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Abstract. The study of peculiar first and second partial derivatives
drawn from Dirichlet’s Eta function enables us to confirm the Riemann
hypothesis.
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1. Introduction

”Mathematics consists in proving the most obvious thing in the least
obvious way.” George Pólya.

Indeed, the mathematical literature abounds in clues in favour of Rie-
mann’s hypothesis [1]. One of those is the strict adherence to the hypothesis
of billions of zeroes obtained by numerical evaluation. Limiting yourself to
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the accounting of the first zeros, regardless of their number however, does
not give any general property which enables to infer unquestionably a rule
for those coming next.

Here we will expand the study on all points of the critical strip in order
to encompass the zeros themselves. Luckily, due to a specific symmetry, the
search can be reduced on the lower half of the critical band including the
critical line.

Our investigation starts and is based on one among the various analytical
extensions of the Riemann’s series: the Dirichlet Eta function. It estab-
lishes the existence of a lower boundary for an indicative function of (posi-
tive) convexity deduced from it, resulting in the impossibility of symmetrical
Riemann zeros on either side of the critical line.

The proof consist first to establish the property numerically on a (finite)
part of the domain of definition of the said indicative function. Additional
arguments then will allow us to extent the property to the whole (infinite)
domain. A remarkable relationship between extrema and zeros of the here-
after studied expression is crucial to lead up to the desired conclusion.

Trying to address a wide audience, many graphic illustrations are given
here to make the thread of ideas as accessible and clear as possible. Despite
all these additions, the article remains relatively short. Can its content then
be worth a million of others?

2. Analytic continuations

Let us have s = a+ i.b some complex number. The parameters a, b and
s are used in the same context throughout this presentation. The Riemann
Zeta function is defined for Re(s) > 1 by the entire function:

ζ(s) =

∞∑
m=1

1

ms

The function diverges roughly in the form of two exponentially growing
sinusoids (its real and imaginary parts) for a = Re(s) ≤ 1, and the zeros
of this function, called here (non-trivial) zeros of Riemann, correspond to
numbers s such as the middle axis of this sinusoid aligns asymptotically with
the axis y = 0.

Note that it is impossible to find precisely the zeros of this function by
exploiting only this remark.

Riemann’s Zeta function admits, for Re(s) > 0, an analytical continuation
based on Dirichlet’s entire function η(s).

η(s) = (1− 21−s) · ζ(s) =
∞∑

m=1

(−1)m−1

ms

This equality shows that the zeros of Dirichlet’s Eta function are the
union of zeros of 1−21−s and zeros of Riemann’s Zeta function. We call the
first nominees, the Dirichlet’s zeros. So, we get the solutions’ sets:
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{Eta zeroes} ≡ {Dirichlet zeroes} ∪ {Riemann zeroes}
The Dirichlet zeros are equal to

s = 1 + i · 2πk/ ln(2)

where k describes the relative integers’ set Z. These zeros, with constant
real value (a = 1), are genuine Siamese brothers of Riemann zeros as we
showed in another article (see reference [6]). The formers are inseparable
from the latter and allow us to anticipate the behaviour of Riemann’s zeros.
They are the trivial image of the veracity of Riemann’s hypothesis.

That said, let us now introduce the functional equation (see reference [2]):

ζ(s) = 2s · πs−1 · sin(πs/2) · Γ(1− s) · ζ(1− s)

This further analytical continuation of the Riemann function introduces, due
to the sinus function, additional zeros −2n for any natural (thus positive)
integer, called trivial zeros, that are absent in previous functions. This last
continuation is useful to our argument because we can state the following
theorem:

Theorem 1. The non-trivial Riemann zeros are symmetrical to the axis
s = 1/2 within the critical band.

Proof. Let us have ξ(s) = (1/2)· s · (1-s) ·π−s/2 · Γ(s/2) · ζ(s). We get (see
reference [3]) immediately ξ(s) = ξ(1− s). □

Note 1. The modulus of the complex number ζ(a + i.b) is expected to de-
crease with parameter a as the series’ term is m−a. Therefore it would seem
obvious that the right and left side of the critical line cannot be equal at same
b value. But if some constant b is close enough to br such as ζ(1/2+i.br) = 0,
then when a is varying from 0 to 1, the decrease of the modulus of ζ(a+ i.b)
fails around a = 1

2 . Moreover, one finds readily an exception to that decrease
for values b < 6.3 without any near zero and we wish to already highlight in
this note this peculiar exception as it will unsurprisingly show up again (at
similar low range of b values) below although in a totally different context.

Theorem 2. If the set of all Riemann’s zeroes such as 0 < a < 1/2 is
empty, then Riemann’s zeros are all on the 1/2 axis.

Proof. This is a trivial consequence of theorem 1. □

In 1896, Hadamard and La Vallée-Poussin [3] independently proved that
no zero could be on theRe(s) = 1 line, and therefore that all non-trivial zeros
should be in the interior of the critical band 0 < Re(s) < 1. For this reason,
we chose previously to write 0 < a < 1/2 instead of 0 ≤ a < 1/2, although
this second way doesn’t in any way hinder us here, quite the contrary, since
it allows us to confirm the work of the authors cited simply by examining
case a = 0 (which is actually done in this article).
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3. Explicit equations of the Eta function and related
functions

Let us have ln(x) the Napierian logarithm of x. From the Eta function
expression

η(s) =

∞∑
m=1

(−1)m−1

ms
(1)

we get

η(s) =

∞∑
m=1

(−1)m−1 ·m−a · cos(b. ln(m))+ i ·
∞∑

m=1

(−1)m−1 ·m−a · sin(b. ln(m))

The search for the zeros of η(s) is therefore tantamount to solve simultane-
ously the two equations:

∞∑
m=1

(−1)m−1 ·m−a · cos(b. ln(m)) = 0

and
∞∑

m=1

(−1)m−1 ·m−a · sin(b. ln(m)) = 0

Let us have

C0(a, b) =

∞∑
m=1

(−1)m−1 ·m−a · cos(b. ln(m)) (2)

and

S0(a, b) =
∞∑

m=1

(−1)m−1 ·m−a · sin(b. ln(m)) (3)

Then the cancellation of η(s) is equivalent to the cancellation of:

(C0(a, b))
2 + (S0(a, b))

2 = 0

Theorem 3. Let us have:

D0(a, b) =
(C0(a, b))

2 + (S0(a, b))
2

2

If the partial first derivative of D0(a, b) never cancels over the domain 0 ≤
a < 1/2 and the partial second derivative of D0(a, b) is strictly positive over
the domain 0 ≤ a ≤ 1/2, both partial derivatives being taken versus the
parameter a, then Riemann’s hypothesis is true.

Proof. By our hypothesis, the D0(a, b) function is convex over the said do-
main. If the partial first derivative never cancels over the same domain
except for a = a0 = 1/2, the positive expression D0(a, b) is necessary in-
creasing when a decreases from 1/2 to 0. The expression D0(a, b) can then
be null only for a0 = 1/2. □
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We note the expressions of successive partial derivatives of C0(a, b) and
S0(a, b) versus a as follows:

Ck(a, b) =

∞∑
m=1

(−1)m−1+k(ln(m))k ·m−a · cos(b. ln(m)) (4)

and

Sk(a, b) =

∞∑
m=1

(−1)m−1+k(ln(m))k ·m−a · sin(b. ln(m)) (5)

Theorem 4. Sums and products of Ck(a, b) and Sk(a, b) are convergent
series over the critical band, the a = 0 boundary excluded.

Proof. Since (Ln(m))k is negligible asymptotically in front of ma when a >
0, Ck(a, b) and Sk(a, b) are convergent sums as is initially η(s). In addition,
sums and products of convergent series are also convergent. □

This allows us to write successive partial derivatives, versus a, of D0(a, b)
as follows:

D1(a, b) = 2(C0(a, b) · C1(a, b) + S0(a, b) · S1(a, b)) (6)

and

D2(a, b) = 2(C0(a, b) ·C2(a, b) + S0(a, b) · S2(a, b) + (C1(a, b))
2 + (S1(a, b))

2)
(7)

Our objective is to prove that D2(a, b) > 0 for 0 ≤ a ≤ 1/2.
There is a trivially positive part toD2(a, b)/2 namely P2(a, b) = (C1(a, b))

2+
(S1(a, b))

2. It ought to be compared to the complementary part Q(a, b) =
C0(a, b)·C2(a, b)+S0(a, b)·S2(a, b). As long as Q(a, b) is positive, everything
is fine. If Q(a, b) is negative and we still have | Q(a, b) | < P (a, b), then the
D2(a, b) expression remains positive and Riemann’s hypothesis stems from
it. It is therefore appropriate to examine the evolution within the lower
critical band of the ratio:

R2(a, b) =
C0(a, b) · C2(a, b) + S0(a, b) · S2(a, b)

(C1(a, b))2 + (S1(a, b))2
(8)

From this argument results immediately the following theorem equivalent
to theorem 3:

Theorem 5. If D1(a, b) ̸= 0 for 0 ≤ a < 1/2 and if R2(a, b) > −1 for
0 ≤ a ≤ 1/2, b any given real number, then Riemann hypothesis is true.

Note 2. This is a sufficient (and not necessary) condition: A contradictory b
(ending with R2(a, b) ≤ −1) only excludes the desired result for that value b
and its immediate vicinity. We will see below that, indeed, there are b values
such as the expression R2(a, b) is less than the −1 value, for 0 ≤ a ≤ 1/2, at
abscissas smaller than that of the first Riemann zero (and the first Dirichlet
zero).
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Note 3. It should also be noted that because of the symmetry of the func-
tional equation, we only survey the b ≥ 0 values, the arguments being in
any way identical in the b ≤ 0 case.

4. The D1 problem

Let us start with the partial first derivative hypothesis D1(a, b) ̸= 0.

Proposition 1. The function D1(a, b) is strictly negative and increasing
monotonously with respect to the parameter a on the left side of the critical
line.

Argument. The monotony of theD1(a, b) is an immediate result ofD2(a, b) >
0 which will be the main object of this article later (see theorem 8). The
strict negative values and monotonous evolution of the expression D1(a, b)
from b = 3 up to b = 100000 is easily checked numerically. A few samples
are given in figure 1. The term b is only present within the cosine and sine
functions, functions which are limited to the small interval of values −1 to 1.
Thus a very large cover of all intermediary possibilities from this numerical
sample. Moreover it is well-known that there are no non-trivial zeroes well
above the value b = 105, namely at least up to 1022, confirming somewhat
the sample’s result to a much greater extent. However, it doesn’t make a
strong mathematical argument as zeros may nevertheless be reached before
the a = 1/2 limit. Thus the need of our study on D2(a, b) which will ulti-
mately show that this particular limit value is effectively a threshold with a
specific divergence type phenomena (acting back on D1(a, b)).

Figure 1. Samples of Ln(−D1(a, b)) for various values of
given b and a ∈ [0, 1/2].

Note 4. When the chosen b value corresponds to a non-trivial zero, the
expression Ln(−D1(a, b)) will of course plunge towards −∞, as a tends
towards 1/2, which none of the illustrations in figure 1 do.
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5. Preliminary lemmas

The only needed result here is lemma 3 that we will provide below. It is
about proving that some expressions, positive by construction, never vanish.
This result is however sufficiently important, as it provides crucial confir-
mation on continuity topics, to spend quite some time on technical details.

That said, let us start by comparing the relative positions of the following
functions

SCk(a, b) = (Ck(a, b))
2 + (Sk(a, b))

2,

based on Ck(a, b) and Sk(a, b) as defined previously by the expressions 4 and
5, as k is incremented.

Lemma 1. If a ∈ [0, 1/2], we have almost everywhere SCk+1(a, b) > SCk(a, b)
as soon as b > 20.

Proof. For a = 0, it is a straightforward numerical verification. From theo-
rem 4, we know that the SCk(a, b) are convergent series for a > 0 whatever
the value of b. Then, using cos(ϕ − ψ) = cos(ϕ) cos(ψ) + sin(ϕ) sin(ψ) and
ln(m1)− ln(m2) = ln(m1/m2), the general term of SCk(a, b) is equal to

(−1)m1+m2 .(ln(m1))
k.(ln(m2))

k.(cos(b ln(m1/m2)))/m
2a.

The effect of (ln(m1))
k.(ln(m2))

k is a scaling factor and therefore the SCk(a, b)
and SCk+1(a, b) curves will be in a blurred nesting positions one to the other.
The ratio of the general term of SCk+1(a, b) to that of SCk(a, b) is equal to
ln(m1). ln(m2) and therefore greater then 1 as soon as m1 > 2 and m2 > 2,
thus providing a greater than 1 scaling at some step. Numerical evaluations,
like the example for a = 1/2 (and close values) given in figure 2, provide the
abscissas b where this greater than 1 scaling starts effectively. This abscissa
b is in the range value of the imaginary part of the first Riemann non-trivial
zeroes and therefore of no harmful effect on the rest of the present analysis
(knowing that there are no Riemann zero exception to a = 1/2 found up to
billions of them). □

Note 5. It is obvious that infinite sums cannot be calculated up to infinity
and therefore the art of truncations has to be mastered. The Eta function
value oscillates, with here and there wide jumps, before the convergence pro-
cess starts. The maximum mmax (instead of +∞) of the integer parameter
m in the expression (1) has to be carefully chosen and it is easy to prove
(see appendix A) that

mmax = ⌊2b/π⌋ (9)

is some minimum value of the m truncation to adopt. What is true for
the Eta function is of course also for any derived function and more precise
evaluations may sometimes require much largermmax then initially expected
(when near 0 values and ratios are involved).

This said, the graphics in figures 2 and 3 clearly show that, for b ≳ 20,
the SCk+1(a, b) curves are above the SCk(a, b) curves in nesting positions
one to the other. These figures are drawn for a = 1/2. One gets the same
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nesting positions for any parameter a sample within [0, 1/2[ as k increases
provided that again b ≳ 20. As the phenomena is progressive one has only
to check the additional cases a = x/10, x = 0, 1, 2, 3 and 4.

Figure 2. Function SCk+1(a, b) versus b, a = 1/2, k = 0 up
to 4.

Figure 3. Function SCk+1(a, b) versus b, a = 1/2, k = 0 up
to 4.

Note 6. The curves are given with a standard step ∆b = 1/10. The
downwards peaks are not necessarily fully formed here. Nevertheless, one
can see clearly the peak of SC1(a, b) at the level of Riemann’s zero corre-
sponding to b ≈ 5010.9331981 for example in figure 3. The nesting does
not prevent in any way to have, close to the Riemann zeros, very small
(non-negative) values for SCk(a, b), whatever k > 0, and this especially
for SC1(a, b) = (C1(a, b))

2 + (S1(a, b))
2. This effectively allows us to find

increasingly larger R2(a, b) values here or there, since SC1(a, b) is the de-
nominator of that expression.
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Note 7. The terminology ”almost everywhere” is not that of the probability
theory. The term only means what is meant, thus without any notion of
density, as the study is not completed at this stage.

Let us have a zoom to understand what happens when SCk(a, b) gets
closer to SCk+1(a, b). In figures 4, at the downwards peaks’ levels, ∆b is
taken here equal to 1/10000 and smaller. For SC0, at Riemann’s zeros level,
both peaks take on lower and lower values (since the possible limit here
is 0). For SC1, the peak progresses to lower values between truncations
with 10000 terms up to 50000 terms. This progression then stops. The
minimum value statements are 0.00097147 for 10000 terms, 0.00053732 for
50000 terms, 0.00058222 for 150000 terms, nothing in fact prohibiting a
higher value in the final instance as accuracy increases. We see above the
attraction that constitutes two narrow peaks for SCk(a = 1/2, b) on the
expression SCk+1(a = 1/2, b) in the hereby k = 0 case. As two peaks
create a peak above them, the phenomenon may occur frequently only up
to the SC1(1/2, b) level. An imposing peak for SC2(1/2, b) is certainly rare,
requiring 3 very close Riemann zeros. A significant downwards spike is
undoubtedly exceptional when k > 2.

Figure 4. Function SCk+1(a, b) versus b, a = 1/2, k = 0 up
to 4.

Lemma 2. If a ∈ [0, 1/2] and b > 20 then systematically SCk+1(a, b) >
SCk(a, b).

Proof. The numerical study clearly shows that the inequality is true except
possibly near the downwards peaks’ positions and moreover the critical case
to examine is that of the relative position of SC0(a, b) and SC1(a, b), higher
k cases being even more obvious. So, let us place ourselves at a peak for
SC1(a, bpeak). The expression SC0(a, bpeak) presents, at this abscissa, a par-
tial derivative versus b necessary further close to 0 as the two curves get more
narrow. It can be written, with the notations for partial derivatives given in
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paragraph 7.3, ∂b((C0(a, b))
2 + (S0(a, b))

2) = 2(C0(a, b) · S1(a, b)− S0(a, b) ·
C1(a, b)) with value to be taken at b = bpeak. Hence the approximate equality
C0(a, bpeak).S1(a, bpeak) ≈ S0(a, bpeak).C1(a, bpeak). Let us simplify the en-
tries by failing to repeat the coordinates (a, bpeak). The C0 and S0 functions
are non-zero since they are not placed at a Riemann zero. We then have
at the peak of SC1, the ordinate difference between SC1 and SC0 equal to
C2
1+S

2
1−(C2

0+S
2
0) ≈ (C0.S1/S0)

2+S2
1−(C2

0+S
2
0) = ((S1/S0)

2−1)·(C2
0+S

2
0),

and in the same way, C2
1+S

2
1−(C2

0+S
2
0) ≈ (C2

1+(C1.S0/C0)
2−(C2

0+S
2
0) =

((C1/C0)
2 − 1) · (C2

0 + S2
0). These expressions, as sums of continuous func-

tions, are continuous. Thus, for the difference C2
1+S

2
1−(C2

0+S
2
0) to become

negative, it must first be able to go to zero. The coordinate point (a, bpeak)
being intermediate between two Riemann zeros, we get C2

0 + S2
0 ̸= 0. This

means that the nullity of C2
1 + S2

1 − (C2
0 + S2

0) results in the joint nullity of
(C1/C0)

2−1 and (S1/S0)
2−1, or simultaneously C1 → C0 and S1 → S0 near

the abscissa of the peak. So let us examine that situation. The difference
between the general terms of C0 and C1 on one hand and of S0 and S1 on the
other hand is the multiplicative factor ln(m). Referring again to theorem 4,
we know that abs(1/ma) < abs(ln(m)/ma+ϵ), for any ϵ > 0 when m is large
enough. That means abs(cos(b.ln(m))/ma) ≈ abs(ln(m).cos(b.ln(m))/ma

(taking the example of C0 and C1) in the specific context of the asymptotic
shape of these curves with increasing m. The term ln(m) doesn’t change the
curvature (that is the second derivative) is a noticeable way, in other words,
the greatest effect is a linear effect, that is a shift plus a scaling. The shift
can be disregarded and let us focus on the scaling by some global constant
scaling factor. The probability for it to be exactly 1 is equal to 0 for the
C1/C0 ratio as ln(m) goes to infinity when m goes to infinity.

But, let us consider anyway the possibility of such event and check by the
most tangible way, that is a numerical example, what would happen then.
Note however that the case C0 → C1 and S0 → S1 cannot be reproduced
easily. There has been no attempt to do so here as this additional justifying
constraint is not necessary as the reader will see. That said, let us focus on
the peak nearby the abscissa bpeak ≈ 7005.08168. We do have C2

1 + S2
1 −

(C2
0 + S2

0) → 0 (see figure 5). But (C1/C0)
2 − 1 ≈ (S1/S0)

2 − 1 ≈ 58 (see
figures 6 and 7, which is a reminder of the topic of the constant scaling
factor) as long as we take a truncation between 800 and 2300 terms, case
where C2

1 + S2
1 − (C2

0 + S2
0) does not yet converge towards 0. When this

convergence finally begins with the sufficient number of terms (here above
2500 in figure 5), the ratios C1/C0 and S1/S0 suddenly enter an unstable
phase due to the low values of C0, S0, C1 and S1 (in figures 6 and 7)
oscillating around the previous value 58. These oscillations seem to remain
here regardless of the number of terms. But let us remind again that we
are addressing a numerical case. If one does dispose of a sufficient number
of terms and a sufficiently exact calculating tool (here we rely only on 14
significant digits tool), we might observe a diminishing oscillations so long
the two relevant curves do not touch. The observed messy oscillations are



CONVEXITY OVER THE CRITICAL BAND AND RIEMANN HYPOTHESIS 11

simply a preview, due to the imperfection of any numerical evaluation, of
the actual phenomena occurring within infinite number of terms and infinite
precision. This actual phenomena is that when C2

1 + S2
1 − (C2

0 + S2
0) = 0

effectively, the deviation would go to infinity, that is C1/C0 and S1/S0 would
be equal to ∞ which is absurd as we started on a peak’s position which is
not a non-trivial zero’s spot. □

Note 8. Another way to bring up the former contradiction is to observe in
figure 4 that the event of the curves SC0 and SC1 touching each other will
happen precisely when the two near zeros of the curve SC0 will meet as
a unique point. But that concurring event is also the one with no signifi-
cant downwards peak’s effect (as the whole thing depends precisely on the
existence of a pair).

Figure 5. Function C2
1 + S2

1 − (C2
0 + S2

0) versus m. Trun-
cation results up to mmax = 10000, a = 1/2, bpeak ≈
7005.08168. Oscillations ending after m ≈ 2500.

Lemma 3. For 0 ≤ a ≤ 1/2 and k > 0, we get inequality:

SCk(a, b) > 0 (10)

Proof. The property is check numerically directly near b = 0. Otherwise,
this is an immediate result of lemma 2. □

Note 9. The SC0 ordinate at the intermediate abscissa bpeak is, a priori,
statistically lower (using a logarithmic scale to represent values approaching
0) as two Riemann zeros are closer. We return to this point in paragraph
6.2.

6. Numerical evidences and approximations on R2(a, b)

6.1. Numerical evidences. Figure 8 shows the chaos in the variations of
R2(a, b) when a > 1/2. On the opposite, the trend towards the asymptotic
value R2(a → −∞, b) → 1 is quickly activated on the side a ≤ 1/2. Hence
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Figure 6. Function (C1/C0)
2 − 1 versus m. Truncation re-

sults up to 10000, a = 1/2, bpeak ≈ 7005.08168. Strong
permanent oscillations starting after m ≈ 2500.

Figure 7. Function (S1/S0)
2 − 1 versus m. Truncation re-

sults up to 10000, a = 1/2, bpeak ≈ 7005.08168. Strong
permanent oscillations starting after m ≈ 2500.

the obvious interest in choosing this side of the critical band for the Riemann
hypothesis proof.

The R2(a = 1/2, b) function changes from local minimum to local maxi-
mum when b changes. Here we are interested in finding some relationships
between a maximum and the two minima that frame it. The figures 9 and 10
give a sample of the values taken by R2(1/2, b) for b ∈ [15000, 15250]. The
savvy reader may note, although this is not greatly visible, that an upwards
peak also corresponds to negative value spikes on either side of this peak.

A closer look of the phenomena stands within the two figures 11 and
12. It is as if the rise towards the high values rpeak of R2(a, b) requires
a spring force acting from under ordinate 0. Indeed, roughly, the higher
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Figure 8. Function R2(a, b) versus a. Samples b =
100001 up to 100100 by unit increment, min(R2(1/2, b))
≈ −0.128374, max(R2(1/2, b)) ≈ 3.027709.

Figure 9. Function R2(a, b) versus b. a = 1/2, b ∈
[15000, 15030].

a peak stretches, the greater in absolute value the negative values rM of
R2(a, b) surrounding it.

The graph of figure 13 shows the coordinates (a, b) of the minima of
R2(a, b) surrounding the peak located between the 106073rd and the 106074th

Riemann’s zeros (b ≈ 78974.79335 and b ≈ 78974.82196). It shows the com-
plexity of the line of minima and suggest that the peak value may not be
only the mere result of the two minima at a = 1/2. The shape of the sur-
rounding of the peaks, next to the peak studied here, on both outside sides
of this line of minima (at the abscissa a = 1/2), instead of being inwards will
be outwards. Therefore, as the figure 11 shows, ”high” negative values on
one side may induces only two mild spikes as their spring momentums are
already affected in the middle peak. Indeed, representing rpeak as a function
of rM , where rpeak is the value of a given peak, rM the average between the



14 HUBERT SCHAETZEL

Figure 10. Function R2(a, b) versus b. a = 1/2, b ∈
[15000, 15030].

Figure 11. Function R2(a, b) versus b. a = 1/2, b ∈
[15131, 15134].

two lower values rM− and rM+ on either side,

rM = (rM− + rM+)/2,

we necessarily get a ”parasitic” branch. This is what is shown in figure 14.
The reader will note that this graphic was made by aggregating the data

provided in intervals b ∈ [3000, 3250], [6000, 6250], [9000, 9250], [12000,
12500], [15000, 15250] with a ∆b = 1/100 step.

The ”parasitic” branch is the one extending horizontally, the left side
being the result of some blurred mix of two dominant phenomena. It won’t
provide any additional useful information to that provided by the ascending
branch. The overriding character of the ascending branch develops when
rM reaches values under −0.125 (a quarter of the −0.5 limit value of rM we
will consider below).
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Figure 12. Function R2(a, b) versus b. a = 1/2, b ∈
[15131, 15134].

Figure 13. Function rpeak versus rM . Main branch.

Figure 14. Function rpeak versus rM
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The numerical illustration, based on figures 11 and 12, leads also to an
important remark. The ∆b = 1/10 step is much to wide to get a good
accuracy of the actual values of the peaks rpeak. It is imperative to do a
precise point-by-point study. We thus provide in [7] Appendix 3 Table 7
the complete data of the figures 15 and 16 (which are the same data with
simply a logarithmic scale for the y-axis in the second chart) one gets by a
precise study.

Figure 15. Function rpeak versus rM . Main branch.

Figure 16. Function rpeak versus rM . Main branch (rM <
−0, 1).

The resulting collected points in figure 15 show an increasingly rapid
divergence beyond the value rM ≈ −0.35. The second figure 16 shows that
this increase gets faster then exponential. The data near the origin are more
erratic because of the combination of the ascending and horizontal branches
within figure 14.
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6.2. Numerical approximations. The interpolation function that one can
use here is:

rpeak ≈ 1.4

(0.5 + rM )2.1
− 5 (11)

The adjustment parameters, except 0.5 in front of rM , are approximate.
We incline for an exponent on the denominator equal to 2 instead of 2.1,
but our data to date indicates the adjustment proposed here. For lack of
better, we let it that way.

The important point is that this function diverges at rM = −0.5 which
means a bumper value impossible to exceed (as soon as −0.5 instead of −1)
because of the continuity of R2(a, b) demonstrated in paragraph 7.2. This
then is a first hint confirming theorem 3.

Note 10. The term rM is an average of 2 terms. Nothing prevents one of
them from being smaller than −0.5. However, since the two rM coordinates
around a peak are outside on either side of the two Riemann zeros, and
therefore such that rM− < 0 and rM+ < 0 , the limit rM > −0.5 means that
neither of the two rM can be less than −1.

A random search for high-amplitude peaks of R2(a, b) would require enor-
mous computational resources without the existence of a sufficiently simple
tracking. Fortunately, an apparent link between the gap of two consecutive
Riemann zeros and the height of the intermediate peak makes the search
quite easy thanks to the database referenced in [5].

As it turns out to be, a peak is generally all the more ample as the gap
between two consecutive Riemann zeros (at abscissas noted zero R− and
zero R+) is smaller. We get the following approximate relationship, where
br is the peak abscissa, ∆br the gap between two Riemann’s zeroes.

rpeak ≈ 1 +
5

∆b2r · b
1
4
r

(12)

According to this relationship, the amplitude of the peak tends towards
infinity when the gap ∆br tends towards zero. These cases may be more
and more common for very high-value abscissas since the average difference
between zeros is asymptotically in 2π/ ln(abscissa zeroR). The presence of
the logarithm and the counterpart-balancing effect of the term br , however,
makes it difficult to find many cases with very high values here. Notably,
there is no rpeak > 10000 example for the first 500000 Riemann zeroes.

Figure 17 represents the numerical results and evaluation by an inter-
polation formula without taking into account the abscissa of the peak br
(br1/4 term at denominator obliterated). In figure 18, this additional factor
is introduced giving more precise interpolation at some smaller values of the
peaks.

For large peaks, we can neglect the constants -5 and 1 in the relations
11 and 12. In order to compensate for the power 2.1 in relations 12 that
we wish to reduce to 2, we increase somewhat the constant in front of the
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Figure 17. Function rpeak versus ∆br.

Figure 18. Function rpeak versus ∆br and br.

fraction. Then equating relations 11 and 12, therefore eliminating rpeak, we
get:

rM ≈ −1

2
· (1− 1.2 ·∆br · b

1
8
r ) (13)

Since ∆br · b
1
8
r > 0, the term rM is greater than −0.5. For values x close

to 0, exp(−x) ≈ 1− x, and thus:

rM ≈ −1

2
· exp(−1.2 ·∆br · b

1
8
r ) (14)

In the range of numerical values examined, we also have the simpler al-
ternative formula:

rM ≈ −1

2
· exp(−5∆br) (15)

which leads to the figures 18 and 19.
Below the critical value of the gap (approximatively ∆br = 1/2), the

points align quite perfectly, the only selection criterion having been to take
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Figure 19. Function rM versus ∆br and br.

Figure 20. Function rM versus ∆br.

the gap ∆br among the first 100000 zeroes such as ∆br is closest by higher
value of 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45, (for the con-
struction of figure 19), a selection that gives only an almost uniform spacing
in abscissa but in no way any predisposition on the value of the ordinate.
We added also to the chart the lower ∆br gap solution that exists among
Riemann’s first 500000 zeroes.

Close to the origin (∆br < 0.05), the approach towards rM = −0.5 is
quasi-linear as one can see in figure 20.

7. Theorems related to R2(a, b)

7.1. Geodesics of R2(a, b).

Theorem 6. The local maximum value of R2(a, b) is related to the mini-
mums’ paths in the vicinity of this peak.

Proof. The extrema of R2(a, b) are determined by the cancellation of the
two partial derivatives ∂aR2 and ∂bR2. This means, using relations 17 and
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18 that we will establish later on, that (C2
1 + S2

1 +2C0 ·C2 +2S0 · S2) · (C1 ·
C2 + S1 · S2) + (C2

1 + S2
1) · (C0 ·C3 + S0 · S3) = 0 and (C2

1 + S2
1 + 2C0 ·C2 +

2S0 · S2) · (C1 · S2 − S1 · C2) + (C2
1 + S2

1) · (S0 · C3 − C0 · S3) = 0. Thus
(C1 ·C2+S1 ·S2) · (S0 ·C3−C0 ·S3) = (C1 ·S2−S1 ·C2) · (C0 ·C3+S0 ·S3).
This last equation is common to local minimums and maximums, hence the
obvious link. □

Note 11. The common equation explains the link between a peak of R2(a, b)
and the minima on either side of that peak observed in the illustrations in
the previous paragraph. In fact, what produces the value of the peak is not
only the two values on either side, where the parameter a = 1/2 is set in
advance, but the entire minimum geodesic ”surrounding” that peak in the
general coordinate (a, b). However, the average of the two values examined
above is already, when the peak has a significant value above 1, a good
representation of the said neighbourhood and thus allows to anticipate the
peak’s value.

7.2. Continuity of R2(a, b).

Theorem 7. The R2(a, b) function is continuous in interval 0 ≤ a ≤ 1/2.

Proof. It is sufficient to prove that the R2(a, b) denominator, i.e. SC1(a, b)
= (C1(a, b))

2 + (S1(a, b))
2 does not cancel. This is an immediate result of

lemma 3. □

Note 12. Obviously, the function is then also continuous outside the indi-
cated interval.

7.3. Partial derivatives linked to R2(a, b). In this text, the functions are
generally dependent on two variables a and b. The handling of the objects
is simplified by writing F instead of F (a, b). The partial derivative writing
of F , versus parameter a, ∂/∂a(F (a, b)) is simplified as ∂aF . The same goes
for b.

7.3.1. Partial derivatives of Ck(a, b) and Sk(a, b). Let us write again rela-
tions 4 and 5:

Ck(a, b) =
∞∑

m=1

(−1)m−1+k(ln(m))k ·m−a · cos(b. ln(m))

and

Sk(a, b) =

∞∑
m=1

(−1)m−1+k(ln(m))k ·m−a · sin(b. ln(m))

We get then immediately

∂aCk =
∞∑

m=1

(−1)m+k(ln(m))k+1 ·m−a · cos(b. ln(m))

∂aSk =

∞∑
m=1

(−1)m+k(ln(m))k+1 ·m−a · sin(b. ln(m))
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∂bCk =

∞∑
m=1

(−1)m+k(ln(m))k+1 ·m−a · sin(b. ln(m))

and

∂bSk =

∞∑
m=1

(−1)m−1+k(ln(m))k+1 ·m−a · cos(b. ln(m))

In other words:
∂aCk = Ck+1

∂aSk = Sk+1

∂bCk = Sk+1

∂bSk = (−1) · Ck+1

(16)

All of these functions, as sums of continuous functions are continuous.

7.3.2. Partial derivatives of R2(a, b). Let us rewrite equation 8 in a simpli-
fied way:

R2 =
C0 · C2 + S0 · S2

C2
1 + S2

1

It follows using identity (u/v)′ = (u′.v − u.v′)/v2 and introducing

RSC0 = (C2
1 + S2

1 + 2C0C2 + 2S0S2)(C1C2 + S1S2),

the two expressions:

∂aR2 =
RSC0 + (C2

1 + S2
1)(C0C3 + S0S3)

(C2
1 + S2

1)
2

(17)

∂bR2 =
RSC0 + (C2

1 + S2
1)(S0C3 − C0S3)

(C2
1 + S2

1)
2

(18)

Note 13. The two previous partial derivatives are continuous due to the fact
that (C1(a, b))

2 + (S1(a, b))
2 doesn’t cancel (see again lemma 3).

7.4. The impossible equality R2(a, b) = −1. Making sure that R2 = −1
is out of reach, we get at the same time a broader impossibility, that is
R2 < −1 since R2(a, b) is continuous according to both coordinates a and b
(as proven in subsection 7.2) and therefore the passage by this intermediary
step is an absolute necessity. In addition, we place ourselves in the conditions
a ∈ [0, 1/2] and b ∈ [3,+∞[.

From relation 8, we get by definition R2 = (C0C2 + S0S2)/(C
2
1 + S2

1), so
that also (C0C2 + S0S2) = R2 · (C2

1 + S2
1). Relation 18 becomes then:

∂bR2 =
(1 + 2R2)(C1S2 − S1C2) + (S0C3 − C0S3)

(C2
1 + S2

1)
(19)

We seek the values for which the R2 expression is minimal when b varies,
thus those values such that ∂bR2 = 0, which according to the former ex-
pression means also R2 = (1/2).((C0.S3−S0.C3)/(C1.S2−S1.C2)− 1). The
solutions are hence those for which we have simultaneously:
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R2x =
C0C2 + S0S2
C2
1 + S2

1

(20)

and

R2y =
1

2

C0S3 − C3S0
C1S2 − C2S1

− 1 (21)

and
R2 = R2x = R2y (22)

The two figures 21 and 22 are the same, the second being only a close-up
view of a particular area. They contain all the (R2x(a, b), R2y(a, b)) points
obtained for a = 1/2, b = 0 to 20000 and ∆b = 1/4, the actual solutions join-
ing these points by continuity. The point (R2x, R2y) ≈ (−0.5122, −0.5121)
for (a, b) = (1/2, 78974.87502) corresponding to the only example found
where R2(a, b) < −1/2 is also reported on the graphic. The only solutions
to retain are on the R2x = R2y axis of this graphic (the light blue dotted
line), but the usefulness of spotting all the dots (R2x, R2y) is obvious. This
makes it possible to visualize in an obvious or even garish way, the mini-
mum abscissa when simultaneous equalities are obtained. We see that the
dots are concentrated, for the part below the abscissa R2x = 0, in a triangle
R2y = −1/2, R2x = 0, R2y = 1/2+2R2x (green frame). The lower abscissa
value of this triangle is −1/2. A few points are slightly outside this triangle,
but this does not affect our conclusion. One finds these few points mostly
above the triangle near the 0− abscissa.

Figure 21. R2y versus R2x. a = 1/2, b ∈]3, 20000]. Sam-
ples b with ∆b = 0.25 spacing.

Such a figure with very sharp boundary lines, although slightly permeable,
show the absurdity of points extending far beyond R2x < −1/2, namely to
a hypothetical R2x = −1, for a = 1/2.

The graph in figure 21 shows a concentration of coordinates (Rx,Ry) along
and below the axis Ry = −1/2 when Rx tends towards infinity. However,
the effective solutions are those placed on the axis Rx = Ry. This means
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Figure 22. R2y versus R2x. a = 1/2, b ∈]3, 20000]. Sam-
ples b with ∆b = 0.25 spacing. Closer-up of previous figure.

the scarcity of high peak values both because of the scarcity of points along
the axis Ry = −1/2 and the distance of the line Rx = Ry from the said
line. Therefore a double penalty in some way for any attempt to deny the
Riemann hypothesis...

The slope of the curve giving R2y as a function of R2x is ∞ on the dotted
blue line R2y = R2x as shown in the figure 23’s example and the many more
that the interested reader may find at reference [7] appendix 11. This is a
direct consequence of the construction of this graph which initially uses the
relationship ∂bR2 = 0 and therefore results in ∂bR2x = 0 precisely on the
line R2x = R2y.

Figure 23. Function R2y versus R2x. The second Dirichlet
zero is here the point in violet color. The red point is the
”impossible” target R2 = −1.

This slope is also infinite when R2y diverges, that is to say when C1.S2−
C2.S1 = 0 but then there is of course no corresponding point on the curve
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itself (see again reference [7] appendix 11). The previous graphics thus show
that points cannot reach the −1 abscissa (remaining the fact that overruns
of −1/2 are possible).

Theorem 8. The minimal value of R2(a, b), b > 3, is −1 excluded.

Proof. From relations 20, 21 and 22, we get the two following equations to
be solved:

(C2).C0 + (S2).S0 −R2.(C2
1 + S2

1) = 0
(S3).C0 − (C3).S0 − (1 + 2R2).(C1.S2 − S1.C2) = 0

So that: (
C0

S0

)
=

(
C2 S2
S3 −C3

)−1(
R2.(C2

1 + S2
1)

(1 + 2R2).(C1.S2 − S1.C2)

)
Then:(

C0

S0

)
=

1

C2.C3 + S2.S3

(
C3 S2
S3 −C2

)(
R2.(C2

1 + S2
1)

(1 + 2R2).(C1.S2 − S1.C2)

)
Let us write

α = R2.(C2
1 + S2

1)
β = (1 + 2R2).(C1.S2 − S1.C2)

Then

C2
0 + S2

0 =
α2.(C2

3 + S2
3) + β2.(C2

2 + S2
2) + 2α.β.(C3.S2 − C2.S3)

(C2.C3 + S2.S3)2

which is obviously equivalent, when C2
0 + S2

0 ̸= 0, to

1 =
α2.(C2

3 + S2
3) + β2.(C2

2 + S2
2) + 2α.β.(C3.S2 − C2.S3)

(C2
0 + S2

0).(C2.C3 + S2.S3)2
(23)

Posing Rαβ2 = α2.(C2
3 + S2

3) + β2.(C2
2 + S2

2), let us write the ratio:

DSC(X) =
Rαβ2 + 2α.β.(C3.S2 − C2.S3)

(C2.C3 + S2.S3)2.(C2
0 + S2

0)
(24)

and
DL(X) = ln(DSC(X))

Here we set DSC(X) as all the results of equation 24 with the condition

R2(a, b) = X (25)

A good understanding of the argument below requires, as before, the
distinction between the two cases R2(a, b) = −1/2 and R2(a, b) = −1,
knowing that continuity gives perfectly accessible intermediate values, if
necessary, between these two cases.

Case 1: If R2 = −1/2, we get:

DSC(−1/2) =
(C2

1 + S2
1)

2.(C2
3 + S2

3)

4(C2
0 + S2

0).(C2S3 + S2.S3)2

and
DL(−1/2) = ln(DSC(−1/2))
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According to equation 23, the R2(a, b) = −1/2 equality is reached when

DSC(−1/2) = 1

which is equivalent to

DL(−1/2) = 0

Case 2: If R2(a, b) = −1, we get letting in the same time RSC1 =
(C2

1 + S2
1)(C

2
3 + S2

3) + 2(C1S2 − C2S1)(C3S2 − C2S3):

DSC(−1) =
(C2

2 + S2
2)(C1S2 − C2S1)

2 +RSC1.(C
2
1 + S2

1)

(C2
0 + S2

0)(C2C3 + S2S3)2

and

DL(−1) = ln(DSC(−1))

The R2(a, b) = −1 case is reached when

DSC(−1) = 1

equivalent to

DL(−1) = 0

Figures 24 and 25 of DSC(−1/2) and DSC(−1) are, in fact, point clouds’
variants undergoing a continuous distortion of figure 21 (and 22). They show
the same thing in a different form.

Figure 24. Function ln(DSC(−1/2)) versus R2. a = 0.5
and b ∈]50, 5050].

Figure 24 shows the outgrowth of the minimums, on the negative R2 side,
aligned on the line ln(DSC(−1/2)) = 0. With figure 25, the outgrowth is
deflected upwards showing the impossibility of reaching R2 = −1 values.
On line ln(DSC(−1)) = 0, where this event R2 = −1 must be effective to
reject Riemann’s hypothesis, the intersection is not only above −1/2, but
much further beyond 0+.

Finally, let us look at the precise reason why R2(a, b) = −1 events are
not achieved by local punctual examples. For this, we choose the case for
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Figure 25. Function ln(DSC(−1)) versus R2. a = 0.5 and
b ∈]50, 5050].

which we detected the smallest difference between Riemann’s zeroes among
the first 500000 of them and a few others.

The graphic in figure 26 shows simultaneously, one on one, the evolution of
R2 and ln(DSC(−1)). We recall that ln(DSC(−1)) = 0 (or DSC(−1) = 1)
is the target value right above the R2 minimums.

Figure 26. Function R2 versus b. Function ln(DSC(−1))
versus b. a = 0.5 and b ∈ [273192.5, 273195].

The initiation of an R2 descent induces the initiation of a ln(DSC(−1))
ascent and vice versa as shows the examples of figures 27 and 28. This
behaviour is perfectly reproducible, as shown by the two additional figures
29 and 30.

The crossing of R2 and ln(DSC(−1)) curves at the approach of a low-R2
zone is at the level of ordinate 0 and ln(DSC(−1)) then quickly increases.
Let us consider the intersections of the R2 and ln(DSC(−1)) curves. We
call inner crossings those whose abscissas are between two Riemann’s ze-
ros and outer crossings the other two to the right and left (of figure 28).
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Figure 27. Zoom 1: Function R2 versus b. Function
ln(DSC(−1)) versus b. Outer crossings at ordinates ≈ 0.68
and ≈ 0.695.

Figure 28. Zoom 2: Function R2 versus b. Function
ln(DSC(−1)) versus b. Inner crossings at ordinates ≈ 0.43
and ≈ 0.415.

The term ln(DSC(−1)) necessarily diverges according to the relationship
24 since C2

0 + S2
0 = 0 for any Riemann (and Dirichlet) zero. So, the in-

ner crossings are trivially above ordinate 0. The outer crossings are also, a
point that however seems difficult to establish. The easiest way is to assess
the value of DSC(−1) at the points that matter to us, that is where R2 is
minimum.

For this, we pick the data used to establish figure 19 with the same selec-
tion criterion chosen at that time. Doing so, we get figure 31.

We recorded DSC(−1)− the value of DSC(−1) at the rM− abscissa be-
fore the peak and DSC(−1)+ the value at the rM+ abscissa after the peak.
We reported also in the graphics the average DSC(−1) value of these two
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Figure 29. Function R2 versus b. Function ln(DSC(−1))
versus b. a = 0.5 and b ∈ [7004, 7006]. Outer crossings at
ordinates ≈ 0.16 and ≈ 0.1. Inner crossings at ordinates
≈ 2.8 and ≈ 2.8.

Figure 30. Function R2 versus b. Function ln(DSC(−1))
versus b. a = 0.5 and b ∈ [78974.4, 78975.2]. Outer crossings
at ordinates ≈ 0.55 and ≈ 0.1. Inner crossings at ordinates
≈ 2.8 and ≈ 2.85.

values, knowing that what really is important here is rather the minimum
value of the two values DSC(−1)− and DSC(−1)+.

The alignment of the points only fails for a gap between zeroes of Riemann
higher than approximatively ∆br = 1/2 in exactly the same way we had
found in the case of figure 19, therefore in a region which has no consequence
to our purpose.

On the contrary, for the points of interest to us, i.e. points near to the
origin of the abscissas (extremely small ∆br), this region shows an upwards
move of DSC(−1) well beyond the critical value DSC(−1) = 1. This surge
is due to the simple fact that the closer two Riemann zeros are, the more
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Figure 31. Function DSC(−1) versus ∆br. a = 1/2.

pronounced the corresponding peak is and the steeper the flanks of the peak,
including until the abscissas of the minimums of R2. Thus, the abscissa of
a minimum (rM− or rM+) of R2 is close to that of its corresponding zero,
in other words, when ∆br → 0, then C2

0 + S2
0 → 0 at the abscissas rM− and

rM+ also. But C2
0 + S2

0 → 0 is at the DSC(−1) denominator and no term
in C0 or S0 is within the numerator for compensation. The term C2

1 + S2
1 ,

and even more C2
2 +S

2
2 , will tend to 0 with many decades of delay as shown

by the typical example of figure 4, the number of decades increasing rapidly
with the lowering of ∆br. The other terms do not tend in any way towards 0.
The compensation remains effective in DSC(−1/2) because of the square of
C2
1+S

2
1 in theDSC(−1/2) numerator, but it would take a power of at least 4

effected to C2
2 +S

2
2 in DSC(−1) (plus 3 very close Riemann’s zeros at least)

to obtain the said compensation. Thus, DSC(−1) necessarily diverges when
∆br → 0 and so in a very steep manner as figure 31 confirms it, hampering
the slightest possibility to get a DSC(−1) = 1 mishap. □

Note 14. The reader will note that all the examples of this proof are built
with a = 1/2. There is an obvious and practical reason to that, which is that
the numerical results are interesting only for this critical line, as the values
of the extrema decline otherwise quite quickly (in the case a < 1/2). There
are no data outside the said critical line that can be used to contradict our
presentation in a mere relevant way.

Note 15. To be exhaustive, the reader will also take in account in the pre-
vious proof the argument of paragraph 7.5.3 as well as the important note
10.

Theorem 9. The asymptotic value of the R2(a, b) minimums is −1/2.

Proof. By the term ”asymptotic,” we mean the minimums of R2(a, b) when b
tends towards infinity (and the parameter a is fixed). In this case, Riemann’s
zeros are, on average, at a distance of about 2π/ ln(nr), where nr is the num-
ber of Riemann zeroes up to abscissa br (of some Riemann zero imaginary
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part), meaning they get on average closer and closer. According to relation
18, the numerator of ∂bR2 is equal to (C2

1 +S
2
1 +2C0.C2+2S0.S2).(C1.S2−

S1.C2) + (C2
1 + S2

1).(S0.C3 − C0.S3). The cancellation of ∂bR2 occurs for
(C0.C2 + S0.S2)/(C

2
1 + S2

1) = (1/2).((C0.S3 − S0.C3)/(C1.S2 − S1.C2)− 1),
in other words when:

R2 =
−1

2
+

C0.S3 − S0.C3

2.(C1.S2 − S1.C2)
Asymptotically, as we saw in the last part of the proof of the impossibility

of R2 = −1, the terms C0 and S0 tend towards 0 much faster than all
the terms of the Ck and Sk’s type, k > 0. It immediately follows R2 →
−1/2. □

Note 16. This result reminds us that negative overruns of −0.5 are possi-
ble. These will become more frequent when b increases. But, asymptoti-
cally, these overruns will also be more and more restricted to the immediate
vicinity of −0.5 and therefore without the possibility of joining −1, thus
confirming again theorem 8.

Note 17. At the peak abscissa rpeak, the expression C1.S2−S1.C2 necessarily
takes values very close to 0, taking away this prerogative from the other two
extrema (the minimums).

Numerical examples.
The examples below are realized thanks to the on-line computer applica-

tion PARI/GP. The reader can find the digital lines of code at reference [7],
Riemann sheet, appendix 9.

These are the three cases with smallest gaps between Riemann zeros of
abscissas less than b = 2000000. It confirms that the minimum values rM−
and rM+ of R2 on respectively the left and right sides of a peak rpeak of
R2 between two close Riemann zeros tend generally both towards −0.5 as
expected (thus do not so in a unbalanced way like for example rM− ≈ 0−

and rM+ ≈ −1+).
In these examples we give various values to the truncations in order to

enable the reader to see the impact of such choices. Of course, we choose
large enough values to start with so that we focus only on ”near” finally
expected results.

The ”theoretical” value of the peak (truncation → +∞) is obtained from
the formula rpeak ≈ 1 + 5/(∆b2r .b

1/4
r ), which we know is only an approxima-

tion. It is difficult to obtain the actual precise value of these peaks numer-
ically. Some values concerning the minimums rM− and rM+ of R2 to the
left and right of the Riemann’s zeros surrounding a peak may also remain
imprecise if the truncation does not include enough terms. The reader will
be also able to compare the final truncations used to the numbers of terms
m ≈ 1/(exp(π/b)− 1) corresponding to the last jump of values of the terms∑

(−1)m+k.(ln(m))k+1.m−a. cos(b. ln(m)) and
∑

(−1)m+k.(ln(m))k+1.m−a.
sin(b. ln(m)).
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The reading is to be done line by line, 3 columns by 3 columns.

Example 1. Gap between zeros = 0.00416113
3271858th Riemann zero, b = abs zeroR− = 1779292.80366586
3271859th Riemann zero, b = abs zeroR+ = 1779292.80782699
Number of terms for the last values’ jump: 566400.

abs rM - trunc. rM - abs rM+ trunc. rM+ abs peak trunc. value peak

+∞ (th.) 7907.52

1779292.7940 1000000 -0.41291 1779292.830 1500000 -0.50279 1779292.805757 3000000 28888.16

1779292.7940 1500000 -0.44111 1779292.830 3000000 -0.51002 1779292.805757 4000000 6634.78

1779292.7940 3000000 -0.47259 1779292.835 5000000 -0.50784 1779292.805757 5000000 6030.39

1779292.7920 5000000 -0.46615 1779292.835 7000000 -0.50774 1779292.805756 6000000 7235.79

1779292.7915 7000000 -0.46839 1779292.830 9000000 -0.50774 1779292.805746 7000000 8360.63

1779292.7920 7000000 -0.468493 1779292.835 9000000 -0.50789 1779292.805747 7000000 8361.39

1779292.7925 7000000 -0.468489 1779292.840 9000000 -0.50647 1779292.805748 7000000 8301.65

+∞ (th.) 7907.52

Example 2. Gap between zeros = 0.003259290
3637897th Riemann zero, b = abs zeroR− = 1961773.9933561
3637898th Riemann zero, b = abs zeroR+ = 1961773.9966154
Number of terms for the last values’ jump: 634000.

abs rM - trunc. rM - abs rM+ trunc. rM+ abs peak trunc. value peak

1961773.979 1500000 -0.50639 1961774.010 1500000 -0.50081 1961773.995 3000000 2476.21

1961773.979 2000000 -0.49447 1961774.010 2000000 -0.48523 1961773.995 4000000 6172.31

1961773.979 4000000 -0.48805 1961774.010 4000000 -0.48598 1961773.995 7000000 3971.08

1961773.979 6000000 -0.49153 1961774.010 6000000 -0.48904 1961773.9949 10000000 20729.31

1961773.979 8000000 -0.49178 1961774.010 8000000 -0.48832 1961773.9949 15000000 15082.05

1961773.978 10000000 -0.49072 1961774.009 10000000 -0.487921 1961773.99497 20000000 4659.89

1961773.979 10000000 -0.49081 1961774.010 10000000 -0.487927 1961773.99498 20000000 13634.89

1961773.980 10000000 -0.49075 1961774.011 10000000 -0.487741 1961773.99499 20000000 11987.72

+∞ (th.) 12577.56

Example 3. Gap between zeros = 0.002958654
1115578th Riemann zero, b = abs zeroR− = 663318.508310486
1115579th Riemann zero, b = abs zeroR+ = 663318.511269140
Number of terms for the last values’ jump: 211200.
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abs rM - trunc. rM - abs rM+ trunc. rM+ abs peak trunc. value peak

663318.493 400000 -0.47470 663318.531 400000 -0.49702 663318.509792 2000000 12083.47

663318.493 500000 -0.48127 663318.531 500000 -0.48719 663318.509792 3000000 12857.79

663318.493 600000 -0.47625 663318.531 600000 -0.49116 663318.509792 4000000 30072.08

663318.493 700000 -0.48800 663318.531 700000 -0.49903 663318.509792 5000000 15770.54

663318.493 800000 -0.48891 663318.531 800000 -0.49867 663318.509792 6000000 21286.54

663318.493 900000 -0.48151 663318.531 900000 -0.49167 663318.509792 7000000 27207.50

663318.492 1000000 -0.48170 663318.530 1000000 -0.49245 663318.509792 8000000 25831.65

663318.493 1000000 -0.48176 663318.531 1000000 -0.49245 663318.509792 9000000 19475.39

663318.494 1000000 -0.48161 663318.532 1000000 -0.49234 663318.509792 10000000 20324.01

+∞ (th.) 20016.79

7.5. The exception to the rule and solace on R2(a, b). We mentioned
an exception to the minimum rule of −1 very early in this text (see note
of theorem 5). It is essential to give the reason for it because, although
of no practical importance as it is local and therefore of easily verifiable
effect (actually none as there is no Riemann zero around the corresponding
b value), it is nevertheless like a thorn in the foot from a theoretical point
of view and an explanation is therefore welcome.

7.5.1. The very peculiar case b < br1. We examine the case where abscissa
b is lower than that of the first Riemann zero and its evolution out from
this area. The types of curves and choice of colours are the same as in the
graphics 21, 22 and 23. In particular, the dark blue curve represents the
points (R2x, R2y). The only difference here is instead of giving the points
(R2x, R2y) in a discrete way choosing some ∆b spacing, we represent the
continuous curve.

Figure 32. Function R2y versus R2x. a = 1/2 and b ∈
]0, 3.5].

The reader can see in figure 34 that as soon as the blue curve crosses
abscissa R2x = 0, it is trapped in the areas described above despite all the
restlessness, to say the least, that reigns there.



CONVEXITY OVER THE CRITICAL BAND AND RIEMANN HYPOTHESIS 33

Figure 33. Function R2y versus R2x. a = 1/2 and b ∈
]0, 11.5].

Figure 34. Function R2y versus R2x. a = 1/2 and b ∈
]0, 200].

7.5.2. Why can R2x be less than −1 for small values of b ? Some rule will
apply in a context and only in this case. It is not otherwise here. Indeed, let
us collect the values of cos(b. ln(m)) and sin(b. ln(m)), in the sums Ck and
Sk as a function of m, for truncation m = 1 to 10000 for two samples of b,
b = 1.55 and b = 14. The two samplings, joining the points by continuity,
the values of m in abscissa, are represented in figures 35 and 36.

Let us collect also these values for two additional cases (b = 0 and
b = 100). Then, for these four samplings, let us list the results, not by
increasing m, but by increasing function values which enables us to see their
function distributions. We get the graphs in figures 37 up to 40. We ob-
serve that the distributions are not according to some fixed scheme for small
values of b. It gradually tends however, as b increases, towards a unique si-
nusoidal distribution common to the elements of

∑
cos(b. ln(m)) and those

of
∑

sin(b. ln(m)). The minimum −1 rule is necessarily subject to a certain
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Figure 35. Function cos(l. ln(m)) versus m. Function
sin(l. ln(m)) versus m. a = 1/2 and b = 1.55.

Figure 36. Function cos(l. ln(m)) versus m. Function
sin(l. ln(m)) versus m. a = 1/2 and b = 14.

strict framework. We note that this frame is the existence of this sinusoidal
distribution. Thus, the deviation from the minimum rule can be acceptable
up to the somewhat quite approximate value b ≈ br1 (≈ 14). Beyond this
region, a unique distribution type cos(π.(m/mmax+1)) settles permanently
and will remain so up to b infinite. Of course, truncation cannot be limited
to mmax = 10000 terms when b increases (as was the approximation choice
here).

Of course also, except for b = 0, by taking a truncation with more terms
(than 10000), we can find a sinusoidal profile for small values of b. But this
takes place while the additional terms have only a negligible effect on the
asymptotic value of R2x, the latter being essentially built on the first terms.
The profile of the distribution must be ”complete” in the useful truncation
zone, where it has a real effect on the value of R2x (that is R2), otherwise
it is strictly speaking effectively ”incomplete”.
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Figure 37. a = 1/2 and b = 0.

Figure 38. a = 1/2 and b = 1.55.

Figure 39. a = 1/2 and b = 14.

7.5.3. Is the unique asymptotic distribution sufficient to imply R2x greater
than −1 for b > br1? In other words, how many b-values need to be checked
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Figure 40. a = 1/2 and b = 100.

before concluding that the minimum value cited is legitimate each time (and
that we are in the presence of a theorem)?
Well, to whom will object that this is only a few calculations on a tiny part
of the values that can take b, we recall that the parameter b is encapsulated
in the cosine and sinus functions that can only take values between −1 to 1.
The neighbourhoods of all values within this interval are reached thousands
of times (for b < 20000 for example and we went a hundred times further)
and the functions are continuous. Of course, not all possibilities are covered,
but the sample is quite representative of the whole system of equations. In
addition, if the examples are necessarily specific, the relationships and thus
conclusions are general.

Note 18. We do not say, however, that the sinusoidal distribution is sufficient
to get R2 greater than −1. If we affect random values to cos(b. ln(m))
between −1 and 1 (with corresponding values deduced for sin(b. ln(m)))
in the way that we still get a correct distribution, we still can get counter-
examples to the R2 result (we checked the failure). It is absolutely necessary
to use both (cos(b. ln(m)), sin(b. ln(m))) and m = 0, 1, 2, etc. in this order
in the equations for everything to work according to expectation.

Proposition 2. The Riemann hypothesis is true.

Argument. Going back to the proposition 1, we mentioned that we had
to establish the particular event a = 1/2 as some limit case which clearly
happens in the study of R2(a, b). The fact that D1(a, b) ̸= 0 and D2(a, b) >
0 on the left side of the critical band allows then to conclude.

8. Final note

We studied the local extrema of a function, labelled R2(a, b), over the
lower half of the Riemann critical band. The maximums of this function
may have any positive high value without incidence on our goal, but the
minimums are expected to stay within the ]−1, 0[ negative interval in order
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to prove the Riemann hypothesis. The way the proof was implemented here
enables to calibrate the ”distance” to a possible denial and shows a quite
wide gap to such a mishap. Indeed, numerically, the lowest value one can
find in the (a, b) ∈ ([0, 1/2], [3, 2000000]) range is R2(a, b) ≈ −0, 51209 which
event happens for the coordinates (a, b) = (1/2, 78974.87502). Moreover it is
easy to prove that the asymptotic values of the local negative extrema tend
towards −0, 5. Most of the theoretical work was therefore here intended to
get proof in the intermediate range (a range being within the very lower
range of coordinates (a, b) already known void of any Riemann hypothesis
exception, thus even more reassuring in our conclusion).

There are more numerical examples and graphics in reference [7] for a
reader who may wish to get more of this kind of supporting evidences. One
has to highlight the difficulty to get rapid evaluation of R2(a, b) for large
b. It would be convenient to be able to use a method of acceleration of
convergence reducing the number of terms m, which order of magnitude is
proportional to b, to a number of terms for example of size proportional to
b1/2. Unfortunately, referring to appendix A and therefore the constraint
reminded in relation 9, the jumps in values of cos(b. ln(m)) and sin(b. ln(m))
makes such alleviation impossible.

Several formulas, such as relationships 11, 12 or 14 have been established
empirically. Therefore, even though not essential to establish our proof, it
would be still interesting to find some alternative mathematical method to
determine the exact relationships. Those are necessarily quite complex, as
according to further investigations again provided at reference [7] (within
Appendix 8), there are effectively better approximations which consist in
including not only the imaginary part of the nearby Riemann’s zeroes but
also, at least, the imaginary part of the nearby Dirichlet’s zeroes.

If such an exact alternative is reached, in a thousand years, when another
eminent reader that the one who reads us here, will wake up, his wish will
be all the more satisfied looking at these additional relationships. If not, we
will tell him: ”Young man, in mathematics, you don’t understand things,
you just get used to them”. (By John Von Neumann).

Appendix A. Imperatives linked to the truncations

The numerical evaluations within of the body of text are drawn from ex-
pressions with infinite numbers of terms. They are based on approximations
by truncation at a certain rank n. Expressions are the combinations of

Ck(a, b) =

∞∑
m=1

(−1)m−1+k(ln(m))k ·m−a · cos(b. ln(m))

and

Sk(a, b) =

∞∑
m=1

(−1)m−1+k(ln(m))k ·m−a · sin(b. ln(m))

which shapes as a function of n is typically those of figure 41.
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Figure 41. a = 1/2, b = 15300

Figure 42.
Zoom on R2(a, b)
figure 41

Figure 43.
Zoom on R2(a, b)
figure 41

The particular look of these graphics can give the reader the impression
that it is impossible to assess the value of expression to infinity. Indeed,
leaps in values appear at abscissas that may seem random. What guaran-
tee do we have here that a new jump will not arise somewhere asymptoti-
cally? To find out what is happening, it is necessary to trace the origin of
these jumps. The sums we are talking about here are partially alternating
sums. A jump comes from the fact that, at some stage, a given term is
followed by a term of the same sign and this ”many” times. So let us con-
sider what produces the sign of two terms that follow each other. Within
(−1)m−1+k.(Ln(m))k.m−a.cos(b.Ln(m)), neither Ln(m) nor m−a have any
effect on the change of sign. It remains therefore (−1)m.cos(b.Ln(m)), k
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being a constant term that can be eliminated in the list. For two successive
terms to be the same sign, it is sufficient asymptotically that (−1)m.cos(b.Ln(m))
≈ (−1)m+1.cos(b.Ln(m+1)) since Ln(m) and Ln(m+1) are of close values.
From that, we deduce cos(b.Ln(m+1)) ≈ −cos(b.Ln(m)), or cos(b.Ln(m+
1)) ≈ cos(π + b.Ln(m)), and then b.Ln(m+ 1) ≈ (1 + 2k).π + b.Ln(m), or
finally:

b.Ln(1 + 1/m))/π ≈ 1 + 2k

where k ∈ Z.
For b > 0 and m > 0, k is necessarily in N .
Whenm→ +∞, and b has some given value, the product b.Ln(1+1/m))/π →
0, so that the values of m for which b.Ln(1 + 1/m))/π ≈ 1 are the last ones
for which a jump occurs. The initial expression will converge after this last
leap which intervenes at abscissa:

m ≈ 1/(exp(π/b)− 1)

In the case of the graphics 41 to 43 examples, m ≈ 1/(exp(π/15300)− 1) ≈
4870. The other jumps occur around m abscissas such as:

m ≈ 1/(exp((1 + 2k).π/b)− 1)

This gives Table 1. This table explains the ”chaos” near the origin of the

Table 1

k m
· · · · · ·
10 231
9 256
8 286
7 324
6 374
5 442
4 541
3 695
2 974
1 1623
0 4869

Table 2

k m
· · · · · ·
10 243
9 270
8 304
7 347
6 405
5 487
4 608
3 811
2 1217
1 2435
0 +∞

abscissas.
The resulting expression also allows to give approximately the rank n suffi-
cient, for some b, to have a good asymptotic evaluation despite the trunca-
tion. Typically, one can choose twice the abscissa of the last jump:

n ≈ 2/(exp(π/b)− 1)
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or approximately when b is large enough in front of π (which is the case in
general):

n ≈ 2b/π ≈ 0.63662 b

This provides Table 3.

Table 3

Parameter b Rank n
100 63
250 158
500 317
1000 636
2500 1591
5000 3182
10000 6365
25000 15914
50000 31830
100000 63661

Roughly speaking, the accuracy of the asymptotic evaluation therefore
depends on a linear variation in the number of terms of the truncation with
respect to b. The 2−times factor is adequate to get current R2(a, b) value.
But at some peak rpeak, the evaluation often necessitates a higher number
of terms.

The graphic below gives the example of b = 100. The reader will therefore
note, that the previous twice factor also does not apply to ”small” b values
(b < 50) due to the presence of quite significant oscillations. There is no use
however to discuss further this particular case here.

Figure 44. a = 1/2, b = 100

For the sake of accuracy, most of the calculations were conducted with
10000 terms even when not necessary. In the case of b > 100000 we used
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at least 100000 terms, the effective number being specified then most of the
time.

Now, when, on the contrary, we are interested in areas where the function
studied is not subject to a jump but is rather close to a zero slope, the
equation to be solved is (−1)m.cos(b.Ln(m)) ≈ −(−1)m+1.cos(b.Ln(m+1))
and therefore:

b.Ln(1 + 1/m))/π ≈ 2k

The corresponding abscissas are:

m ≈ 1/(exp(2.π.k/b)− 1)

So that, for our example, we get table 2.
Let us note that for the sinus, the expressions of the sought abscissas

result in exactly the same.
Finally, in view of figure 43 for example, and directly related to the fact

of having an alternating sum, the accuracy of the evaluation is subject to
oscillations. Thus, the evaluation of a current

∑
is done by adding half of

opposite the last term (or equivalently the average of the sum at ranks n−1
and n is made). Eventually, when necessary, the average of several terms in
even number is made (up to 100 terms when b > 100000).
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