracy, two parameters are to be taken into account: 

- The number of terms of the truncation 

- The step Δb 

 

In the graphs below, at the peaks’ levels, Δb is taken here equal to 1/10000. For SC0, at Riemann's zeros level, both peaks 

take on lower and lower values (since the theoretical limit here is 0). For SC1, the peak progresses to lower values between 

truncation with 10,000 terms up to 50,000 terms. This progression then stops. The minimum value statements are 

0.00097147 for 10000 terms, 0.00053732 for 50000 terms, 0.00058222 for 150000 terms, nothing in fact prohibiting a 

higher value in the final instance when accuracy increases. 

 

 
Graphic 5 

Truncation to 150000, a = 1/2 

 

We see above the attraction that constitutes two narrow peaks for SCk(a=1/2,b) on the expression SCk+1(a=1/2,b) in the 

hereby k = 0 case. As two peaks create a peak above them, the phenomenon may occur frequently only up to the SC1(1/2,b) 

level. An imposing peak for SC2(1/2,b) is certainly rare, requiring 3 very close Riemann zeros. A significant spike is 

undoubtedly exceptional when k > 2.  

 

Theorem 6  
 

We have  

SCk+1(a,b) > SCk(a,b)                 (21) 

 

Proof 
 

The numerical study clearly shows that the inequality is true except possibly near the peaks’ positions and moreover the 

critical case to examine is that of the relative position of SC0(a,b) and SC1(a,b), higher k cases being even more obvious. 

So, let us place ourselves at a peak for SC1(a,bpeak). The expression SC0(a,bpeak) presents at this abscissa a partial 

derivative, versus b, close to 0. It can be written, with the notations of paragraph 5.2, ∂b((C0(a,b))2+(S0(a,b))2) = 

2(C0(a,b).S1(a,b)-S0(a,b).C1(a,b)) with value to take at b = bpeak. Hence the approximate equality C0(a,bpeak).S1(a,bpeak) ≈ 

S0(a,bpeak).C1(a,bpeak). Let us simplify the entries by failing to repeat the coordinates (a,bpeak). The C0 and S0 functions 

are non-zero since they are not placed at a Riemann zero. We then have at the peak of SC1, the ordinate difference between 

SC1 and SC0 equal to C12+S12-(C02+S02) ≈ (C0.S1/S0)2+S12-(C02+S02) = ((S1/S0)2-1).(C02+S02), and in the same way, 
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C12+S12-(C02+S02) ≈ (C12+(C1.S0/C0)2-(C02+S02) = ((C1/C0)2-1).(C02+S02). These expressions, as sums of continuous 

functions, are continuous. Thus, for the difference C12+S12-(C02+S02) to become negative, it must first be able to go to 

zero. The coordinate point (a,bpeak) being intermediate between two Riemann zeros, we have C02+S02 ≠ 0. This means that 

the nullity of C12+S12-(C02+S02) results in the joint nullity of (C1/C0)2-1 and(S1/S0)2-1, or simultaneously C1 → C0 and 

S1 → S0 near the abscissa of the peak. However, C0 is by no means C1, nor S0 compares to S1 and the ratio of their 

numerical values does not converge due to small, near-random values of C0, S0, C1 and S1. Small values of C0 and S0 

are directly linked to small value of the difference C12+S12-(C02+S02), creating an increasing oscillation (and therefore a 

divergence). At the limit SC1 → SC0, the oscillation tends towards infinity making equality impossible.  

 

We give the example for the peak near to bpeak ≈ 7005.08168, the phenomenon of oscillations being reproducible with any 

other example. We do have C12+S12-(C02+S02) → 0 (see graphic 6). But (C1/C0)2-1 ≈ (S1/S0)2-1 ≈ 58 (which is a first 

handicap) as long as we take a truncation between 800 and 2300 terms, case where C12+S12-(C02+S02) does not yet 

converge towards 0. When this convergence finally begins with the sufficient number of terms (here above 2500), the 

ratios C1/C0 and S1/S0 enter an unstable phase due to the low values of C0, S0, C1 and S1 (graphics 7 and 8) oscillating 

around the previous value. This oscillation remains regardless of the number of terms, and therefore to infinity, that is up 

to the effective value of C12+S12-(C02+S02). 

 

 
Graphic 6 

Truncation to 10000, a = 1/2, bpeak ≈ 7005.08168 

Absence of oscillations after m = 2500 for C12+S12-(C02+S02) 

 

  
Graphic 7 

Truncation to 10000,  

a = 1/2, bpeak ≈ 7005.08168 

Presence of oscillations after m = 2500 of C1/C0 

Graphic 8 

Truncation to 10000,  

a = 1/2, bpeak ≈ 7005.08168 

Presence of oscillations after m = 2500 of S1/S0 

 

Theorem 7  
 

We have for 0 ≤ a ≤ 1/2 and k > 0 : 

 

SCk(a,b) > 0                  (22) 

 

Proof 
 

This is immediately due to theorem 6. 
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Note : 
 

The SC0 ordinate at the intermediate abscissa bpeak is, a priori, statistically lower as two Riemann zeros are closer. We 

return to this point in paragraph 4.5. 

 

4.2 Current values of R2(a,b). 

 

We represent the R2(a,b) ratio as a function of parameter a for fixed b. The view below shows the evolution starting from 

a = 1/2 (background of the image) with alternating of downwards peaks and upwards peaks. At a = 1/2, the ordinate is null 

for Riemann and Dirichlet zeroes. The condition of cancellation of C0(a,b).C2(a,b)+S0(a,b).S2(a,b) is more general and 

may occur without the presence of these two types of zeros. The fifth peak upwards is less marked. It corresponds to the 

vicinity of the 166th Dirichlet zero (166*2π/Ln(2) ≈ 1504.743567). 

 

 
Graphic 9 

a = [0, 1/2], b ∈ [1500, 1510] 

 

In the graphics that follow, the b values are taken in ℕ for 100 consecutive values. Some b values may be close to the 

imaginary values of Riemann or Dirichlet zeroes. 

The range of b values is given in the legend. The min and max values shown are those of R2(a,b) at a = 1/2. These are of 

course neither the absolute minimums nor the absolute maximums if b ∈ ℜ.  

 

  
Graphic 10 

b = 14 to 100 

min ≈ -0.065923, max ≈ 2.582495 

Graphic 11 

b = 100001 to 100100 

min ≈ -0.128374, max ≈ 3.027709 

 

There is some chaos in the variations of R2(a,b) when a > 1/2, but the trend towards the asymptotic value R2(a → -∞,b) 

→ 1 is quickly activated on the side a ≤ 1/2, hence the obvious interest in choosing this side of the critical band. 

The graphics below give the values of R2(a = 1/2, b) of the previous series of b numbers. The first graphic is for b in 

ascending order. The second graphic are the same values where R2(a,b) are sorted in ascending order (the x axis becoming 

arbitrary). 
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Graphic 12 

a = 1/2 

Graphic 13 

a = 1/2 

 

The latest graphic shows that the increase in b has no real impact on the order of the distributions of the R2(1/2, b) values 

and in particular on its minimum value. The last curve of the legend, where b is in the 100001 to 100100 value range, is 

simply intermediate to the other distributions. We go back to the shape of the latter graphic with increased precision in the 

following paragraph. 

 

4.3 Random surveys of R2(a,b). 

 

We start with surveys for a = 1/2.  

We are talking about random surveys although b is taken with constant spacing 1. Indeed, the value that R2(a,b) versus b, 

for given parameter a, is not predictable: Riemann's zeroes have br imaginary abscissas that we can call random and the 

value of R2(a,b) for constant b spacing will be at a random distance of the nearby br therefore having seemingly random 

R2(a,b). The same is true of minimums and maximums of R2(a,b) or any other choice. Taking b with random or constant 

distances thus amounts to the same if we want to statistically analyse the distribution of R2(a,b) given some parameter a. 

 

We then have the following incomplete table : 

Table 1 

 

b-k.10000 
R2(1/2, 0≤b<9999) 

k = 0 

R2(1/2, 10000≤b<19999) 

k = 1 

R2(1/2, 20000≤b<29999) 

k = 2 

0 -1.08934023 -0.05235938 0.53967998 

1 -1.22982782 -0.24315523 0.37783264 

2 -1.23743739 0.92023095 1.18166428 

3 -0.59258188 -0.00324345 0.43683645 

… … … … 

9997 1.10427165 0.91778738 0.51817126 

9998 -0.02703119 -0.11687438 0.83313405 

9999 0.26809106 1.49868353 2.16119046 

 

These values are then sorted in ascending order, with the reference axis becoming a mere index.   

 

Table 2 

 

i R2(1/2, 0≤b<9999) R2(1/2, 10000≤b<19999) R2(1/2, 20000≤b<29999) 

0 -1.237437394 -0.367149358 -0.415532661 

1 -1.22982782 -0.336819688 -0.389586665 

2 -1.089340232 -0.319879054 -0.33263088 

3 -0.592581881 -0.314646353 -0.312157279 

… … … … 

9997 7.164445983 11.20934744 13.13029216 

9998 10.87793755 12.42906401 13.19809132 

9999 11.3992441 21.28605665 16.7790967 

 

The curves that are representative of the distributions of values obtained in this way are : 
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Graphic 14 

xgraphic = i, a = 1/2, b ∈ [0, 29999] 

 

The shape curves in the central part are the same for the three sorted data choices.  

It would be the same for any other random choice of abscissas provided that the selected sample has sufficient elements. 

This random choice may be a Δb spacing different from 1.  
 

Below are the R2(a,b) results for a smaller range of values (b ∈  [500, 750]) and a smaller spacing Δb (Δb = 1/100). The 

curve's shape for a = 1/2 (in yellow) is the same. Again, the x-axis is not really b since the values of R2(a,b) have been 

taken up in ascending order. 

 

  

Graphic 15 

a = 0 to 1, x ∈ [500, 750] 

Graphic 16 

a = 0 to 1, x ∈ [500, 750] 

 

As the parameter a decreased progressively getting closer to 0, the set of R2(a,b) values get closer to the horizontal axis 

of ordinate 1. 

 

The graphic below provides a close-up view for the part we are particularly interested in, that is when R2(a,b) < 0. The 

curves show up in descending order of a values as one would expect. Here, for a = 0.55, we still have R2(a,b) > -1, but 

this is no longer the case for a = 0.6 (which is without any prejudice for our study for which the proof is necessary only in 

a ∈ [0, 1/2]). 

 
Graphic 17 

a = 0 to 1, x ∈ [500, 750] 
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4.4 Relations between local minimum and maximum of R2(a,b). 

 

The R(a = 1/2, b) function changes from local minimum to local maximum when b increases. Here we are looking for 

some relationships between a maximum and the two minima that frame it. 

 

The graphic below gives a sample of the values taken by R2(1/2, b) for b ∈ [15000,15250]. The savvy reader may note, 

although this is not very visible, that a (positive) peak also corresponds to negative value spikes on either side of this peak. 

 

 
Graphic 18 

a = 1/2, b ∈ [15000,15250] 

 

This is more visible by making some magnifications : 

 

 
Graphic 19 

a = 1/2, b ∈ [15000,15030] 
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Graphic 20 

a = 1/2, b ∈ [15131,15134] 

Graphic 21 

a = 1/2, b ∈ [15131,15134] 

 

  
Graphic 22 

a = 1/2, b ∈ [15051,15056] 

Graphic 23 

a = 1/2, b ∈ [15051,15056] 

 

It is as if the rise towards the high values rpeak of R2(a,b) requires a spring force acting from under ordinate 0. Indeed, the 

higher a peak is, the higher the negative values rlow surrounding it. 

 

Graphic23 however shows "high" negative values on both sides that do not necessarily cause a high (positive) spike when 

their forces are already affected in nearby peaks. 

Thus, if we represent rpeak as a function of rM, where rpeak is the value of a given peak, rM the average between the two 

lower values on either side, we necessarily get a "parasitic" branch. 

This is what is shown in the graphics (24) below. 

 

The reader will note that these two graphics (which are the same data except a logarithmic scale for the y-axis in the second  

graphic) were made by aggregating the data provided in intervals b  ∈ [3000, 3250], [6000, 6250], [9000, 9250], [12000, 

12500], [15000,15250] with a Δb = 1/100 step. 

 

 

Graphic 24 

rpeak function of rM 

 

The "parasitic" branch is the one extending horizontally. It does not provide any additional useful information to that 

provided by the ascending branch since it is linked to it. The downside is that it can give the illusion that the abscissa rM 
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is not bounded when what determines it is actually the evolution of the ascending branch. In paragraph 4.5, we specify the 

criterion after which the mix of horizontal and ascending branches take an overriding character. 

 

The illustration, based on graphic 24, leads also to an important remark. The Δb = 1/100 step remains too wide to get a 

good accuracy of the actual values of the peaks rpeak. It is imperative to do a point-by-point study. We thus provide in 

Appendix 3 Table 7 the complete data of the graphics below (which are again the same data with simply a logarithmic 

scale for the y-axis in the second chart). 

 

  
Graphic 25 

rpeak function of rM 

Main branch 

Graphic 26 

rpeak function of rM 

Main branch (rM < -0,1) 

 

The points on the first graphic show an increasingly rapid divergence beyond abscissa rM ≈ -0.35. The second graphic 

shows that this increase is over-exponential. The data near the origin are more erratic because of the combination of the 

ascending and horizontal branches within graphic (24).  

 

The interpolation function used here is : 

 

rpeak ≈  
1.4 

 -5                    (23) 
(0.5+rM)2,1 

 

The adjustment parameters are very approximate (except 0.5 which is certainly near effective value). We incline for an 

exponent with denominator equal to 2, but our data to date indicates the adjustment proposed here. For lack of better, we 

let it that way. 

 

The important point is that this approximation function diverges at rM = -0.5 which means a bumper value impossible to 

exceed (as soon as -0.5 instead of -1) because of the continuity of R2(a,b) demonstrated in paragraph 5.1. This then 

confirms theorem 4.  

 

Note: The term rM  is an average of 2 terms. Nothing prevents one of them from being smaller than -0.5. Cependant les 

deux coordonnées rbas autour d’un pic étant à l’extérieur de part en d’autre des deux zéros de Riemann, et donc telles que 

rbas < 0, la limite rM > -0,5 signifie qu’aucun des deux rbas ne peut être inférieur à -1.  However, since the two rlow coordinates 

around a peak are outside on either side of the two Riemann zeros, and therefore such that r low < 0, the limit rM > -0.5 

means that neither of the two rlow can be less than -1. 

 

4.5 Relationship between Riemann zeros spacings and R2(a,b). 

 

A random search for high-amplitude peaks of R2(a,b) would require enormous computational resources without the 

existence of a sufficiently simple tracking. Fortunately, there is a link between the gap of two consecutive Riemann zeros 

and the height of the intermediate peak, a link that then makes the search quite easy thanks to the database referenced in 

[5]. 

 

As it turns on, a peak is generally all the more ample as the gap between two consecutive Riemann zeros (at abscissas 

noted zero_R- and zero_R+) is smaller. We have the following approximate relationship, where br is the peak abscissa, 

Δbr the gap between two Riemann's zeroes. The reader will find the numerical elements in Appendix 5 : 

 

rpeak ≈ 1 +  
5 

                  (24) 
Δbr

2.br
1/4 
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According to this relationship, the amplitude of the peak tends towards infinity when the gap tends towards zero. These 

cases are necessarily more and more common for very high-value abscissas since the average difference between zeros is 

asymptotically in 2π/Ln(abs_zeroR). The presence of the logarithm, however, makes it difficult to find many cases with 

very high values here. In particular there is no rpeak > 10000 for the first 500,000 Riemann zeroes. 

 

The first graph below represents the numerical results and evaluation by an interpolation formula without taking into 

account the abscissa of the peak br (br
1/4 term at denominator obliterated). In the second, this additional factor is introduced. 

 

  
Graphic 27 

rpeak function of Δbr 

(cf. Appendix 5, Table 8) 

Graphic 28 

rpeak function of br and Δbr 

(cf. Appendix 5, Table 8) 

 

The reader will find in appendix 8 a more comprehensive study of the rpeak approximation’s functions enabling a better 

picture of the actual value of these extremums. 

 

For large peaks, we can neglect the constants -5 and 1 in the relations 23and 24 In order to compensate for the power 2.1 

that we reduce to 2, we increase somewhat the constant in front of the fraction to obtain rpeak ≈ 1.8/(0.5+rM)
2 ≈ 5/Δbr

2.br
1/4. 

This results in : 

rM ≈ -(1/2).(1-1,2.Δbr.br
1/8)                        (25) 

 

Since Δbr.br
1/8 > 0, the term rM is greater than -0.5. 

For values close to 0, exp(-x) ≈ 1-x, and thus :  

 

rM ≈ -(1/2).exp(-1,2.Δbr.br
1/8)                        (26) 

 

In the range of numerical values examined, we also have the simpler alternative formula : 

 

rM ≈ -(1/2).exp(-5Δbr)                 (27) 

 

which leads to the following graphs: 

 

  
Graphic 29 

rM function of Δbr 

(cf. Appendix 5, Table 9) 

Graphic 30 

rM function of Δbr  

(cf. Appendix 5, Table 8) 

 

The alignment of the points clearly stalls for a gap between Riemann zeroes larger than Δbr = 1/2 (and therefore apparently 

regardless of the abscissas of these zeroes). Based on this approximate critical value, as the data in Appendix 5 seems to 
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show, the order of abscissas abs_rlow (abscissa b of rM before the peak), abs_zero_R- (abscissa of Riemann's zero before 

the peak), abs_peak (abscissa of the peak), abs_zero_R+ (abscissa of the Riemann zero after the peak), abs_rhigh (abscissa 

of rM after the peak), is no longer respected (which is perfectly possible since the cancellation of R2(a,b) does not 

correspond to the cancellation of (C0(a,b))²+(S0(a,b))².  

 

Below the critical value of the gap, the points align perfectly here, the only selection criterion having been to take the gap 

Δbr among the first 100,000 zeroes such as Δbr is closest by higher value of 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 

and 0.45, (for the construction of graphic 29), a selection that gives only an almost uniform spacing in abscissa but in no 

way any predisposition on the value of the ordinate. We have also added to the chart the lower Δbr gap solution that exists 

among Riemann's first 500000 zeroes. 

 

It should be noted that the value of the abscissa abs_peak does not intervene in the proposed formula (unlike the 

relationship involving rpeak). Close to the origin (Δbr < 0.05), the relationship 27 is quasi-linear by developing exp(x) to 

the first order and clearly tends (cf. graphic 30) towards the limit rM =-1/2. 

 

4.6 Geodesics of R2(a,b). 

 

We adopt the word "geodesic" out of sheer convenience. These are more specifically the local extrema of the R2(a,b) 

function. 

 

Theorem 8 
 

The local maximum value of R2(a,b) is related to the minimums’ paths in the vicinity of this peak. 

 

Proof  
 

The extremums of R2(a,b) are determined by the cancellation of the two partial derivatives ∂aR2 and ∂bR2. 

This means using relations (30) and (31) that we will establish later on : 

 

(C12+S12+2C0.C2+2S0.S2).(C1.C2+S1.S2)+(C12+S12).(C0.C3+S0.S3) = 0 

(C12+S12+2C0.C2+2S0.S2).(C1.S2-S1.C2)+(C12+S12).(S0.C3-C0.S3) = 0 

Thus  

(C1.C2+S1.S2).(S0.C3-C0.S3) = (C1.S2-S1.C2).(C0.C3+S0.S3)                         (28) 

 

This equation is common to local minimums and maximums, hence the link.  

 

Note 1.  
 

The common equation explains the link between a peak of R2(a,b) and the two minima on either side of that peak observed 

in the illustrations in the previous paragraph. In fact, what produces the value of the peak is not only the two values on 

either side, where the parameter a is set in advance, but the entire minimum geodesic "surrounding" that peak. However, 

the average of the two values examined above is already, when the peak has a significant value above 1, a good 

representation of the said neighbourhood and thus allows to anticipate the peak value. 

 

Note 2.  
 

The minimums on both sides must have comparable values for the approximation equation to be useful. When this is the 

case, for a high-value peak, the configuration of the minima (in dark blue) is cross-shaped as in graphic 31, while the 

altitude isopleths tend vertically as shown by the example of graphic 32.  
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Graphic 31 

a = 0.4 to 0.6  

b ∈ [17143.66, 17143.96] 

Δb = 0.006 

Graphic 32 

 

When the minimums values are dissimilar, the two wings of the minimums are instead oriented in the opposite direction 

on the side of the extremum with value close to -0.5 and generally horizontal on the side of the other minimum. The 

altitude isopleths tend horizontally. The graphics that illustrate this point are numbered 33 and 34. 

This explains the "parasitic" branch.  

In addition, the peak is only its initial draft at a = 0.5 and continues to increase on the side of a > 0.5 (pink line below).  

 

 

 
Graphic 33 

a = 0,4 to 0,6 

b ∈ [17143.839, 17144.919]  
Δb = 0.03 

Graphic 34 

 

Note 3.  
 

The uncompromising reader will object that an equation such as the relationship 28 can be found not only for geodesics 

but for any value one wishes to affix to R2 (a,b) and therefore proves nothing. We are not saying the contrary for the first 

part of this argument. Indeed, no point escapes the equations of the whole set of points. What we are saying here is that 

there is enough information in the minimums to determine the rest and the argument raised is sufficient as the basis for 

the evidence. 

 

With all the indicators on green, it is time to get back to something else. 
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5.Back to the theorems and proofs. 
 

5.1 Continuity of R2(a,b). 

 

Theorem 9 
 

The R2(a,b) function is continuous in interval 0 ≤ a ≤ 1/2.  

 

Proof  
 

It suffices to prove that the R2(a,b), i.e. its denominator SC1(a,b) = (C1(a,b))2+(S1(a,b))2 does not cancel. This is theorem 

7.  

 

Let us note that the function is also continuous outside the indicated interval. 

 

5.2 Calculation of the partial derivative linked to R2(a,b). 

 

Writing convention.  

 

In this text, the functions are generally dependent on two variables a and b. The handling of the objects is simplified by 

writing F instead of F(a,b). The partial derivative of F, versus parameter a, ∂/∂a(F(a,b)) is simplified in ∂aF. The same goes 

for b. In the text body, we defined the functions Ck(a,b) and Sk(a,b). The non-recalled entries of parameters a and b are 

equivalent as well as the indexing k : Ck(a,b) = Ck(a,b) = Ck = Ck and Sk(a,b) = Sk(a,b) = Sk = Sk. 

 

Evaluation of the partial derivatives of Ck(a,b) and Sk(a,b).  

 

From relations (14) and (15), we get : 

 

 ∞ 

Ck = ∑ (-1)m-1+k.(Ln(m))k.m-a.cos(b.Ln(m)) 

 m = 1 

and 

 ∞ 

Sk = ∑ (-1)m-1+k.(Ln(m))k.m-a.sin(b.Ln(m)) 

 m = 1 

 

We deduct immediately  

 

 ∞ 

∂aCk = ∑ (-1)m+k.(Ln(m))k+1.m-a.cos(b.Ln(m)) 

 m = 1 

 

 ∞ 

∂aSk = ∑ (-1)m+k.(Ln(m))k+1.m-a.sin(b.Ln(m)) 

 m = 1 

 

 ∞ 

∂bCk = ∑ (-1)m+k.(Ln(m))k+1.m-a.sin(b.Ln(m)) 

 m = 1 

and 

 ∞ 

∂bSk = ∑ (-1)m-1+k.(Ln(m))k+1.m-a.cos(b.Ln(m)) 

 m = 1 

 

In other words : 

∂aCk = Ck+1 

∂aSk = Sk+1 

∂bCk = Sk+1 

∂bSk = (-1).Ck+1 

                           (29) 

 

All of this functions, as sums (finite or infinite) of continuous functions are continuous. 
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Evaluation of the partial derivatives of R2(a,b).  

 

From relation (18), we get : 

 

R2 =  
C0.C2+S0.S2 

     
C12+S12 

 

It follows using identity (u/v)’ = (u’.v-u.v’)/v2 :  

 

∂aR2 = 
(C12+S12+2C0.C2+2S0.S2).(C1.C2+S1.S2)+(C12+S12).(C0.C3+S0.S3) 

                   (30) 
(C12+S12)2 

 

∂bR2 = 
(C12+S12+2C0.C2+2S0.S2).(C1.S2-S1.C2)+(C12+S12).(S0.C3-C0.S3) 

                   (31) 
(C12+S12)2 

 

Note :  

 

The two previous partial derivatives are continuous due to the fact that (C1(a,b))2+(S1(a,b))2 doesn’t cancel (see again 

theorems 7 and 9). 

 

5.3 The impossibility of R2(a,b) = -1. 

 

When we talk about the impossibility of R2 = -1, we mean at the same time the impossibility of R2 < -1 since R2(a,b) is 

continuous according to both coordinates a and b. In addition, we place ourselves in the conditions a ∈  [0, 1/2] and b ∈ 

[3, +∞[. 

 

Framework of the proof 
 

From relation (18), we get by definition R2 = (C0.C2+S0.S2)/(C12+S12), so that also (C0.C2+S0.S2) = R2.(C12+S12). 

Relation (31) becomes then : 

 

∂bR2 = 
(1+2R2).(C1.S2-S1.C2)+(S0.C3-C0.S3) 

               (32) 
(C12+S12) 

 

We seek the values for which the R2 expression is minimal when b varies, thus those such that ∂bR2 = 0, meaning also 

R2 = (1/2).((S0.C3-C0.S3)/(C1.S2-S1.C2)-1). The solutions are hence those for which we have simultaneously : 

 

R2x = 
C0.C2+S0.S2 

                         (33) 
C12+S12 

and 

R2y = (1/2).( 
C0.S3-C3.S0 

- 1)         (34) 
C1.S2-C2.S1 

and 

R2 = R2x = R2y                                       (35) 

 

The two graphics below are the same, the second being a close-up view of a particular area. They contain all the (R2x(a,b), 

R2y(a,b)) points obtained for a 1/2, b = 0 to 20000 and Δb = 1/4, the actual solutions joining these points by continuity. 

The point (R2x, R2y) ≈ (-0.5122, -0.5121) for (a, b) = (1/2, 78974.87502) corresponding to the only example found where 

R2(a,b) < -1/2 is also reported on the graphic. The only solutions to retain are on the R2x = R2y axis of this graphic (the 

light blue dotted line), but the usefulness of spotting all the dots (R2x, R2y) is obvious. This makes it possible to visualize 

in an obvious or even garish way, the minimum abscissa when simultaneous equalities are obtained. We see that the dots 

are concentrated, for the part below the abscissa R2x = 0, in a triangle R2y = -1/2, R2x = 0, R2y = 1/2+2.R2x (green 

frame). The low point of this triangle is -1/2. A few points are slightly outside this triangle, but this does not affect our 

conclusion. One finds them mostly above the triangle near the 0- abscissa.  

 

Such a figure with very sharp boundary lines, although slightly permeable, show the absurdity of points extending far 

beyond R2x < -1/2, namely to a hypothetical R2x = -1, for a = 1/2, complementary information being given for a ∈  [0,1] 

in Appendix 10  
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Graphic 35 

a = 1/2, b ∈ ]3, 20000] and Δb = 0.25 

Graphic 36 

a = 1/2, b ∈ ]3, 20000] and Δb = 0.25 

 

The first graph above shows a concentration of coordinates (Rx,Ry) along and below the axis Ry = -1/2 when Rx tends 

towards infinity. However, the effective solutions are those placed on the axis Rx = Ry. This means the scarcity of high 

peak values both because of the scarcity of points along the axis Ry = -1/2 and the distance of the line Rx = Ry from the 

said line. Therefore a double penalty in some way... 

 

A framework that is a little closer to reality can be given by reparametrizing the initial line R2y = 1/2+2R2x (upper line 

in green underneath) into a new form R2y = 1/2+2R2x+(1/12).tan(π.(R2x+1/2)), which does not change in any way the 

hereby argument.  
 

 
Graphic 37 

a = 1/2, b ∈ ]3, 20000] and Δb = 0.25 

 

The slope of the curve giving R2y as a function of R2x is ∞ on the dotted blue line R2y = R2x as shown in the example 

below and those of appendix 11. This follows from the construction of this graph which initially uses the relationship ∂bR2 

= 0 (see page 18) and therefore results in ∂bR2x = 0 precisely on the line R2x = R2y. 

 

 
Graphic 38 

 

This slope is also infinite for the divergences of R2y, that is to say when C1.S2-C2.S1 = 0 but then there is of course no 

corresponding point on the curve itself (see again appendix 11). 
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The previous graphics thus show that points cannot reach the -1 abscissa (remaining the fact that overruns of -1/2 are 

possible).  

 

The population density of points such that |R2x-R2y| < s, s some given threshold, is relatively constant regardless of 

intervals b such as [10000k, 10000.(k+1)[, k = 0 to 19, chosen from our data collecting. This is the subject of the graphic 

(39). 

 

Graphic40 shows the population density relative to the R2x parameter for intervals like [0.1k, 0.1(k+1)[, k -10 to 25, 

crossed with the criterion |R2x-R2y| < s. Points’ population peaks are centred on R2x ∈ [-0.1, 0] and R2x ∈ [1, 1.1] 

intervals and collapse very rapidly on each side of the first peak instance. 

 

  
Graphic 39 

a = 0.5 and b ∈ [10000k, 10000(k+1)[, k = 0 to 19 

Graphic 40 

R2x ∈ [k/10, (k+1)/10[, k = -10 to 25 

 

Theorem 10 
 

The minimal value of R2(a,b) is -1 excluded.  

 

Proof  
 

From relations (18) and (32), because ∂bR2 = 0, we get the two following equations to be solved : 

 

(C2).C0+(S2).S0-R2.(C12+S12) = 0 

(S3).C0-(C3).S0-(1+2R2).(C1.S2-S1.C2) = 0 

So that : 

(
C0
S0

) = (
C2 S2
S3 −C3

)
−1

(
R2. (C12 + S12)

(1 + 2R2). (C1. S2 − S1. C2)
) 

Then  

(
C0
S0

) = (
1

C2. C3 + S2. S3
). (

C3 S2
S3 −C2

) (
R2. (C12 + S12)

(1 + 2R2). (C1. S2 − S1. C2)
) 

Let us write  

α = R2.(C12+S12) 

β = (1+2R2).(C1.S2-S1.C2) 

Then : 

C0²+S0² = 
α².(C3²+S3²)+β².(C2²+S2²)+2α.β.(C3.S2-C2.S3) 

(C2.C3+S2.S3)² 

 

Let us write the ratio : 
 

DSC(…) = 
α².(C3²+S3²)+β².(C2²+S2²)+2α.β.(C3.S2-C2.S3) 

                     (36) 
(C2.C3+S2.S3)².(C0²+S0²) 

and 

DL(…) = Ln(DSC(…)) 

 

A good understanding of the argument requires, as before, the distinction between the two cases R2(a,b) = -1/2 and R2(a,b) 

= -1, knowing that continuity gives perfectly accessible intermediate values, if necessary, between these two cases. 

 

If R2 = -1/2, we write DSC0 = DSC(-1/2), expression DSC being defined above, so that also : 
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DSC0 =  
(C1²+S1²)².(C3²+S3²) 

4.(C0²+S0²).(C2.C3+S2.S3)² 

and 

DL0 = Ln(DSC0) 

 

The R(a,b) = -1/2 is reached when  

DSC0 = 1 

or as well 

DL0 = 0 

 

If R(a,b) = -1, we write DSC1 = DSC(-1), so that : 

 

DSC1 = 
(C2²+S2²).(C1.S2-C2.S1)²+(C1²+S1²).((C1²+S1²).(C3²+S3²)+2.(C1.S2-C2.S1)(C3.S2-C2.S3)) 

(C0²+S0²).(C2.C3+S2.S3)² 

and 

DL1 = Ln(DSC1) 

 

The R(a,b) = -1 case is reached when  

DSC1 = 1 

or else 

DL1 = 0 

 

Graphics of DSC0 and DSC1 below are, in fact, point clouds’ variants undergoing a continuous distortion of the graphics 

obtained in the first part of this demonstration. They show the same thing in a slightly different form. 

 

  
Graphic 41 

a = 0.5 and b ∈ ]50, 5050] 

Ratio0 = DSC0 

Graphic 42 

a = 0.5 and b ∈ ]50, 5050] 

Ratio1 = DSC1 

 

The first graphic (graphic41) shows the outgrowth of the minimums, on the negative R2 side, aligned on the line Ln(DSC0) 

= 0. For the second graphic (graphic 42), the outgrowth is deflected upwards showing the impossibility of reaching R2 = 

-1 values. On line Ln(DSC1) = 0, where this event R2 = -1 must be effective to reject Riemann's hypothesis, the intersection 

is not only above -1/2, but much further beyond 0+. 
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Graphic 43 

a = 0.5 and b ∈ ]50, 5050] 

Ratio1 = DSC1 

 

Finally, let us look at the precise reason why R2(a,b) = -1 events are not achieved by local punctual examples. For this, 

we choose the case for which we detected the smallest difference between Riemann's zeroes among the first 500000 of 

them and a few others.  

 

The graphic below shows simultaneously, one on one, the evolution of R2 and Ln(DSCl). We recall that Ln(DSC1) = 0 

(or DSC1 = 1) is the target value right above the R2 minimums.  

 

 
Graphic 44  

Ratio1 = DSC1, a = 0.5 and b ∈ [273192.5, 273195] 
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Graphic 45 

Zoom 1 : Ratio1 = DSC1 

Outer crossings : ordinates ≈ 0.68 and ≈ 0.695 

Graphic 46 

Zoom 2 : Ratio1 = DSC1 

Inner crossings : ordinates ≈ 4.3 and ≈ 4.15 

 

The initiation of an R2 descent induces the initiation of a Ln(DSC1) ascent and vice versa as shows the examples below. 

This behaviour is perfectly reproducible, as shown by the two graphics that follow. 

 

  
Graphic 47 

a = 0.5 et b ∈ [7004, 7006] 

Outer crossings : ordinates ≈ 0.16 et ≈ 0.1 

Inner crossings : ordinates ≈ 2.8 et ≈ 2.8 

Graphic 48 

a = 0.5 et b ∈ [78974.4, 78975.2] 

Outer crossings : ordinates ≈ 0.55 et ≈ 0.1 

Inner crossings : ordinates ≈ 2.8 et ≈ 2.85 

 

The crossing of R2 and Ln(DSC1) curves at the approach of a low-R2 zone is at the level of ordinate 0 and Ln(DSC1) 

then quickly increases.  

Let us consider the intersections of the R2 and Ln(DSC1) curves. We call inner crossings those whose abscissas are 

between  two Riemann's zeros and outer crossings the other two to the right and left (of graphic 45). The term Ln(DSC1) 

necessarily diverges according to the relationship 36 since C0²+S0² = 0 for any Riemann (and Dirichlet) zero. So, the inner 

crossings are trivially above ordinate 0. The outer crossings are also, a point that however seems difficult to establish. The 

easiest way is to assess the value of DSC1 at the points that matter to us, that is where R2 is minimum. 

 

For this, we pick the data used to establish graphic 29 with the same selection criterion chosen at that time. The 

corresponding table is in Appendix 6 Table 10. Doing so, we get the graphics below (the second graph being a zoom of 

the first on the area of low values of Δbr the gaps between Riemann zeros) : 
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Graphic 49 

DSC1  

a = 1/2 

Graphic 50 

DSC1  

a = 1/2 

 

We recorded DSC1- the value of DSC1 for the rM- abscissa before the peak and DSC1+ the value for the rM+ abscissa 

after the peak. We have also reported in the graphics the average DSC1 value of these two values, knowing that what 

really is important here is rather the minimum value of the two values DSC1- and DSC1+. 

 

The alignment of the points fails (which then offers no useful information) for a gap between zeroes of Riemann higher 

than approximatively Δbr = 1/2 in exactly the same way we had found in the case of graphic 29.  

 

However, the points interesting us, i.e. cases where the R2 ratio is likely to be close to the -1 value, are necessarily points 

sticking to the origin of the abscissas (extremely small Δbr). This area corresponds to the uprise of DSC1 well beyond the 

critical value DSC1 = 1. This upswing is due to the simple fact that the closer two Riemann zeros are, the more pronounced 

the corresponding peak is and the steeper the flanks of the peak, including until the abscissas of the minimums of R2. 

Thus, the abscissa of a minimum (rM- or rM+) of R2 is close to that of its corresponding zero, in other words, when Δbr 

→ 0, then C0²+S0² → 0 at the abscissas rM- and rM+ also. But C0²+S0² → 0 is at the DSC1 denominator and no term in 

C0 or S0 is within the numerator for compensation. The term C1²+S1², and even more C2²+S2², will tend to 0 with many 

decades of delay as shown by the typical example of graphic 5, the number of decades increasing rapidly with the lowering 

of Δbr. The other terms do not tend in any way towards 0. The compensation remains effective in DSC0 because of the 

square of C1²+S1² in the DSC0 numerator, but it would take a power of at least 4 effected to C2²+S2² in DSC1 (plus 3 

very close zeros at least) to obtain the said compensation. Thus, DSC1 necessarily diverges when Δbr → 0 and so in a 

very steep manner. 

 

We extended the study to the intermediate value of R2y = -0.5 to -1 by 1/10 steps. Appendix 6 Table 11 gives the values 

corresponding to the underneath graphic. For R2y = -0.5, we collected points below DSC(X) = 1 which is of course 

expected and thus authorizes the existence of R2(a,b) < -0.5, of which we found a unique example (see appendix 5). The 

calibration thanks to the graphic below shows, at the same time, that the limit value is close to it. The existence of points 

such as R2(a,b) < -0.6 without being totally unthinkable (because the points represented here are only the image of a larger 

dot cloud if one uses more data) is certainly a quite rare event. 

 

 
Graphic 51 

DSC(X) 

a = 1/2 
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The rise of the points obtained for the DSC1 expression near the origin (Δbr < ≈0.15) and their alignment besides that (Δbr 

< ≈0.35) is independent of the abscissas of the Riemann's zeroes (is dependent only on the gap between the said zeroes) 

completing this proof. 

 

Note : 
 

The reader will note that all the examples of this proof are built with a = 1/2. Indeed, the peak values are (for the part of 

the critical band a ≤ 1/2) on the critical line. The presentation of the numerical results is interesting only for this critical 

line, as the values of the extremums decline otherwise very quickly (for a < 1/2) not allowing to find additional solutions 

that can contradict our presentation in a relevant way. 

 

Theorem 11 
 

The asymptotic value of the R2(a,b) minimums is -1/2.  

 

Proof  
 

By the term "asymptotic," we mean the minimums of R2 (a,b) when b tends towards infinity (and the parameter a is fixed). 

In this case, Riemann's zeros are, on average, at a distance of about 2π/Ln(br), meaning nearer and nearer. According to 

the relation (31), the numerator of ∂bR2 is equal to (C12+S12+2C0.C2+2S0.S2).(C1.S2-S1.C2)+(C12+S12).(S0.C3-C0.S3). 

The cancellation of ∂bR2 occurs for (C0.C2+S0.S2)/ (C12+S12) = (1/2).((C0.S3-S0.C3)/(C1.S2-S1.C2)-1), in other words 

when : 
 

R2 = 
-1 

+ 
C0.S3-S0.C3 

                    (37) 
2 2.(C1.S2-S1.C2) 

 

Asymptotically, as we saw in the last part of the proof of the impossibility of R2 = -1, the terms C0 and S0 tend towards 

0 much faster than all the terms of the Ck and Sk’s type, k > 0. It immediately follows R2 → -1/2. 

 

Note 1 : 
 

This result reminds us that negative overruns of -0.5 are possible. These will become more frequent when b increases. But, 

asymptotically, these overruns will also be more and more restricted to the immediate vicinity of -0.5 and therefore without 

the possibility of joining -1, thus confirming again theorem 10.  

 

Note 2 : 
 

At the peak abscissa rpeak, the expression C1.S2-S1.C2 necessarily takes values very close to 0, taking away this prerogative 

from the other two extremums (the minimums). 

 

Numerical examples. 
 

The examples below are realized thanks to the online computer application Pari gp using the computer program given in 

appendix 9 

 

These are the three cases with smallest gaps between Riemann’s zeros of abscissas less than b = 2000000. We actually 

systematically obtain values close to -0.5 (between -0.48 and -0.51). 

 

The "theoretical" value of the peak (truncation +∞) is obtained from the formula rpeak  ≈ 1+5/(Δbr
2. br

1/4). It is difficult to 

obtain the actual precis value of these peaks numerically (see again appendix 9). Some values concerning the minimums 

rM- and rM+ of R2 to the left and right of the Riemann’s zeros surrounding a peak also remain imprecise if the truncation 

does not include enough terms. 

The reader will be able to compare the final truncations used to the numbers of terms m ≈ 1/(exp(π/b)-1) corresponding to 

the last jump of values of the terms ∑(-1)m+k.( Ln(m))k+1.m-a.cos(b.Ln(m)) and ∑(-1)m+k.( Ln(m))k+1.m-a.sin(b.Ln(m)). For 

more information, refer to Appendix 1 relationship 38. 

 

Example 1 : 

1 115 578th Riemann zero, b = abs_zeroR- = 663318.508310486 

1 115 579th Riemann zero, b = abs_zeroR+ = 663318.511269140 

Gap between zeros = 0.002958654 

Number of terms for the last values’ jump : 211200. 
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abs_rM- truncation rM- abs_rM+ truncation rM+ abs_peak truncation value_peak 

 

663318.493 

663318.493 

663318.493 

663318.493 

663318.493 

663318.493 

663318.492 

663318.493 

663318.494 

 

400000 

500000 

600000 

700000 

800000 

900000 

1000000 

1000000 

1000000 

 

-0.47470 

-0.48127 

-0.47625 

-0.48800 

-0.48891 

-0.48151 

-0.48170 

-0.48176 

-0.48161 

 

663318.531 

663318.531 

663318.531 

663318.531 

663318.531 

663318.531 

663318.530 

663318.531 

663318.532 

 

400000 

500000 

600000 

700000 

800000 

900000 

1000000 

1000000 

1000000 

 

-0.49702 

-0.48719 

-0.49116 

-0.49903 

-0.49867 

-0.49167 

-0.49245 

-0.49245 

-0.49234 

 

663318.509792 

663318.509792 

663318.509792 

663318.509792 

663318.509792 

663318.509792 

663318.509792 

663318.509792 

663318.509792 

+∞ (th) 

2000000 

3000000 

4000000 

5000000 

6000000 

7000000 

8000000 

9000000 

10000000 

20016.79 

12083.47 

12857.79 

30072.08 

15770.54 

21286.54 

27207.50 

25831.65 

19475.39 

20324.01 

 

Example 2 : 

3 637 897th Riemann zero, b = abs_zeroR- = 1961773.9933561 

3 637 898th Riemann zero, b = abs_zeroR+ = 1961773.9966154 

Gap between zeros = 0.003259290 

Number of terms for the last values’ jump : 634000. 

 

abs_rM- truncation rM- abs_rM+ truncation rM+ abs_peak truncation value_peak 

1961773.979 

1961773.979 

1961773.979 

1961773.979 

1961773.979 

1961773.979 

1961773.978 

1961773.979 

1961773.980 

1000000 

1500000 

2000000 

4000000 

6000000 

8000000 

10000000 

10000000 

10000000 

-0.49666 

-0.50639 

-0.49447 

-0.48805 

-0.49153 

-0.49178 

-0.49072 

-0.49081 

-0.49075 

1961774.010 

1961774.010 

1961774.010 

1961774.010 

1961774.010 

1961774.010 

1961774.009 

1961774.010 

1961774.011 

1000000 

1500000 

2000000 

4000000 

6000000 

8000000 

10000000 

10000000 

10000000 

-0.51715 

-0.50081 

-0.48523 

-0.48598 

-0.48904 

-0.48832 

-0.487921 

-0.487927 

-0.487741 

 

1961773.995 

1961773.995 

1961773.995 

1961773.9949 

1961773.9949 

1961773.99497 

1961773.99498 

1961773.99499 

+∞ (th) 

3000000 

4000000 

7000000 

10000000 

15000000 

20000000 

20000000 

20000000 

12577.56 

2476.21 

6172.31 

3971.08 

20729.31 

15082.05 

4659.89 

13634.89 

11987.72 

 

Example 3 : 

3271858th Riemann zero, b = abs_zeroR- = 1779292.80366586 

3271859th Riemann zero, b = abs_zeroR+ = 1779292.80782699 

Gap between zeros = 0.00416113 

Number of terms for the last values’ jump : 566400. 

 

abs_rM- truncation rM- abs_rM+ truncation rM+ abs_peak truncation value_peak 

 

1779292.7940 

1779292.7940 

1779292.7940 

1779292.7920 

1779292.7915 

1779292.7920 

1779292.7925 

 

1000000 

1500000 

3000000 

5000000 

7000000 

7000000 

7000000 

 

-0.41291 

-0.44111 

-0.47259 

-0.46615 

-0.46839 

-0.468493 

-0.468489 

 

1779292.830 

1779292.830 

1779292.835 

1779292.835 

1779292.830 

1779292.835 

1779292.840 

 

1500000 

3000000 

5000000 

7000000 

9000000 

9000000 

9000000 

 

-0.50279 

-0.51002 

-0.50784 

-0.50774 

-0.50774 

-0.50789 

-0.50647 

 

1779292.805757 

1779292.805757 

1779292.805757 

1779292.805756 

1779292.805746 

1779292.805747 

1779292.805748 

+∞ (th) 

3000000 

4000000 

5000000 

6000000 

7000000 

7000000 

7000000 

7907.52 

28888.16 

6634.78 

6030.39 

7235.79 

8360.63 

8361.39 

8301.65 

 

5.4 The exception to the rule. 

 

We found an exception to the minimum rule of -1 very early in this text (see note of theorem 4). It is essential to give the 

reason for it because, although of no practical importance as it is local and therefore of easily verifiable effect, it is 

nevertheless like a thorn in the foot from the theoretical point of view. 

 

The very particular case b < br1  

 

We examine the case where abscissa b is lower than that of the first Riemann zero and its development out from this area. 

The types of curves and choice of colours are the same as before. In particular, the dark blue curve represents the points 

(R2x, R2y).   
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Graphic 52 

a = 0.5 and b ∈ ]0, 3.5] 

Graphic 53 

a = 0.5 and b ∈ ]0, 11.5] 

 

  
Graphic 54 

a = 0.5 and b ∈ ]0, 200]  
Graphic 55 

a = 0.5 and b ∈ ]0, 50] 

 

The reader can see that as soon as the blue curve crosses abscissa R2x = 0, it is trapped in the areas described above despite 

all the restlessness, to say the least, that reigns there. 

 

Why can R2x be less than -1 for small values of b ? 

 

Some rule will apply in a context and only in this case. It is not otherwise here. 

Indeed, we note the evolutions of the values of cos(b.ln(m)) and sin(b.ln(m)), in the sums Ck and Sk as a function of m, 

for truncation m = 1 to 10000 and two values of b, as examples below : 

 

  
Graphic 56 

a = 0.5 and b = 1.55 

Graphic 57 

a = 0.5 and b = 14 

 

Let us take these values for two additional cases, with further examples provided in Appendix 12. Let us list the values of 

these two expressions (intimately linked by the sum of their squares). Then let us list them by increasing values. We get 

the graphs below. We observe that the distribution is not according to a fixed scheme for small values of b. It gradually 

tends however, as b increases, towards a unique sinusoidal distribution common to the elements of ∑cos(b.ln(m)) and 

those of ∑sin(b.ln(m)). The minimum -1 rule is necessarily subject to a certain strict framework. We note that this frame 

is the existence of this sinusoidal distribution. Thus, the deviation from the minimum rule can be acceptable up to the 
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somewhat very approximate value b ≈ br1 (≈ 14). Beyond this region, a type distribution cos(π.(m/mmax+1)) settles 

permanently and will remain unique up to b infinite. Of course, truncation cannot be limited to mmax  = 10000 terms when 

b increases. 

 

  

Graphic 58 

a = 0.5 et b = 0 

Graphic 59 

a = 0.5 et b = 1.55 

  
Graphic 60 

a = 0.5 et b = 14 

Graphic 61 

a = 0.5 et b = 100 

 

Of course also, except for b = 0, by taking a truncation with more terms (than 10000), we can find a sinusoidal profile for 

small values of b. But this takes place while the additional terms have only a negligible effect on the asymptotic value of 

R2x, the latter being essentially built on the first terms. The profile of the distribution must be "complete" in the useful 

truncation zone, where it has a real effect on the value of R2x (that is R2), otherwise it is strictly speaking effectively 

"incomplete". 

 

Is the unique asymptotic distribution sufficient to impose R2x greater than -1 for b > br1 ?    

 

In other words, how many b-values need to be checked before concluding that the minimum value cited is legitimate each 

time (and that we are in the presence of a theorem) ? 

 

Well, to whom will object that this is only a few calculations on a tiny part of the values that can take b, we recall that the 

b-parameter is encapsulated in the cosine and sinus functions that can only take values between -1 to 1. The 

neighbourhoods of all values within this interval are reached thousands of times (for b < 20000 for example) and the 

functions are continuous. Of course, not all possibilities are covered, but the sample is quite representative of the whole 

system of equations. In addition, if the examples are necessarily specific, the relationships and thus conclusions are general. 

 

Note: We do not say, however, that giving random values to cos(b.ln(m)) between -1 and 1 (with corresponding values 

deduced for sin(b.ln(m))) would give results for R2 greater than -1 because this is in fact not the case. It is necessary to 

have (cos(b.ln(m)), sin(b.ln(m))) and m = 0, 1, 2, etc. in this order in the equations for everything to work according to the 

expectation. 

 

6.Conclusion. 
 

We studied a convexity condition to confirm Riemann's hypothesis. This condition is a sufficient condition, meaning a 

violation, apart from that of the one already cited, would not necessarily deny the hypothesis. The way the proof was 

implemented makes it possible to calibrate the "distance" to a possible denial and shows a much to wide gap to this 

possibility. Several formulas, such as relationships (23), (24), (27), (36), (44) have been established implying geometric 
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parameters links that impose the existence of the sole critical line for Riemann zeroes without any point departing from it. 

We used an approximate truncation method for assessing these parameters, with appendix 1 legitimizing it. It would be 

interesting, however, to find an alternative method similar to that used for the evaluation of Riemann's zeroes to determine 

the relationships, or points clouds, both much faster and with greater precision (see provision made in Appendix 9). The 

particular shape of the curves in graphic 14, the set of parameters leading to it and the relationship between them also 

deserve extra attention. 

 

This done and said, in a thousand years, when another eminent reader, that the one who reads us here, will wake up, his 

wish will be all the more satisfied. If not, we will tell him : “ “Young man”, in mathematics, you don't understand things, 

you get used to them”. John Von Neumann. 
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Appendix 1 : Truncation. Precision of evaluations. 
 

The numerical evaluations within of the body of text are drawn from expressions with infinite numbers of terms. They are 

based on approximations by truncation at a certain rank n. Expressions are the combinations of   

 

  n 

Ck(a,b) =  Lim ∑ (-1)m-1+k.(Ln(m))k.m-a.cos(b.Ln(m)) 

 n → +∞ m = 1 

and 

  n 

Sk(a,b) =  Lim ∑ (-1)m-1+k.(Ln(m))k.m-a.sin(b.Ln(m))    

 n → +∞ m = 1 

 

which shapes as a function of n is typically the followings  : 

 

 
Graphic 62 

 a = 1/2, b = 15300 

 

  

Graphic 63 Graphic 64 

 

The particular look of these graphics can give the reader the impression that it is impossible to assess the value of 

expression to infinity. Indeed, leaps in values appear at abscissas that may seem random. What guarantee do we have here 

that a new jump will not arise somewhere asymptotically? To find out what is happening, it is necessary to trace the origin 

of these jumps. The sums we are talking about here are alternating sums. A jump comes from the fact that a given term is 

followed by a term of the same sign and this "many" times. So let us consider what produces the sign of two terms that 

follow each other. Within (-1)m-1+k.(Ln(m))k.m-a.cos(b.Ln(m)), neither Ln(m) in general nor m-a have any effect on the 

change of sign. It remains therefore (-1)m.cos (b.Ln(m)), k being a constant term that can be eliminated. For two successive 

terms to be the same sign, it is sufficient asymptotically that (-1)m.cos(b.Ln(m)) ≈ (-1)m+1.cos(b.Ln(m+1)) since Ln(m) and 

Ln(m+1) are of close values. From that, we deduce cos(b.Ln(m+1)) ≈ -cos(b.Ln(m)), or cos(b.Ln(m+1)) ≈ cos(π+b.Ln(m)), 

and then b.Ln(m+1) ≈ (1+2k).π+b.Ln(m), or finally : 
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b.Ln(1+1/m))/π ≈ 1+2k 

where k ∈ Z. 
For b > 0 and m > 0, k is necessarily in N.  

When m → +∞, and b has some given value, the product b.Ln(1+1/m))/π → 0, so that the values of m for which 

b.Ln(1+1/m))/π ≈ 1 are the last ones for which a jump occurs. The initial expression will converge after this last leap which 

intervenes at abscissa : 

m ≈ 1/(exp(π/b)-1)                (38) 

 

In the case of the graphics 62 to 64 examples, m ≈ 1/(exp(π/15300)-1) ≈ 4870. 

The other jumps occur around m abscissas such as : 

 

m ≈ 1/(exp((1+2k).π/b)-1) 

 

That is for hereby example  
 

Table 3 

 

k m 

… … 

10 231 

9 256 

8 286 

7 324 

6 374 

5 442 

4 541 

3 695 

2 974 

1 1623 

0 4869 

 

This table explains the "chaos" near the origin of the abscissas. 

 

The so found expression also allows to give approximately the rank n sufficient, versus some b, to have a good asymptotic 

evaluation despite the truncation. Typically, one can chose 2 times the abscissa of the last jump :  

 

n ≈ 2/(exp(π/b)-1) 

 

or approximately when b is large enough in front of π (which is the case in general) : 

 

n ≈ 2b/π 

 

Table 4 

 

Parameter b Rank n 

100 63 

250 158 

500 317 

1000 636 

2500 1591 

5000 3182 

10000 6365 

25000 15914 

50000 31830 

100000 63661 

 

Roughly speaking, the accuracy of the asymptotic evaluation therefore depends on a linear variation in the number of 

terms of the truncation with respect to b (n ≈ 0,6366198.b).  

 

The graphic below gives the example of b = 100. 

The reader will therefore note, that this simple previous calculation does not apply to "small" b values (b < 50) due to the 

presence of significant oscillations. These particular cases are discussed in Appendix 2. 
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Graphic 65 

a = 1/2, b = 100 

 

For the sake of accuracy, all the calculations were conducted with 10000 terms except in the case of b > 100000 for which 

we used 100000 terms and even more when specified so.  

 

When, on the contrary, we are interested in areas where the function studied is not subject to a jump but is close to a zero 

slope, the equation to be solved is (-1)m.cos(b.Ln(m)) ≈ -(-1)m+1.cos(b.Ln(m+1)) and therefore : 

 

b.Ln(1+1/m))/π ≈ 2k 

 

The corresponding abscissas are : 

m ≈ 1/(exp(2.π.k/b)-1) 

 

So that for our example  

Table 5 

 

k m 

… … 

10 243 

9 270 

8 304 

7 347 

6 405 

5 487 

4 608 

3 811 

2 1217 

1 2435 

0 +∞ 

 

Let us note that for the sinus, the expressions of the sought abscissas result in exactly the same. 

 

Finally, in view of graphic64, and directly related to the fact of having an alternating sum, the accuracy of the evaluation 

is subject to oscillations. Thus, the sum ∑ is corrected by half of the last term (or equivalently the average of the sum at 

ranks n-1 and n is made). Eventually, when necessary, the average of several terms in even number is made (up to 100 

terms when b > 100000).  
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Appendix 2 : Case of low value abscissas b. 
 

The range concerned here is before the occurrences of both the first Riemann zero and the first Dirichlet zero. This 

therefore has no bearing on the conclusions as to the Riemann hypothesis made in this text. However, it is studied for a 

simple reason : It is an exception to rule R2(a,b) ≥ -1 in a clear way.  

 

We mentioned in the previous appendix the vigorous oscillations of functions studied for low b values. An example for b 

≈ 1,569 (a = 1/2), is given below. As the reader can see, it is R2(a,b) that is subject to the greatest amplitudes.  

It should also be noted that the example given corresponds to the minimum value of R2(a=1/2,b). 

 

 
Graphic 66 

a = 1/2, b = 1.569 

 

The rule of the rank n ≈ 2/(exp(π/b)-1) for the truncation of the sums is no longer suitable (see also appendix 1). However, 

although strong oscillations are perpetuated beyond n equal to 100000 or even 1000000 (based on research not replicated 

here), a good approximation of the asymptotic value can be found using less than 1000 terms as shown in the data below 

simply by correcting the last term by half its value. 

In fact, our usual 10000 terms are more than necessary. 

 

Table 6 

 

       n 

b 
10 30 100 200 500 1000 10000 30000 

0 -0.85956 -1.05385 -1.09105 -1.09244 -1.09119 -1.09031 -1.08934 -1.08928 

0.5 -1.28557 -1.23779 -1.15162 -1.13482 -1.13032 -1.13101 -1.13309 -1.13322 

1 -1.46522 -1.10872 -1.16395 -1.21415 -1.23549 -1.23499 -1.22983 -1.22988 

1.5 -0.74064 -1.09805 -1.39187 -1.33224 -1.28549 -1.28649 -1.29483 -1.29435 

2 -0.27214 -1.64351 -1.17701 -1.17433 -1.24905 -1.24678 -1.23744 -1.23738 

2.5 -1.48644 -1.09573 -0.94321 -1.07924 -0.99159 -0.995 -1.00367 -1.00449 

3 -1.98609 -0.03799 -0.7605 -0.5338 -0.6039 -0.60031 -0.59258 -0.59259 

3.5 -0.68545 0.022304 0.090951 -0.06263 -0.03853 -0.04072 -0.04684 -0.04599 

4 0.892506 0.011444 0.568647 0.527649 0.556349 0.556195 0.559474 0.559301 

4.5 1.904682 1.073586 1.013366 1.193721 1.133629 1.136235 1.13581 1.135286 

5 2.096723 1.917201 1.70033 1.545182 1.605281 1.600985 1.599867 1.600158 

5.5 1.712557 1.933361 1.88094 1.9242 1.886159 1.891117 1.892714 1.892854 

6 1.547342 1.777149 1.932112 1.976638 1.990187 1.985294 1.983331 1.983066 

6.5 1.769115 1.876386 1.927718 1.864439 1.868721 1.873344 1.875756 1.875847 

7 1.762121 1.720717 1.59327 1.628834 1.61671 1.612395 1.609922 1.610079 

7.5 1.406636 1.249643 1.23055 1.235197 1.245458 1.249354 1.251331 1.251174 

8 0.936602 0.806794 0.902373 0.88496 0.88363 0.880682 0.879466 0.87945 

8.5 0.570413 0.548674 0.577347 0.579683 0.574039 0.575494 0.575958 0.576033 

9 0.412599 0.405027 0.400975 0.404862 0.407771 0.407947 0.408194 0.408146 
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       n 

b 
10 30 100 200 500 1000 10000 30000 

9.5 0.444887 0.421798 0.404804 0.4112 0.417511 0.416348 0.415433 0.415489 

10 0.584259 0.648408 0.607762 0.607423 0.597503 0.598429 0.599839 0.599811 

10.5 0.806697 0.968425 0.936422 0.918462 0.920861 0.921329 0.919697 0.919642 

11 1.145472 1.261794 1.271709 1.283515 1.291946 1.289679 1.291374 1.291465 

11.5 1.523251 1.546281 1.597019 1.609937 1.597047 1.600738 1.598947 1.598899 

12 1.736473 1.736638 1.731341 1.704849 1.716336 1.711668 1.713658 1.713612 

12.5 1.602475 1.580445 1.513442 1.537447 1.530961 1.536661 1.534524 1.534641 

13 1.097688 1.023908 1.051837 1.060742 1.05814 1.051752 1.053757 1.053705 

13.5 0.444616 0.366165 0.456156 0.425299 0.431911 0.436701 0.435334 0.435271 

14 0.067268 0.002344 0.027503 0.026967 0.026939 0.02624 0.026498 0.026525 

14.5 0.280177 0.105767 0.155764 0.141745 0.144891 0.143578 0.14431 0.14433 

15 0.920883 0.650266 0.713763 0.739415 0.729604 0.728874 0.727859 0.727941 

 

 
Graphic 67 

a = 1/2, b = 0 to 15 

 

The threshold R2(a=1/2,b) > -0.5 comes up around b ≈ 3.093. 

 

 
Graphic 68 

a = 1/2, b = 3.093, n = 100 to 10000 
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Appendix 3 : Table of data (rM, rpeak). 
a = 1/2. 

 

Tableau 7 

 

bpeak rpeak rpeak computed  bpeak rpeak rpeak computed 

blow1 rlow1 rM  blow1 rlow1 rM 

blow2 rlow2 
(rpeak computed -

rpeak)/rpeak in % 

 
blow2 rlow2 

(rpeak computed -

rpeak)/rpeak in % 
       

3002.618200 1.359173 4.01781474  6169.467230 27.345310 29.4536211 

3001.771300 -0.096865 -0.08811628  6169.334230 -0.256178 -0.28244545 

3003.417000 -0.079367 195.6%  6169.610730 -0.308713 7.7% 
       

3006.331500 1.634847 2.0509957  6221.504800 7.551661 8.35691952 

3005.786400 -0.004200 -0.03692003  6221.305800 -0.092370 -0.15838718 

3006.941200 -0.069640 25.5%  6221.719400 -0.224404 10.7% 
       

3129.626100 7.052130 7.51220619  6247.471100 2.924391 2.17021567 

3129.392300 -0.187105 -0.14759275  6247.173400 -0.071029 -0.04060265 

3129.850600 -0.108081 6.5%  6247.782000 -0.010177 -25.8% 
       

3210.503600 7.080494 7.27977773  7005.081792 340.003331 363.985697 

3210.276300 -0.195948 -0.14443203  7005.016468 -0.415558 -0.4296605 

3210.718400 -0.092916 2.8%  7005.154610 -0.443763 7.1% 
       

3230.167000 6.245951 6.14068648  9003.959300 16.217260 16.5248074 

3229.932700 -0.084404 -0.12756089  9003.799700 -0.292237 -0.22782277 

3230.411000 -0.170718 -1.7%  9004.100100 -0.163408 1.9% 
       

4108.734600 12.558510 12.6205689  9006.100700 1.710784 1.19891661 

4108.548300 -0.246659 -0.20060678  9005.625800 -0.010883 -0.00763005 

4108.907100 -0.154555 0.5%  9006.554200 -0.004378 -29.9% 
       

4474.251404 35.369779 39.0518577  9059.798700 12.578443 14.6135309 

4474.115304 -0.312496 -0.30647162  9059.631600 -0.211381 -0.21550016 

4474.386104 -0.300448 10.4%  9059.966900 -0.219620 16.2% 
       

4990.396680 51.082057 51.1197566  11705.671515 82.890826 78.4779095 

4990.270000 -0.372382 -0.32754631  11705.569200 -0.407862 -0.35725835 

4990.504780 -0.282711 0.1%  11705.754715 -0.306654 -5.3% 
       

6001.830700 2.203104 1.26225366  12000.173100 5.951227 6.4168697 

6001.478400 -0.011755 -0.01000773  11999.971300 -0.136701 -0.1318787 

6002.169100 -0.008260 -42.7%  12000.374600 -0.127057 7.8% 
       

6014.952800 3.517755 3.23003171  12000.943800 1.308211 3.36710657 

6014.662400 0.000667 -0.06979119  12000.374600 -0.127057 -0.07316187 

6015.230600 -0.140249 -8.2%  12001.847600 -0.019267 157.4% 
       

6093.237892 69.638348 72.1312585  12002.197000 2.014218 1.78808707 

6093.129592 -0.352250 -0.35178109  12001.847600 -0.019267 -0.02846429 

6093.345992 -0.351312 3.6%  12002.479600 -0.037661 -11.2% 
       

6139.700600 12.040684 11.9738615  12002.950400 1.757631 1.51715263 

6139.524900 -0.206133 -0.19522809  12002.479600 -0.037661 -0.01922911 

6139.871900 -0.184324 -0.6%  12003.318800 -0.000797 -13.7% 
       

6161.598900 4.713395 4.57029263  12003.695800 2.175975 1.5710824 

6161.351400 -0.194926 -0.09961525  12003.318800 -0.000797 -0.0211121 

6161.837200 -0.004304 -3.0%  12004.018900 -0.041427 -27.8% 



p 36/64 

bpeak rpeak rpeak computed  bpeak rpeak rpeak computed 

blow1 rlow1 rM  blow1 rlow1 rM 

blow2 rlow2 
(rpeak computed -

rpeak)/rpeak in % 

 
blow2 rlow2 

(rpeak computed -

rpeak)/rpeak in % 
       

12006.362900 3.555481 2.8667187  17144.469200 1.828259 17.1765337 

12006.110900 -0.117381 -0.0604418  17143.863100 -0.453107 -0.23166147 

12006.624500 -0.003503 -19.4%  17144.814700 -0.010216 839.5% 
       

12034.390500 4.290657 3.76902467  17366.547404 112.104669 108.875545 

12034.155500 -0.077290 -0.0825924  17366.464800 -0.385264 -0.37687899 

12034.626900 -0.087895 -12.2%  17366.626804 -0.368494 -2.9% 
       

12080.850300 19.415848 17.8938103  18017.866410 78.328211 78.0836037 

12080.718800 -0.216104 -0.23569829  18017.762400 -0.404163 -0.35693617 

12080.987400 -0.255292 -7.8%  18017.950110 -0.309709 -0.3% 
       

12139.152200 15.562344 15.0146792  25704.555998 101.538403 104.587834 

12139.021700 -0.135245 -0.21822987  25704.472400 -0.378628 -0.37460813 

12139.306200 -0.301215 -3.5%  25704.637798 -0.370589 3.0% 
       

12154.092800 5.518834 6.2277013  33179.383619 235.251553 259.985908 

12153.877600 -0.193953 -0.12893817  33179.325819 -0.392109 -0.41764894 

12154.298700 -0.063923 12.8%  33179.451000 -0.443189 10.5% 
       

12224.698400 62.781801 61.8836669  36510.181139 397.063404 426.909465 

12224.589100 -0.378055 -0.34137021  36510.123700 -0.440079 -0.43474168 

12224.793800 -0.304686 -1.4%  36510.236050 -0.429404 7.5% 
       

12232.205100 17.898485 19.3031213  50965.883362 308.438872 309.327147 

12232.055100 -0.281015 -0.24311088  50965.827610 -0.414817 -0.42408016 

12232.342700 -0.205207 7.8%  50965.942980 -0.433343 0.3% 
       

14334.247440 37.891963 37.9563388  57273.674907 473.483908 487.60865 

14334.131540 -0.319945 -0.30413684  57273.627600 -0.421399 -0.43870276 

14334.357740 -0.288329 0.2%  57273.729747 -0.456007 3.0% 
       

15032.366600 3.432032 1.97486777  63137.222002 721.842318 698.901883 

15032.118200 0.001073 -0.03452005  63137.182402 -0.425509 -0.4482838 

15032.601000 -0.070113 -42.5%  63137.272052 -0.471059 -3.2% 
       

15132.485400 18.420514 21.7803598  66678.085608 840.428101 805.983424 

15132.345400 -0.255724 -0.25471431  66678.041828 -0.454095 -0.45165618 

15132.625800 -0.253705 18.2%  66678.127951 -0.449217 -4.1% 
       

15471.584480 107.439301 108.07436  71732.908569 1454.109584 1437.89763 

15471.492480 -0.393990 -0.37646434  71732.872599 -0.455031 -0.46325596 

15471.669680 -0.358939 0.6%  71732.949009 -0.471481 -1.1% 
       

17143.298900 2.345076 20.9315022  85877.882424 402.544511 401.14131 

17143.017000 -0.071725 -0.25092307  85877.833720 -0.429200 -0.43280181 

17143.752800 -0.430121 792.6%  85877.932490 -0.436404 -0.3% 
       

17143.804309 366.725948 317.714636  139735.509308 553.753874 564.984215 

17143.745900 -0.408860 -0.42502625  139735.456808 -0.474679 -0.44281671 

17143.869200 -0.441192 -13.4%  139735.548398 -0.410954 2.0% 

  



p 37/64 

Appendix 4 : Functions Rk(a,b). 
 

In this appendix, we deviate somewhat from our goal by the fact that we are not only focusing on R2(a,b), but also on the 

related Rk = Rk(a,b) functions : 

 

Rk(a,b) = 
Ck-2(a,b).Ck(a,b)+Sk-2(a,b).Sk(a,b) 

                   (39) 
(Ck-1(a,b))2+(Sk-1(a,b))2 

 

We thus have : 

R2(a,b) = 
C0(a,b).C2(a,b)+S0(a,b).S2(a,b) 

                   (40) 
(C1(a,b))2+(S1(a,b))2 

 

R3(a,b) = 
C1(a,b).C3(a,b)+S1(a,b).S3(a,b) 

                   (41) 
(C2(a,b))2+(S2(a,b))2 

and so on. 

 

The reader will refer to relationships (14) and (15) for the definition of Ck(a,b) and Sk(a,b). 

In fact, the k = 2 case, from previous studies, is constituting a kind of initial boundary case. We observe the effect of the 

increase in power affecting the Napierian logarithm of that starting expression. 

 

The aim is of course to check whether Rk(a,b) functions, especially its negative values, can instruct us on the R2(a,b) 

reference function. 

 

 

Graphic 69 

a = 1/2, b ∈ [0.50] 

 

The undulations of the Rk(a,b) functions, particularly on the negative values side, are much broader than those of the 

initial R2(a,b) function in the b < 20 zone, recalling that this area (near origin and without adverse impact on the study) is 

also a source of exceptional behaviour for R2(a,b). 

 

  
Graphic 70 Graphic 71 
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Graphic 72 

a = 1/2, b = 0 to 50 

 

Past the zone of low b values, the Rk(a,b) functions are getting closer and closer to the horizontal y = 1 axis as k increases. 

For large enough k, it is therefore likely that any negative value of Rk(a,b) does exist beyond abscissa b = 20. 

 

  

Graphic 73 Graphic 74 

 

Thus, just as R2 has a minimum (in the order of -1/2 when b > 5), the minimum of the R3 function seems to be likely 

around 0 (excluded in the figures below). 

 

  

Graphic 75 

a = 1/2, b = 7004.5 to 7005.5 

Graphic 76 

a = 1/2, b = 36509.5 to 36510.5 
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Appendix 5 : Numeric data for rM and rpeak. 
 

The only case of undershooting -0.5 for R2(1/2,b) is shown in red font in the table below. 

The values of the peaks are given as mere indicative information (see Appendix 9). 

 

Table 8 

Truncation to 200000 terms. 

 

abs_rM- abs_zeroR- Δpr- abs_peak abs_zeroR+ abs_rM+ Δpr+ rM- rM+ rM zeroes gap value_peak 

273193,64713 273193,66314 0,01601 273193,66600 273193,66884 273193,69030 0,02146 -0,47529 -0,49284 -0,48406 0,00570 9333 

270071,27520 270071,29406 0,01886 270071,29840 270071,30270 270071,33260 0,02990 -0,45654 -0,49562 -0,47608 0,00864 2910 

302700,28161 302700,30084 0,01923 302700,30563 302700,31040 302700,34210 0,03170 -0,45149 -0,49558 -0,47354 0,00956 2274 

234016,87060 234016,89498 0,02438 234016,90151 234016,90804 234016,93620 0,02816 -0,45482 -0,46989 -0,46236 0,01305 1528 

71732,87260 71732,90121 0,02861 71732,90857 71732,91591 71732,94901 0,03310 -0,45503 -0,47148 -0,46326 0,01470 1454 

66678,04183 66678,07586 0,03403 66678,08561 66678,09534 66678,12795 0,03261 -0,45409 -0,44922 -0,45166 0,01948 840 

63137,18240 63137,21153 0,02913 63137,22200 63137,23238 63137,27205 0,03967 -0,42551 -0,47106 -0,44828 0,02085 722 

139735,45681 139735,49829 0,04148 139735,50931 139735,52048 139735,54840 0,02792 -0,47468 -0,41095 -0,44282 0,02219 554 

57273,62760 57273,66193 0,03433 57273,67491 57273,68777 57273,72975 0,04198 -0,42140 -0,45601 -0,43870 0,02584 473 

123474,56761 123474,60963 0,04202 123474,62274 123474,63601 123474,66770 0,03169 -0,45895 -0,40894 -0,43394 0,02638 410 

85877,83372 85877,86915 0,03543 85877,88242 85877,89568 85877,93249 0,03681 -0,42920 -0,43640 -0,43280 0,02653 403 

135079,60050 135079,63490 0,03440 135079,64864 135079,66231 135079,70037 0,03806 -0,42005 -0,43887 -0,42946 0,02741 367 

109565,91390 109565,94581 0,03191 109565,95961 109565,97330 109566,01218 0,03888 -0,40796 -0,44458 -0,42627 0,02749 298 

78974,77310 78974,79335 0,02025 78974,80805 78974,82196 78974,87502 0,05306 -0,31586 -0,51209 -0,41397 0,02861 382 

123377,76550 123377,80717 0,04167 123377,82151 123377,83602 123377,86850 0,03248 -0,44950 -0,40157 -0,42554 0,02884 321 

122031,68080 122031,72052 0,03972 122031,73518 122031,74992 122031,78477 0,03485 -0,43828 -0,41194 -0,42511 0,02940 322 

36510,12370 36510,16639 0,04269 36510,18114 36510,19592 36510,23605 0,04013 -0,44008 -0,42940 -0,43474 0,02954 397 

116527,20102 116527,23373 0,03271 116527,24873 116527,26361 116527,30070 0,03709 -0,40259 -0,42944 -0,41601 0,02988 188 

91686,05548 91686,09871 0,04324 91686,11421 91686,12986 91686,16475 0,03489 -0,44486 -0,40254 -0,42370 0,03115 306 

99658,87400 99658,91664 0,04264 99658,93213 99658,94787 99658,98050 0,03263 -0,44706 -0,39077 -0,41892 0,03123 278 

107457,27870 107457,31325 0,03455 107457,32925 107457,34502 107457,39000 0,04498 -0,39677 -0,45003 -0,42340 0,03177 286 

50965,82761 50965,86687 0,03926 50965,88336 50965,89978 50965,94298 0,04320 -0,41482 -0,43334 -0,42408 0,03291 308 

105639,02740 105639,06546 0,03806 105639,08244 105639,09935 105639,13990 0,04055 -0,40893 -0,42340 -0,41616 0,03389 228 

139456,17730 139456,20826 0,03096 139456,22548 139456,24221 139456,29230 0,05009 -0,36418 -0,46784 -0,41601 0,03395 239 

130640,15568 130640,19831 0,04263 130640,21530 130640,23262 130640,26430 0,03168 -0,44057 -0,37428 -0,40742 0,03431 174 

56646,87565 56646,91430 0,03865 56646,93153 56646,94865 56646,99243 0,04378 -0,40679 -0,43228 -0,41954 0,03435 258 

104605,47909 104605,52221 0,04312 104605,53945 104605,55693 104605,59160 0,03467 -0,43549 -0,38764 -0,41157 0,03472 223 

106665,22879 106665,27119 0,04240 106665,28845 106665,30592 106665,33890 0,03298 -0,43689 -0,37882 -0,40785 0,03473 192 

118523,18580 118523,21930 0,03350 118523,23695 118523,25420 118523,30210 0,04790 -0,37555 -0,45410 -0,41483 0,03490 223 

72677,17939 72677,22772 0,04833 72677,24509 72677,26284 72677,29697 0,03413 -0,45277 -0,37826 -0,41552 0,03512 249 

17143,74590 17143,78654 0,04064 17143,80431 17143,82184 17143,86920 0,04736 -0,40886 -0,44119 -0,42503 0,03531 367 

113224,63253 113224,66735 0,03482 113224,68517 113224,70273 113224,74673 0,04400 -0,38537 -0,43546 -0,41042 0,03539 222 

70902,92790 70902,96757 0,03967 70902,98561 70903,00356 70903,04550 0,04193 -0,40738 -0,42031 -0,41385 0,03599 222 

33179,32582 33179,36529 0,03948 33179,38362 33179,40158 33179,45100 0,04942 -0,39211 -0,44319 -0,41765 0,03628 235 

118935,46690 118935,51144 0,04454 118935,52978 118935,54839 118935,58380 0,03541 -0,43305 -0,38251 -0,40778 0,03695 207 

134985,54371 134985,58931 0,04560 134985,60765 134985,62632 134985,66090 0,03458 -0,43848 -0,37598 -0,40723 0,03701 200 

91166,84014 91166,87802 0,03788 91166,89686 91166,91555 91166,95880 0,04325 -0,39255 -0,42196 -0,40726 0,03754 206 

7005,01647 7005,06287 0,04640 7005,08179 7005,10056 7005,15461 0,05405 -0,41556 -0,44376 -0,42966 0,03770 340 

104230,44079 104230,47771 0,03692 104230,49692 104230,51592 104230,55943 0,04351 -0,38567 -0,42341 -0,40454 0,03821 199 

73146,92828 73146,96705 0,03877 73146,98646 73147,00573 73147,04856 0,04283 -0,39373 -0,41702 -0,40537 0,03868 209 

52126,13432 52126,18544 0,05112 52126,20472 52126,22440 52126,26151 0,03711 -0,44741 -0,37682 -0,41212 0,03896 219 

42525,75198 42525,79594 0,04395 42525,81557 42525,83517 42525,87994 0,04477 -0,41109 -0,41558 -0,41333 0,03923 223 

40094,91230 40094,94904 0,03674 40094,96917 40094,98891 40095,03817 0,04927 -0,37307 -0,43906 -0,40606 0,03987 206 

 



p 40/64 

Table 9 

Truncation to 200000 terms 

 

abs_rM- abs_zeroR- Δpr- abs_peak abs_zeroR+ abs_rM+ Δpr+ rM- rM+ rM zeroes gap value_peak 

273193.64713 273193.66314 0.01601 273193.66600 273193.66884 273193.69030 0.02146 -0.47529 -0.49284 -0.48406 0.00570 9333 

68398.90460 68398.95599 0.05139 68398.98100 68399.00662 68399.04519 0.03857 -0.41900 -0.34532 -0.38216 0.05063 122 

69035.15059 69035.20719 0.05660 69035.25610 69035.30735 69035.34845 0.04110 -0.33788 -0.24115 -0.28952 0.10015 30.88 

56666.98370 56667.04491 0.06121 56667.11754 56667.19497 56667.23917 0.04420 -0.28543 -0.18490 -0.23517 0.15006 15.60 

59404.67366 59404.71336 0.03970 59404.81787 59404.91338 59404.97320 0.05982 -0.12590 -0.23442 -0.18016 0.20002 9.243 

32417.35933 32417.39493 0.03560 32417.52684 32417.64496 32417.70526 0.06030 -0.08628 -0.19976 -0.14302 0.25003 6.884 

26041.07526 26041.12896 0.05370 26041.27057 26041.42897 26041.46147 0.03250 -0.15003 -0.06325 -0.10664 0.30001 5.237 

32907.10105 32907.12525 0.02420 32907.31255 32907.47525 32907.52535 0.05010 -0.03367 -0.12197 -0.07782 0.35000 4.123 

46217.24820 46217.28890 0.04070 46217.47501 46217.68893 46217.70752 0.01859 -0.08138 -0.01929 -0.05034 0.40003 3.311 

16183.81710 16183.84543 0.02833 16184.07443 16184.29543 16184.32783 0.03240 -0.03448 -0.04556 -0.04002 0.45000 3.293 

35015.36860 35015.41941 0.05081 35015.61128 35015.91942 35015.90230 -0.01712 -0.11123 -0.01760 -0.06442 0.50001 2.682 

71084.67160 71084.70208 0.03048 71084.92200 71085.25209 71085.25223 0.00014 -0.04840 -0.00004 -0.02422 0.55000 1.942 

29126.11340 29126.08620 -0.02720 29126.46100 29126.68621 29126.72951 0.04330 -0.04117 -0.07512 -0.05815 0.60000 2.294 

57478.81015 57478.85675 0.04660 57479.04785 57479.50675 57479.50135 -0.00540 -0.10261 -0.00166 -0.05214 0.65000 1.696 

61432.66359 61432.66409 0.00050 61433.01420 61433.36411 61433.36081 -0.00330 -0.00004 -0.00054 -0.00029 0.70002 1.758 

17205.58085 17205.58795 0.00710 17205.93718 17206.33796 17206.31526 -0.02270 -0.00202 -0.02515 -0.01359 0.75000 1.848 

67219.89461 67219.87721 -0.01740 67220.26660 67220.67721 67220.65411 -0.02310 -0.01546 -0.02771 -0.02158 0.80000 1.692 

61148.29712 61148.25912 -0.03800 61148.74032 61149.10913 61149.10746 -0.00167 -0.08215 -0.00014 -0.04114 0.85000 1.620 

6612.02748 6612.00798 -0.01950 6612.49020 6612.90798 6612.91678 0.00880 -0.01191 -0.00204 -0.00697 0.90000 1.835 

8875.18991 8875.17281 -0.01710 8875.69210 8876.12284 8876.12184 -0.00100 -0.00959 -0.00003 -0.00481 0.95002 1.649 

1512.59584 1512.58976 -0.00607 1513.04176 1513.58977 1513.60217 0.01240 -0.00092 -0.00355 -0.00223 1.00000 1.741 
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Appendix 6 : Numeric data DSC1 and DSC(X). 
 

Table 10 

 

abs_peak abs_zeroR- abs_zeroR+ abs_rM- DSC1- abs_rM+ DSC1+ Δbr Average(DSC1) 

273193.66600 273193.66314 273193.66884 273193.64683 37.297 273193.69084 22.220 0.0057 29.758 

270071.29840 270071.29406 270071.30270 270071.27527 30.188 270071.33280 13.288 0.00864 21.738 

302700.30563 302700.30084 302700.31040 302700.28170 27.649 302700.34180 11.831 0.00956 19.740 

71732.90857 71732.90121 71732.91591 71732.87260 16.951 71732.94901 13.245 0.0147 15.098 

57273.67491 57273.66193 57273.68777 57273.62760 11.921 57273.72975 8.601 0.02584 10.261 

68398.98100 68398.95599 68399.00662 68398.90460 5.708 68399.04519 8.940 0.05063 7.324 

69035.25610 69035.20719 69035.30735 69035.15059 4.572 69035.34845 7.286 0.10016 5.929 

56667.11754 56667.04491 56667.19497 56666.98370 4.216 56667.23917 6.860 0.15006 5.538 

59404.81787 59404.71336 59404.91338 59404.67366 7.938 59404.97320 4.263 0.20002 6.101 

32417.52684 32417.39493 32417.64496 32417.35933 10.184 32417.70526 4.498 0.25003 7.341 

26041.27057 26041.12896 26041.42897 26041.07526 5.417 26041.46147 11.975 0.30001 8.696 

32907.31255 32907.12525 32907.47525 32907.10105 20.331 32907.52535 5.853 0.35 13.092 

46217.47501 46217.28890 46217.68893 46217.24820 7.749 46217.70752 31.905 0.40003 19.827 

16184.07443 16183.84543 16184.29543 16183.81710 17.891 16184.32783 14.070 0.45 15.980 

35015.61128 35015.41941 35015.91942 35015.36860 5.452 35015.90230 35.480 0.50001 20.466 

71084.92200 71084.70208 71085.25209 71084.67160 10.179 71085.25223 276451.850 0.55001 138231.015 

29126.46100 29126.08620 29126.68621 29126.11340 15.585 29126.72951 7.270 0.60001 11.427 

57479.04785 57478.85675 57479.50675 57478.81015 4.813 57479.50135 184.527 0.65 94.670 

61433.01420 61432.66409 61433.36411 61432.66359 34979.548 61433.36081 881.129 0.70002 17930.339 

17205.93718 17205.58795 17206.33796 17205.58085 203.069 17206.31526 24.982 0.75001 114.025 

67220.26660 67219.87721 67220.67721 67219.89461 33.764 67220.65411 19.667 0.8 26.715 

61148.74032 61148.25912 61149.10913 61148.29712 8.171 61149.10746 3385.101 0.85001 1696.636 

6612.49020 6612.00798 6612.90798 6612.02748 44.805 6612.91678 214.978 0.9 129.892 

8875.69210 8875.17281 8876.12284 8875.18991 43.426 8876.12184 14604.454 0.95003 7323.940 

1513.04176 1512.58976 1513.58977 1512.59584 586.860 1513.60217 70.703 1.00001 328.782 

 

 

Table 11 

DSC(R2y) 

 

rM rM- rM+ rM- rM+ rM- rM+ rM- rM+ rM- rM+ rM- rM+ 

R2y -0.5 -0.5 -0.6 -0.6 -0.7 -0.7 -0.8 -0.8 -0.9 -0.9 -1 -1 

Δbr      DSC(…)       

0.0057 1.053 0.995 2.937 1.842 7.503 4.388 14.752 8.633 24.683 14.577 37.297 22.220 

0.00864 1.131 0.994 2.887 1.411 6.670 2.849 12.481 5.308 20.320 8.788 30.188 13.288 

0.00956 1.148 0.995 2.805 1.344 6.284 2.602 11.584 4.769 18.706 7.845 27.649 11.831 

0.02584 1.106 0.991 1.869 1.379 3.332 2.335 5.494 3.857 8.357 5.945 11.921 8.601 

0.05063 0.984 1.274 1.266 1.979 1.879 3.098 2.824 4.631 4.100 6.578 5.708 8.940 

0.10016 1.011 1.469 1.297 2.115 1.796 3.019 2.508 4.183 3.434 5.605 4.572 7.286 

0.15006 1.028 1.551 1.316 2.178 1.779 3.022 2.417 4.084 3.229 5.363 4.216 6.860 

0.20002 1.895 1.076 2.660 1.396 3.647 1.875 4.856 2.512 6.286 3.308 7.938 4.263 

0.25003 2.481 1.142 3.504 1.501 4.786 2.016 6.327 2.687 8.126 3.515 10.184 4.498 

0.30001 1.357 2.966 1.835 4.190 2.480 5.704 3.292 7.506 4.271 9.596 5.417 11.975 

0.35 5.054 1.481 7.204 2.015 9.807 2.720 12.863 3.594 16.370 4.639 20.331 5.853 

0.40003 1.952 7.957 2.706 11.383 3.663 15.491 4.822 20.281 6.184 25.752 7.749 31.905 

0.45 4.462 3.504 6.344 4.962 8.627 6.748 11.313 8.862 14.401 11.302 17.891 14.070 

0.50001 1.404 8.806 1.896 12.627 2.547 17.205 3.356 22.540 4.325 28.632 5.452 35.480 

0.55001 2.541 69129.5 3.571 99538.5 4.849 135475.2 6.376 176939.6 8.153 223931.9 10.179 276451.9 
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rM rM- rM+ rM- rM+ rM- rM+ rM- rM+ rM- rM+ rM- rM+ 

R2y -0.5 -0.5 -0.6 -0.6 -0.7 -0.7 -0.8 -0.8 -0.9 -0.9 -1 -1 

Δbr      DSC(…)       

0.60001 3.857 1.848 5.483 2.550 7.469 3.443 9.815 4.527 12.520 5.803 15.585 7.270 

0.65 1.233 46.381 1.656 66.588 2.225 90.507 2.941 118.136 3.804 149.476 4.813 184.527 

0.70002 8746.556 220.365 12594.147 317.202 17141.242 431.7 22387.840 563.850 28333.9 713.661 34979.5 881.129 

0.75001 51.062 6.245 73.308 8.908 99.632 12.113 130.033 15.860 164.512 20.150 203.069 24.982 

0.8 8.446 4.921 12.076 6.998 16.422 9.511 21.486 12.460 27.267 15.846 33.764 19.667 

0.85001 2.048 846.081 2.848 1218.370 3.861 1658.4 5.085 2166.2 6.522 2741.8 8.171 3385.1 

0.9 11.198 53.760 16.044 77.327 21.828 105.233 28.549 137.476 36.208 174.058 44.805 214.978 

0.95003 10.757 3651.7 15.455 5258.0 21.071 7156.5 27.604 9347.0 35.056 11829.7 43.426 14604.5 

1.00001 147.008 18.151 211.473 25.829 287.690 34.923 375.661 45.433 475.384 57.360 586.860 70.703 
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Appendix 7 : Cancellation of R2(a,b). 
 

Expression R2(a,b) is null at Riemann and Dirichlet zeroes. However, these are not the only cancellation solutions since 

the condition to fill is not C0²+S0² = 0, but C0.C2+S0.S2. The purpose of the graphics below is simply to illustrate the 

fact that cancellations at critical abscissas of this article generally go in pairs, meaning two abscissas "close" to each other, 

one abscissa a zero and the other one not. 

 

 

Graphic 77 

 

  
Graphic 78 Graphic 79 

 

  
Graphic 80 Graphic 81 
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Appendix 8 : Functions to approximate rpeak. 
 

A first approximation function relative to the height of the peaks of R2(1/2,b) values, leading to differences in percentage 

between the observed values and said measurement function as noted in graphic82, obeys to the relationship : 

 

rpeak ≈ 1+ 
5 

                    (42) 
(bpeak)1/4.Δbr

2 

 

The term Δbr is the gap between two Riemann's consecutive zeroes surrounding the peak rpeak of R2(1/2,b). 
The height of the peak thus reacts in a certain way as the inverse of a radiation temperature in relation to the abscissa of 

the peak (Stefan-Boltzmann law type bpeak ≈ α.(1/rpeak)4) and as an energy for the atomic level Δbr (law type rpeak ≈ β/Δbr²). 

 

Graphic82, where Dirichlet's zero abscissas are represented by vertical lines, clearly shows that the error is amplified by 

the fact that the existence of these zeros is not taken into account at the moment. 

Modification below introduced by a second approximation function, and corresponding to graphic83, takes into account 

this point : 

 

rpeak ≈ 1+ 
1 

( 
1.238 

+ 
-18.1295 

)           (43) 
(bpeak)1/4 (bpeak - abs_zeroR-).(abs_zeroR+ - bpeak) (bpeak - abs_zeroD-).(abs_zeroD+ - bpeak) 

 

  
Graphic 82 

Before correction 

Graphic 83 

After correction  

 

Close to the origin of b's, the relationship (43) still has errors in the order of 30% or more. The following relationship, a 

simple variant of the previous one, improves this point: 

 

 

rpeak ≈ 1+ 
3 

+ 
1 

( 
1.238 

+ 
-18.1295 

)           (44) 
Ln(bpeak) (bpeak)1/4 (bpeak - abs_zeroR-).(abs_zeroR+ - bpeak) (bpeak - abs_zeroD-).(abs_zeroD+ - bpeak) 

 

Graphic83still presents errors between the actual values of the peaks and the approximation. We searched for a better 

version in the form 

 

rpeak ≈ 1+ 
γ 

+ 
1 

∑( 
αi 

+ 
βi 

)    (45) 
Ln(bpeak) (bpeak)1/4 (bpeak - abs_zeroRi-).(abs_zeroRi+ - bpeak) (bpeak - abs_zeroDi-).(abs_zeroDi+ - bpeak) 

 

taking into account the Riemann and Dirichlet zeros further from the peak. For our part, this does not seem to significantly 

lessen errors in a general application. 

 

Besides, some relation like  
 

rpeak ≈ 1+ 
1 

∑( 
αi 

 )           (46) 
(bpeak)1/4 |bpeak - abs_zeros|n 

 

i.e. without associating pairs of zeros, but simply taking into account all the differences between abscissas of the peak and 

those of the zeros (n being a power to adapt) seems doomed to failure. 
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Appendix 9 : Errors on the peak values of R2(a,b). 
 

The relative error on the actual value of the peaks R2 = (C0. C2+S0. S2)/(C1²+S1²) has not been specified so far. These 

peaks of values correspond to situations where C1²+S1² tends towards 0 at the denominator of the ratio R2(a,b). 

Numerically, the value of this denominator can be largely distorted in the absence of precaution. As this is obtained using 

a truncation of the Dirichlet Eta function, it is necessary to ensure a sufficient number of terms to obtain a valid result 

when the abscissa b increases (see Appendix 1 page 31). The repercussion is all the greater as C1²+S1² is smaller. 

Calculations must be carried out with a suitable truncation. For the production of the tables below, with the Excel tool, we 

have extended the investigation up to 300000 terms. However, some results for peaks values remain fluctuating in a very 

significant way. 

 

The graphics below thus give, as a mere information, some data relating to these valuation uncertainties. 

 
Truncations at 

 

b 

30000 50000 70000 90000 110000 130000 150000 170000 

273193,666 0,79223436 0,79233452 0,79238882 -23,0571782 1066,88405 6938,16401 3040,68025 4688,02971 

270071,298 0,78701346 0,7865257 0,78655872 -93,6405373 4690,2529 2852,85517 2409,05929 3034,69195 

302700,306 0,84673934 0,75410234 0,75408475 0,75486075 696,780461 2444,2157 2780,2796 2248,68861 

234016,902 0,77122518 0,77121376 0,77159857 3320,92683 1408,7961 1340,67378 1357,42807 1521,02584 

71732,9086 807,012008 1260,06896 1543,56257 1659,75052 1463,47145 1477,5109 1328,09192 1311,98807 

 
Truncations at 

 

b 

190000 200000 220000 240000 260000 280000 300000 

273193,666 6264,18214 9332,50484 4481,24146 4503,3149 6533,48089 4547,31808 4974,56835 

270071,298 3590,93864 2910,36473 2863,11206 3895,65609 3261,84607 2955,0297 3120,00748 

302700,306 2687,97803 2274,00819 2411,96066 2664,51978 2838,83817 2409,74561 2593,14038 

234016,902 1439,41531 1527,88393 1378,01132 1408,08006 1347,32708 1370,19658 1574,97404 

71732,9086 1369,65022 1454,10964 1521,62094 1461,61479 1550,77267 1496,18688 1501,541 

 

The case with the smallest gap between Riemann zeros among the first 500000 of them is then shown below and in the 

first row of the two previous tables. The magnitude of the discrepancies depending on the truncation chosen is obvious. 

Note that in our numerical reports in the main text, we used for this example the truncation to 200000 terms (which is not 

the best).  

 

 
Graphic 84 

R2 as a function of the truncation 

b = 273193,666 

 

Comparing these data with those obtained with the Pari gp tool shows that the discrepancies are not due to the imprecision 

of the spreadsheet. They are mainly related to the choice of truncation. In fact, the confidence limit, say at 10%, already 

manifests itself around a peak of height between 100 and 200. This means that at 10000, we are almost at the limit of any 

kind of reliable appreciation (if we want to stay in a reasonable calculation time). This does not call into question the 

nature of the formulas proposed in the text for peaks’ values but the reader must remain vigilant on this point (which was 

recalled in our conclusion in the main text). It should be noted, however, that for the minima of R2(a,b), calculation errors 

are generally of lesser incidence. 
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The reader will be able to do some tests thanks to underneath programming in Pari gp. He will be able to appreciate for 

himself the differences of evaluation with Excel spreadsheet as well as the sometimes staggering effect of the truncation. 

In particular, it can use for the comparison the data in appendix 5(with large discrepancies here or there). 

 

{a = -1/2; b = 273193.6;  

n =100000; \\truncation 

c0 = sum(i = 1, n, -((-1)^i)*(i^a)*cos(b*log(i)));  

c0 = c0-(1/2)*((-1)^(n+1))*(n^a)*cos(b*log(n)); 

c1 = sum(i = 1, n, ((-1)^i)*(i^a)*log(i)*cos(b*log(i)));  

c1 = c1+(1/2)*((-1)^(n+1))*(n^a)*log(n)*cos(b*log(n)); 

c2 = sum(i = 1, n, -((-1)^i)*(i^a)*log(i)*log(i)*cos(b*log(i)));  

c2 = c2-(1/2)*((-1)^(n+1))*(n^a)*log(n)*log(n)*cos(b*log(n)); 

s0 = sum(i = 1, n, -((-1)^i)*(i^a)*sin(b*log(i)));  

s0 = s0-(1/2)*((-1)^(n+1))*(n^a)*sin(b*log(n)); 

s1 = sum(i = 1, n, ((-1)^i)*(i^a)*log(i)*sin(b*log(i)));  

s1 = s1+(1/2)*((-1)^(n+1))*(n^a)*log(n)*sin(b*log(n)); 

s2 = sum(i = 1, n, -((-1)^i)*(i^a)*log(i)*log(i)*sin(b*log(i)));  

s2 = s2-(1/2)*((-1)^(n+1))*(n^a)*log(n)*log(n)*sin(b*log(n)); 

sc1 = c1*c1+s1*s1;  

sc2 = c0*c2+s0*s2; 

r2 = sc2/sc1; 

print(sc1); print(sc2); print(r2)} 

 

When the size of the truncation is insufficient, we may find values of R2 well below -0.50 as shown by the first calculation 

below. 

 

? {a = -1/2; b = 273193.6896; n =100000; print(r2)} 

-0.6166038284211750574916648100 
? {a = -1/2; b = 273193.6896; n =150000; print(r2)} 

-0.4271955965872622470275834475 

? {a = -1/2; b = 273193.6896; n =200000; print(r2)} 
-0.5261384266503698375318264730 

? {a = -1/2; b = 273193.6896; n =300000; print(r2)} 

-0.4796643516828380156432379411 
? {a = -1/2; b = 273193.6896; n =400000; print(r2)} 

-0.5016208422615278776668411402 

? {a = -1/2; b = 273193.6896; n =500000; print(r2)} 
-0.4858750009077289531691875641 

? {a = -1/2; b = 273193.6896; n =600000; print(r2)} 

-0.4919079569086871791624603385 
? {a = -1/2; b = 273193.6896; n =700000; print(r2)} 

-0.4920769664916562265010777527 

? {a = -1/2; b = 273193.6896; n =800000; print(r2)} 
-0.4929477589891854606600505430 

? {a = -1/2; b = 273193.6896; n =900000; print(r2)} 

-0.4890131904821112999770340327 
? {a = -1/2; b = 273193.6896; n =1000000; print(r2)} 

-0.4891392347130997219482404937 

? {a = -1/2; b = 273193.6896; n =1100000; print(r2)} 
-0.4900429046216253353805337294 
 

? {a = -1/2; b = 273193.6895; n =1200000; print(r2)} 
-0.4933191008740246565228320951 

? {a = -1/2; b = 273193.6896; n =1200000; print(r2)} 

-0.4933198070145980866491230746 

? {a = -1/2; b = 273193.6897; n =1200000; print(r2)} 
-0.4933195499724307993347376930 

 

Some examples of peaks’ assessment are given below. The sensitivity to the abscissas is of course high.  

 

? {a = -1/2; b = 273193.66604; n =400000; print(r2)} 

785.5071969861662090556709993 

? {a = -1/2; b = 273193.66605; n =400000; print(r2)} 
948.7846204060245073619972671 

? {a = -1/2; b = 273193.66606; n =400000; print(r2)} 

786.5941885569144741261967395 
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? {a = -1/2; b = 273193.6659; n =500000; print(r2)} 

451.9076557548746838642199773 
? {a = -1/2; b = 273193.6660; n =500000; print(r2)} 

1388.883659477182565216224106 

? {a = -1/2; b = 273193.6661; n =500000; print(r2)} 
568.9349835885282105941885678 

 

? {a = -1/2; b = 273193.66597; n =1000000; print(r2)} 
2734.896713066479733916663927 

? {a = -1/2; b = 273193.66598; n =1000000; print(r2)} 

3014.980266456016987149571319 
? {a = -1/2; b = 273193.66599; n =1000000; print(r2)} 

2982.136999076174192240302201 

 
? {a = -1/2; b = 273193.665999; n =1500000; print(r2)} 

6605.220089261598424635464536 

? {a = -1/2; b = 273193.666; n =1500000; print(r2)} 
6693.600386554627615078116221 

? {a = -1/2; b = 273193.66601; n =1500000; print(r2)} 
6387.947689458093489083137371 

 

When the numerator itself is small, in addition to the denominator, a sign inversion of the first one can numerically give a 

totally aberrant results R2 << -1 if the truncation is not suitable. The reader should pay attention to it for his own trials. 

 

? {a = -1/2; b = 1961773.995; n =2500000; print(sc1); print(sc2); print(r2)} 
3.110249269263937084318524225 E-6 

-0.001839150459807002223767082469 
-591.3193125650184433842679941 
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Appendix 10 : Locus of (R2x(a,b), R2y(a,b)). 
 

The graphs below represent R2y as a function of R2x. For each of them, the parameter a is fixed and the represensative 

points are (R2x(a,b), R2y(a,b)), b describing the 40000 positions between 0 excluded and 10000 with 1/4 spacing.  

The goal is to show the evolution according to the choice of a which is a global shift to the left when a increases. 

 

This result is not surprising, the interesting point being here to show the special case of a = 1/2 whose demarcation lines 

R2x = 0 and R2y = -1/2, have no equivalent for the other values of a, other values giving increasingly blurred boundaries. 

 

  

Graphic 85 

a = 0.45, b ∈ ]0, 10000] et Δb = 0.25 

Graphic 86 

a = 0.50, b ∈ ]0, 10000] et Δb = 0.25 

  

Graphic 87 

a = 0.525, b ∈ ]0, 10000] et Δb = 0.25 

Graphic 88 

a = 0.55, b ∈ ]0, 10000] et Δb = 0.25 

 

We can notice that the points are not necessarily always deported to the left for the right part of the critical line (a < 1/2) 

especially in the area where the Riemann zeros do not yet appear (b < 4 < 14). The mix of equations being based on 

sinusoids it is not surprising to find undulating figures for some of the values of a (here the one close to 0) and position’s 

inversions. 

 

  

Graphique 89 

a = 0 à 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 

Graphique 90 

a = 0 à 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 
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The graphs below show the evolution between the minimas around the peak located between the 106073th and the 106074th  

Riemann zeros (b  ≈ 78974.79335 and b  ≈ 78974.82196). Note before, that the intervals for b as a function of a, forming 

the minimums of R2 are as follows, the isopleths being here of the type of that of graphic 31 while showing that the herby 

example is more complex than the basic model : 

 

a b 

 

 abs_rM- abs_rM+ 

0 78974,685273 78974,995526 

0,1 78974,702881 78975,015107 

0,2 78974,707522 78975,020820 

0,3 78974,700331 78975,010600 

0,4 78974,656833 78974,986167 

0,41 78974,653390 78974,968362 

0,42 78974,650501 78974,961723 

0,43 78974,648114 78974,954352 

0,45 78974,753824 78974,936901 

0,47 78974,756795 78974,914576 

0,49 78974,767718 78974,885999 

0,5 78974,773018 78974,875051 

0,51 78974,767028 78974,880243 

0,53 78974,751497 78974,905664 

0,55 78974,745422 78974,926883 

0,6 78974,490328 78974,963988 

0,7 78974,448655 78975,004068 

0,8 78974,430485 78975,019176 

0,9 78974,433970 78975,014951 

 

  

Graphic 91 

a = 0 to 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 

Graphic 92 

a = 0 to 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 
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Graphic 93 

a = 0 to 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 

Graphic 94 

a = 0 to 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 

  

Graphic 95 

a = 0 to 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 

Graphic 96 

a = 0 to 1, Δa = 0.1, b ∈ ]0, 4], Δb = 0.005 

 

As usual, what interests us is the line R2x = R2y of the effective solutions of R2. This line corresponds at the same time 

to the minimum values of R2.  

In the present case, which is that corresponding to a peak of great magnitude, when parameter a describs the range 0 to 1, 

the solutions R2 are, roughly by decreasing values, in the approximate interval [-1.184574789, 0.950381679]. The value 

R2 = -1 is finally reached only when the parameter a exceeds 0.9215, so quite far from a = 1/2. 
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Appendix 11 : R2(a,b) paths. 
 

These graphs represent R2y as a function of R2x between a Riemann zero and its successor. Since (C0,S0) = (0,0) for a 

Riemann zero, this results in (R2x, Ryx) = (0,-1/2) on these abscissas b = bR. The trajectory between two zeros thus begins 

in the graphs below at (0,-1/2) and ends at (0,-1/2). The direction of the increasing abscissas b is indicated each time. The 

only relevant solutions, by construction (see body text) are those on the axis R2x = R2y which does not hinder us from 

looking at the curves themselves. The Dirichlet abscissas bD  = k.2π/Ln(2) are represented by purple dots. These points 

are usually close to the line R2x = R2y and on a branch sending points to infinity (i.e. two values of b such as C1. S2-C2. 

S1 = 0). 
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p 54/64 
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Now let us take a close-up view of the triangular area that is the most interesting. 

We observe two main types of graphs between two Riemann zeros :  

- Type 1 when the trajectory includes an even number of divergences due to C1. S2-C2. S1 = 0. 

- Type 2 when the trajectory includes an odd number of divergences due to C1. S2-C2. S1 = 0. 
 

Note: 1 divergence corresponds to a one-way trip ±∞ plus a return trip ∓∞. 

 

  

Type 1a : 2 divergences Type 2a : 1 divergence 

  

Type 1a : 2 divergences Type 2b : 1 divergence 
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Type 1a : 2 divergences Type 2a : 1 divergence 

  

Type 1a : 2 divergences Type 1a : 2 divergences 

  

Type 2b : 1 divergence Type 2a : 2 divergences 

  

Type 2b : 3 divergences Type 2a : 1 divergence 



p 58/64 

  

Type 2b : 1 divergence Type 1a : 2 divergences 

  

Type 1a : 2 divergences Type 2a : 1 divergence 

  

Type 1a : 2 divergences Type 1a : 2 divergences 

  

Type 2b : 1 divergence Type 1a : 2 divergences 
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Type 1a : 2 divergences Type 1a : 2 divergences 

  

Type 2a : 1 divergence Type 2b : 1 divergence 

  

Type 1a : 2 divergences Type 1a : 2 divergences 

  

Type 1a : 2 divergences Type 1a : 2 divergences 
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Type 2b : 3 divergences Type 2a : 1 divergence 

  

Type 1a : 2 divergences Type 1a : 2 divergences 

  

Type 2b : 3 divergences Type 1a : 2 divergences 

  

Type 2a : 1 divergence Type 2b : 3 divergences 
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Type 2a : 1 divergence Type 2c : 1 divergence 

  

Type 2c : 1 divergence Type 2c : 1 divergence 

  

Type 2d : 1 divergence Type 2b : 5 divergences 
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Appendix 12 : Distribution of Cos(b.Ln(m)) and Sin(b.Ln(m)). 
 

  

Graphic 97 

a = 0.5 and b = 0 

Graphic 98 

a = 0.5 and b = 0.10 

  

Graphic 99 

a = 0.5 and b = 0.20 

Graphic 100 

a = 0.5 and b = 0.30 

  

Graphic 101 

a = 0.5 and b = 0.40 

Graphic 102 

a = 0.5 and b = 0.50 

  

Graphic 103 

a = 0.5 and b = 0.60 

Graphic 104 

a = 0.5 and b = 0.70 
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Graphic 105 

a = 0.5 and b = 0.80 

Graphic 106 

a = 0.5 and b = 0.90 

  

Graphic 107 

a = 0.5 and b = 1 

Graphic 108 

a = 0.5 and b = 1.55 

  

Graphic 109 

a = 0.5 and b = 2 

Graphic 110 

a = 0.5 and b = 3 

  

Graphic 111 

a = 0.5 and b = 4 

Graphic 112 

a = 0.5 and b = 10 
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Graphic 113 

a = 0.5 and b = 20 

Graphic 114 

a = 0.5 and b = 50 

  

Graphic 115 

a = 0.5 and b = 100 

Graphic 116 

a = 0.5 and b = 200 

 


