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Number Theory / Théorie des nombres 

 

The Collatz matrices. 
 

 

Hubert Schaetzel 
 

Abstract  Any strictly positive integer results in 1 by Collatz algorithm. This is the conclusion we reach here by 

completing the study of the team of Departamento de Matemática do Instituto Superior Técnico in Lisbon 

carried out in 2004/2005 and based on Jacobi’s formula for the derivative of a determinant. 
 

 Les matrices de Collatz. 
 

Résumé  Tout entier strictement positif aboutit à 1 par l’algorithme de Collatz. C’est la conclusion à laquelle nous 

aboutissons ici en achevant l’étude de l’équipe de Departamento de Matemática do Instituto Superior Técnico 

de Lisbonne réalisée en 2004/2005 et reposant sur la formule de Jacobi pour les dérivées de matrices. 
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1 Introduction. 

 

Collatz conjecture or Syracuse problem, which has many other names, is fairly known not to have to go back at length on its 

expression and we could find in the margin enough room to write our proof thanks to the work already carried out by the 

authors cited in references [1] and [2]. However, in order to prevent the reader from tedious diggings, some full-page 

developments are given here. The conjecture claims that any positive integer x0 results in xn = 1 by the repeated application 

of 3xi+1 if xi is odd and xi/2 if xi is even. The team of the Departamento de Matemática do Instituto Superior Técnico in 

Lisbon [1] has introduced the possibility of solving this problem by demonstrating the invariance of the determinant of 

particular matrices Mk, k ≥ 2, an idea recently revived by the authors of reference [2], without full complete proof, and which 

have aroused our curiosity. 

 

2 Two theorems. 

 

Theorem 1 
 

Let us have Mk = (mi,j) the square matrices of rank k defined by 

• mi,i = 1, i = 1 to k,  

• mi,i/2 = x, if i = 0 mod 2 and i ≤ k, 

• mi,(3i+1)/2 = x, if i = 1 mod 2 and (3i+1)/2 ≤ k, 

• mi,j = 0, otherwise. 

Then if for all k ≥ 2, det(Mk ) = 1-x2, the Collatz conjecture is true. 

 

Illustration 

 

The Collatz matrix is given below at rank 8. 

 

(

 
 
 
 
 

𝟏 𝐱 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝐱 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝐱 𝟎 𝟎 𝟎
𝟎 𝐱 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝐱
𝟎 𝟎 𝐱 𝟎 𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝐱 𝟎 𝟎 𝟎 𝟏)

 
 
 
 
 

 

 

Proof 
 

The proof is at pages 279 to 280 of reference [1]. 

 

Note  
 

The authors of both references attempted the proof by assessing the determinant of Mk from the determinant of Mk-1. However, 

as the k = 8 example shows here, in cases k = 2 modulo 6, we have x simultaneously on the last line and the last column. This 
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requires for this evaluation to remove column or line inside the matrix, which gradually for large rows causes the thread of 

the exam to be lost. We propose a simple and outright alternative avoiding these withdrawals. 

 

Theorem 2 
 

Let us have Mk = (mi,j) a Collatz matrix of rank at least 2. 

Then the determinant of the matrix is invariant and equal to 1-x2 for fixed x. 

 

Proof 
 

Adding a linear combination of other columns to a given matrix’s column does not change the value of the determinant. Our 

proof is based on this property of invariance. The representation of the example at rank 23 below makes it easy to visualize 

the evolution to a lower triangular matrix of the initial matrix. The 0’s are not posted. The process is initiated from below and 

right side. The initial numbers are shown in black and the successive arrows indicate the evolutions after making a linear 

combination with a given line. When the combination does not change the value of an item, the evolution is not indicated. 

This is usually the case for 1 → 1 and 0 → 0. It is easy to verify that the hypothesis is true for all matrices of ranks between 

2 and 7. Let us have then Mk  a given matrix of rank k greater than 8. The first item of value x to be examined is at the position 

(1+2n, 2+3n) where n = ⎣(k-2)/3⎦. The line subject to evolution is therefore 1+2n and the line with which we make the 

combination is line 2+3n line. The subtraction of the latter multiplied by x gives -x2 at (1+2n, (2+3n)/2) if n is even and leaves 

the previous value at 0 otherwise. It should be noted here that the position (1+2n, (2+3n)/2) is to the left of (1+2n, 1+2n) and 

is therefore indeed in the lower triangular part of the matrix. This procedure is applied to the line (1+2n)-2, then (1+2n)-4, 

etc. until reaching line 3. For all matrices (rank k ≥8) each x in upper triangular part and column superior or equal to 8 turns 

into 0 and the positions (4+3n, 5+4n) are filled with -x2 on a line between the x line of the lower triangular and the line of the 

1’s of the main diagonal. 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟏 → 𝟏 − 𝒙^𝟐 𝒙 → 𝟎
𝒙 𝟏

→ −𝒙^𝟒 𝟏 → 𝒙𝟑 → 𝟎 𝒙 → 𝟎
𝒙 𝟏

→ −𝒙^𝟐 𝟏 𝒙 → 𝟎
𝒙 𝟏

𝟏 𝒙 → 𝟎
𝒙 𝟏

→ −𝒙^𝟐 𝟏 𝒙 → 𝟎
𝒙 𝟏

𝟏 𝒙 → 𝟎
𝒙 𝟏

→ −𝒙^𝟐 𝟏 𝒙 → 𝟎
𝒙 𝟏

𝟏 𝒙 → 𝟎
𝒙 𝟏

𝟏
𝒙 𝟏

𝟏
𝒙 𝟏

𝟏
𝒙 𝟏

𝟏 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The only irregularities to this repetitive pattern are in the upper left part that we reproduce below :   

 

(

 
 
 
 
 

𝟏 → 𝟏 − 𝒙^𝟐 𝒙 → 𝟎
𝒙 𝟏

→ −𝒙^𝟒 𝟏 → 𝒙𝟑 → 𝟎 𝒙 → 𝟎
𝒙 𝟏

→ −𝒙^𝟐 𝟏 𝒙 → 𝟎
𝒙 𝟏

𝟏
𝒙 𝟏 )

 
 
 
 
 

 

 

The application of the process to line 5 using line 8 is consistent with what preceded giving -x2, but at line 3, we then get at 

first in (3, 4) the value 0-1.x.(-x2) = x3 that remains in the upper triangular part. A second treatment, using line 4, however, 

allows the value to be transferred to the position (3, 2), this time landing in the lower triangular part, reducing the previous 

value to 0. Finally, we treat the first line and the switch from x to 0 in (1, 2) gives 1-x2 at (1, 1). We end up with a lower 

triangular matrix with 1 on the main diagonal everywhere except 1-x2 in the first line. The determinant of the initial matrix is 

therefore 1-x2. 

 

3 Conclusion. 

 

The Collatz's algorithm in N* consistently ends up at 1.  

The proof is based on the arguments of other authors who have achieved the difficult part of the study. This point is analogous 

and follows another article [4] of our making leading to exactly the same conclusion for the conjecture (i.e. its veracity) the 

difficult work having been at that time Riho Terras’s achievement [3]. 
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