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Abstract. � The purpose of this article is to give a method to compare

the number of solutions of the Diophantine equations R(z1, z2, . . . , zn) = c,
c being the parameter for which the comparison is made. Matrices with re-

markable properties are produced which are the essential contribution of our

study. Their usefulness is obvious as they characterize each independent con-

stituent on the left hand side of the Diophantine equations and can therefore

be reused in some other equations under speci�ed conditions. The remarkable

e�ciency of the method allows us then to tackle the twin prime conjecture

and Friedlander-Iwaniec theorem's generalization, these choices made among

a lot of other practicable options.

Résumé. � (Algorithme matriciel pour le dénombrement d'équations dio-
phantines). Le but ici est de donner une méthode pour comparer le nombre

de solutions d'équations diophantines du type R(z1, z2, . . . , zn) = c, c étant

le paramètre pour lequel la comparaison est faite. Des matrices aux proprié-

tés remarquables sont produites qui sont la contribution essentielle de notre

étude. Leur utilité est évidente car elles caractérisent chaque constituant indé-

pendant du membre gauche de ces équations diophantines et peuvent donc être

réutilisées dans d'autres équations sous des conditions spéci�ques. La remar-

quable e�cacité de la méthode nous permet ensuite d'aborder la conjecture

des nombres premiers jumeaux et la généralisation du théorème de Friedlander

Iwaniec, ces choix étant faits parmi bien d'autres options envisageables.
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1. Introduction

David Hilbert's tenth problem titled "Of the possibility of solving a Dio-
phantine equation" raised the question in 1900 of the existence of a general
algorithmic method with a �nite number of steps enabling to decide, for any
Diophantine equation, whether this equation has integer solutions or not. This
may seem a very low requirement as it doesn't ask for their precise values
nor how many solutions exist. However, even for so small requirement, Yuri
Matiyasevich's theorem [12] answered to Hilbert's question in 1970 by the
negative, establishing that Diophantine sets, which are the sets of integer so-
lutions of a Diophantine equation with parameters, are exactly all recursively
enumerable sets, which means that such an algorithm cannot exist.
So what? Should we be discouraged for even a "yes or no" question cannot

be answered? Will we always have to restart an exercise when going from one
equation to another? Do only speci�cally adapted methods or use of brute
force have any chance of being useful in this mathematical domain?
Of course not. Nothing indicates that there are not large domains where

similar approaches can lead to proli�c results. So what about beating some of
the odds here? Our focus will be on decomposing Diophantine equations in
independent pieces for which we can �nd enumerative properties reusable in
other Diophantine equations where any one of these pieces occurs.
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2. Frameworking

A Diophantine equation is a polynomial equation with one or more un-
knowns and integer coe�cients. Let us have such an equation:

R(z1, z2, . . . , zn) = 0 (1)

In order to solve it, let us write a supposedly "equivalent" expression

R(z1, z2, . . . , zn) ≡ 0 mod m where m −→ +∞ (2)

It is indeed appropriate if a bijection emerges between the set of solutions
(z1, z2, . . . , zn) of the equation and the set (z1 mod m, z2 mod m, . . . , zn
mod m) as m is given higher values. Let us observe that there is a surjection
from the �rst set to the second set and the requirement for a bijection is the
following:
- the equation has a �nite number of solutions (z1, z2, . . . , zn),
- the parameter m is given a su�cient high value,
- the domain of de�nition of each zi is ]−m,m],
- if zi is a solution then zi −m, nor zi +m is one.

The last condition is met most of the time if the initial equation is not linear.
Otherwise reducing the domain of de�nition of zi to the appropriate choice of
[0,m[ or ]−m, 0] will do the job.
Keeping the previous remarks in mind, we can refocus our attention towards

equations with an in�nite number of solutions. Of course, the search of the
whole set of solutions is nonsense then. As m tends towards in�nity, the
asymptotic behaviour of the growth of the number of solutions is the new
target. At this stage, we must be able to write m −→ +∞ in a more practical
way. Let us start with:

m = 2i2 · 3i3 . . . pipkk . . . p
ipr
r , (3)

where pk will eventually describe all prime numbers and ipk will be given,
unsurprisingly for the reader, higher and higher values (supposedly up to +∞).
The solutions to the equation R(z1, z2, . . . , zn) ≡ 0 mod 2i2 · 3i3 . . . pipkk . . . p

ipr
r

will however still be out of reach unless there is some way to get them back
from the composite equations:

R(z1, z2, . . . , zn) ≡ 0 mod p
ipk
k (4)

To be fair, even this last equation may seem to be unsolvable when ipk −→
+∞. We will nevertheless come up with a step by step method consisting on
going up the previous path solving for the number of solutions of:

R(zi) ≡ 0 mod pk
↓
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R(zi) ≡ 0 mod p
ipk
k

↓
R(z1, z2, . . . , zn) ≡ 0 mod p

ipk
k

↓
R(z1, z2, . . . , zn) ≡ 0 mod 2i2 · 3i3 . . . pipkk . . . p

ipr
r

↓
R(z1, z2, . . . , zn) ≡ 0 mod +∞

↓
R(z1, z2, . . . , zn) = 0

This will be done by replacing �rstR(z1, z2, . . . , zn) = 0 byR(z1, z2, . . . , zn) =
c and solving for all c's in the same time. But prior to that, we give some
indispensable writing conventions, vocabulary and de�nitions.

� Target c : We call c the target and use systematically this letter. One can
look upon it as a �ctive variable as it simply takes all the values taken
by R(z1, z2, . . . , zn) mod 2i2 · 3i3 . . . pipkk . . . p

ipr
r when z1, z2, . . . , zn de-

scribed each of their chosen domain of de�nition (N , Z or P ) in some
m_environment.

� N , Z, P : Usual abbreviations of natural numbers, integers and prime
numbers.

� m_environment : The choice of some �nite ring Z/mZ as the domain
of de�nition of z1, z2, . . . , zn and R(z1, z2, . . . , zn). The standard modulo
m operation is implemented in this environment.

� #(c) : Number of occurrences of some event c.
� Variables xi, yi, zi : Variable zi in R(z1, z2, . . . , zn) represent either N ,

Z or P according to the following systematic writing conventions:

zi =


xi : N or Z_variable

yi : P_variable

zi : Any kind of the previous variables

� Independent constituent : Independent constituents are polynomials of
one or more variables separated each other by a sum sign ”+” in a given
Diophantine equation and with no common variable on both side of the
sign. To illustrate, for R(x, y, z) = x2 + y2 − (xy)2 − z4, variable z is
an independent constituent (obviously −z4 = +(−z4)), variables x or y
are not, but the expression x2 + y2 − (xy)2 as a whole is an independent
constituent.

� Instance : An instance is the choice of some prime number pk in m =

2i23i3 . . . p
ipk
k . . . p

ipr
r .
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� Cardinal matrix : A �nite or in�nite rank matrix which eventually pro-
vides the relative proportions of solutions over all the targets c compared
to target 0 (or some other target).

Some of the de�nitions need more explanation of course which will be
taken care progressively underneath. Let us note that upcoming expressions
if(eq, a, b) mean if eq is true than a else b. Let us also note that whenever
we will mention "solve the equation", we will generally mean "solve for the
number of solutions of the equation".

3. Cardinal matrices

Theorem 1. � Let us have two independent variables u and v and two Dio-
phantine functions f and g. Let us consider the number of events #(u, v) = #i
such that f(u) + g(v) = i. Then

#(i) =

+∞∑
j=−∞

#(i− j) ·#(j) (5)

where #(j) is the number of events u such that f(u) = j and #(i − j) is the
number of events v such that g(v) = i− j.
Proof. � This is trivial as we just cumulate the events such that f(u)+g(v) =
(i− j) + j = i.

Note. � The term "event" here, although reminiscent of it, has nothing to do
with probabilities. It is related to an actual and straightforward enumeration.
De�nition 1. � Let us suppose that i and j are de�ned in a �nite set
(like for example the m_environment Z/mZ). Let us consider the matrix
Cg(i, j) = [#(i−j)] obtained above. The matrix Cg(i, j) is named the circulant
cardinal matrix of g(v).
Note. � This matrix provides the contribution of g(v) to get some �nal
event f(u) + g(v) = c. If one provides the contribution Cf (i

′, j′) of f(u) then
the number #c of some event c is obtained by a simple matrix multiplica-
tion Cf (i

′, j′) · Cg(i, j) and this process can be generalized to any number of
independent variables or group of variables.
Theorem 2. � The circulant cardinal matrix of an independent constituent,
within the quotient ring Z/mZ environment, is a square (m,m) matrix.
Proof. � Let us consider the matrix Cg(i, j) = [#(i− j)] of some function g.
In the chosen m_environment, the quantities i and j take only integers values
in [0,m−1]. We can then attribute the result to a matrix Cg(r, s) = [#(i− j)]
with r = 1 to m and s = 1 to m.

Theorem 3. � Circulant cardinal matrices are commutative.
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Proof. � The number of events for f(u) + g(v) = c is the same as for g(v) +
f(u) = c. Hence the result.

Theorem 4. � Circulant cardinal matrices are (right) circulant matrices.
Proof. � This is immediate as [#(i−j mod m)] = [#((i+r mod m)−(j+r
mod m))]. Hence, it follows the matrix's expression:

#0 #(m− 1) #(m− 2) . . . #1
#1 #0 #(m− 1) . . . #2
. . .

. . .
. . .

. . .
. . .

#(m− 2) #(m− 3) #(m− 4) . . . #(m− 1)
#(m− 1) #(m− 2) #(m− 3) . . . #0



As a immediate consequence also, circulant cardinal matrices have all the
properties of circulant matrices. Therefore:
Theorem 5. � The eigenvectors matrix of the circulant cardinal matrices is
an invariant in a given environment m.
Proof. � The eigenvectors matrix U(r, s)r=1 to m, s=1 to m is equal to the m by
m square matrix:

U(r, s) =
1√
m
[w(r−1)·(s−1)]

where w = e
2πi
m is the m_root of 1. The reader can refer to [1] for example.

Hence, for given m, the eigenvectors matrix is totally de�ned.

Note. � In a given environment, the #c values of the targets are obtained
essentially by eigenvalues multiplications.
Indeed, the reciprocal of the eigenvectors matrix is equal to its transconju-

gate U∗(r, s) (and its conjugate U(r, s)):

U−1(r, s) = U∗(r, s) =
1√
m
[w−(r−1)·(s−1)] = U(r, s)

Let us then have σf (r, s) and σg(r, s) the diagonal matrix of eigenvalues of the
cardinal matrices Cf (r, s) and Cg(r, s) of f and g respectively. Leaving aside
the (r, s) indexing we get:

Cf · Cg = U · σf · U∗ · U · σg · U∗

= U · σf · σg · U∗.

This generalizes to as many independent constituents of the initially chosen
Diophantine equation as long as the environment, that is the square matrix
rank, is the same.
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Theorem 6. � Recalling that w = e
2πi
m , the eigenvalues in a m_environment

are equal to:

σj =
m−1∑
k=0

#(m− k) · w(j−1)·k =
m−1∑
k=0

#k · w−(j−1)·k

with j = 1 to m and where #k are the projection's results of the currently
studied function.
Proof. � This is a standard result for circulant matrices. The reader can refer
again to [1]. Here the indexing of the eigenvalues starts with j = 1 and goes
up to j = m.

De�nition 2. � The projective cardinal image of R(z1, z2, . . . , zn) in the
m_environment is de�ned as the set of numbers of occurrences of the value c,
noted #c, when variables z1, z2, . . . , zn described each the discrete domain of
de�nition [0,m − 1]. A projective cardinal image is the resulting m values of
#c : [#0, #1, . . ., #(m− 1)].
Note. � Being in a m_environment, #(m + k) = #k. In particular #m =
#0.
De�nition 3. � The normalized cardinal image is the fractional values ob-
tained by multiplying by the same ratio the previous cardinals of the cardinal
image in order to get an average value over the m elements of the set equal to
1. Hence, writing normalized components as ##c, we get :

[##0,##1, . . . ,##(m− 1)] =
m∑m−1

i=0 #i
[#0,#1, . . . ,#(m− 1)] (6)

Theorem 7. � The �rst column of the circulant cardinal matrices CR(i, j) of
function R is the projective cardinal image and is therefore equal to the product
CR(i, j) by the column vector

K =


1
0
...
0


Proof. � Taking j = 0 in CR(i, j) = [#(i − j)], we collect the column vector
[#(i)] values which are the elements of the projective cardinal image, i = 0 to
m− 1.

De�nition 4. � Let us multiply all the components of the standard circulant
cardinal matrix by the same constant such that its �rst column is equal to the
normalized cardinal image. We call the resulting matrix, after dividing it by
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1/m, the normalized circulant cardinal matrix M(R(z1, . . . , zn),m):

1

m


##0 ##(m− 1) ##(m− 2) . . . ##1
##1 ##0 ##(m− 1) . . . ##2
. . .

. . .
. . .

. . .
. . .

##(m− 2) ##(m− 3) ##(m− 4) . . . ##(m− 1)
##(m− 1) ##(m− 2) ##(m− 3) . . . ##0


void

In this section, we have taken care partially of the following step cited before:

R(zi) ≡ 0 mod p
ipk
k

↓
R(z1, z2, . . . , zn) ≡ 0 mod p

ipk
k

In p
ipk
k , two terms may have large values, that is pk and ipk , which therefore

may be a messy challenge for the enumeration goal as the size of the matrix
may rise to in�nity. So let us address �rst the "ipk" challenge.

4. Degree of stability

We introduced in the previous section the cardinal image of some chosen
function R, cardinal image which is giving the proportions of occurrences ##c
of R(...) = c, c = 0, 1, ...,m− 1 in a m_environment:

[##0,##1, . . . ,##(m− 1)]

We propose now to observe what happens when we scale up from m = p
ipk
k to

m = p
ipk+1

k , m = p
ipk+2

k , m = p
ipk+3

k and so on.
De�nition 5. � We call ipk the degree of stability, of the pk instance, when

for any larger environment m = p
ipk+r

k , r = 1, 2, ...,+∞, the new normalized

values ##c are obtained by simple p
ipk
k translations of the original values in

the p
ipk+r

k environment:

##c = ##(c+ p
ipk
k ) (7)

Note. � According to the R(. . .) design encountered, one may have tem-
porary stability from some r to r + 1 and then a failure. Stability cannot
be taken for granted for complex expressions too rapidly, but this is not the
case for more standard functions (monomials, some symmetric expressions like
x21 + a · x1 · x2 + x22) where there is no such potential mishap.
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5. Enumeration in a product environment

We want to take care of the following step in our overall strategy:

R(z1, z2, . . . , zn) ≡ c mod p
ipk
k

↓
R(z1, z2, . . . , zn) ≡ c mod 2i2 · 3i3 . . . pipkk . . . p

ipr
r

and therefore we have to start with the problem consisting in solving the scaling
of two terms:

{R(z1, z2, . . . , zn) ≡ c mod p
ip1
1 } {R(z1, z2, . . . , zn) ≡ c mod p

ip2
2 }

↓
R(z1, z2, . . . , zn) ≡ c mod p

ip1
1 · pip22

Let us write respectively the pair of normalized cardinal images [##0, ##1,
. . . , ##(m1 − 1)], [##0, ##1, . . . , ##(m2 − 1)] and besides [##0, ##1,

. . . , ##(m− 1)] where m1 = p
ip1
1 , m2 = p

ip2
2 and m = p

ip1
1 · pip22 .

Theorem 8. � The relative proportions of events in the product environment
are given by the product of normalized events:

##c = ##(c mod m1) ·##(c mod m2)

Proof. � The former expression simply express that the number of events of
(u,v) is the product of the number of events u by the number of events v, which
is a standard result.

Now what about solving the "pk" challenge?

6. Condensed cardinal matrices

6.1. General scope. � By now, the way to enumerate the number of solu-
tions of some Diophantine equation R(. . .) = c has been described in almost all
general aspects. In short, it consists, for each instance pi, in matrices multipli-
cations in a proper environment (where the degree of stability is reached), and
the resulting normalized cardinal images, then undergo repetitive translations
of values followed by an in�nite product over all the instances 2, 3, . . ., pi, . . .,
+∞. This �nally gives the proportional ratio of solutions ##c

##cref
of any target

c to some chosen reference target cref .
A straightforward use of this general approach however would be still quite

cumbersome to deal with. In particular, we mentioned the terms "each in-
stance" and it would be quite bene�cial to be able to level up to "analogous
classes of instances". In the same way "any target" would be welcome to some
"analogous classes of targets". Other lucky simpli�cations may also depend
on the chosen Diophantine equation. Indeed, for functions like monomials for
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example, the normalized cardinal image [##0, ##1, . . ., ##(m − 1)] will
contain multiple identical values and therefore cardinal matrices also.
In order to give a hint on the vast spectrum of the method's enhancements,

we will take here two examples. The �rst one will be the Polignac conjecture
and the second one the more complex Friendlander-Iwaniec equation general-
ization. This will be done after discussing the general monomial case.

6.2. Target permutations and primitive roots. � Multiplication of car-
dinal matrices give the number of occurrences #c of some events c. The results
are collected in the systematic order #0,#1,#2, and so on. It may be inter-
esting, as we will see later on, to choose a di�erent order. The most e�cient
way to deal with this is to use symmetrical permutation matrices (see reference
[15]).
Property 1. � Let us consider J a symmetrical permutation matrix. Then

J2 = I

where I is the identity matrix.
Proof. � The transpose matrix of J is the inverse matrix of J (see properties
of permutation matrices at reference [15]). If J is symmetrical, the result
follows. J2 = J.tJ = I.

Property 2. � The application of multiplications to the right and the left
by the same symmetrical permutation matrix to each of eigenvectors matrix,
eigenvalues matrix and inverse eigenvectors matrix of a cardinal matrix pro-
vides a permutation of cardinal images as long as the �rst component (�rst
line) is excepted.
Proof. � Let us remember that the cardinal image is obtained by multiplying
the cardinal matrix by the speci�c column vector K (see K shape in theo-
rem 7). Let us then have C some cardinal matrix, U and σ its eigenvectors
and eigenvalues matrices. It follows C.K = U.σ.U∗.K which is equivalent to
J.C.K = (J.U.J).(J.σ.J).(J.U∗.J).(J.K) Let us suppose that J does not swap
the �rst component of K. Then J.K = K as all the other components of K
are equal to 0 and therefore J.C.K = (J.U.J).(J.σ.J).(J.U∗.J).K.

The reader may refer to [14] for the de�nition of a primitive root modulo
some integer. In particular, any odd prime pi has at least one primitive root.
In order to lighten notations, we will write the prime number p and choosing
a primitive root of p, we note it systematically g. As a consequence there is a
bijection, with equal elements in the source and the destination sets, between
{0, 1, 2, · · · , p − 1} and {0, g0, g1, g2, · · · , gp−2}. This immediately shows that
the target 0 will always be a particular case as it cannot be expressed as a
power of g. This later remark combined with the above remark on the neces-
sary exclusion of the permutation of the �rst component ofK leads us precisely
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to do so. But other than this, we are free to swap the remaining components
using the described procedure, if we need so, in order to transform the car-
dinal image {#0,#1,#2, · · · ,#(p− 1)} to {#0,#g0,#g1,#g2, · · · ,#(gp−2)}
or some other permutation. With the speci�ed technique, it is easy to trace
precisely the position of the components of the eigenvectors and eigenvalues
matrices which individual values don't change in the process.
Note. � Switching the components of a matrix with the same symmetri-
cal permutation matrix respectively on the right and on the left is to apply
respectively the same permutations on the lines and on the columns.
Note. � After the permutations, the underneath circulant structure of the
original matrix is no more visible.
The reader can refer to appendix A for a few examples of lines and columns

switching. The chosen case is p = 13, g = 2 and (#(g2u mod p) ≡ 2, #(g2u+1

mod p) ≡ 0).

6.3. The monomial case. � Monomials are typically easier objects to han-
dle with than polynomials in a practical sense. Indeed, the targets can be
gathered in congruence classes allowing condensed matrix expressions. So, al-
though reducing the global scope, these objects o�er already a lot of study
opportunities and are very interesting as they provide full literal expressions
for enumeration.
In this subsection, we make a distinction of p > 2 and p = 2, the later

case being taken care in another way. As we already mentioned, the target 0
plays a special role as it cannot be expressed as a function of g some primitive
root of p. More insight reveals besides that formulas drawn for this case have
usually simpler writing that those for c ̸= 0. Nevertheless, it is not a speci�c
case acknowledging that we will address it in the same time as all the targets.
Also as previously mentioned, we have two types of variables x and y, and
therefore two monomials to consider xn and yn, the �rst one where x takes
integer values and the second where y addresses prime numbers.
The strategy of resolution remains the same, seeking cardinal images and

cardinal matrices of xn and yn.
Theorem 9. � The cardinal image of −z2k+1 is the same as the cardinal
matrix of z2k+1 where z is either a variable of integers or prime numbers and
k is a natural number.
Proof. � We have −z2k+1 = (−z)2k+1. By Dirichlet's and Chebotarev's den-
sity theorem (see [2]), we have equiprobable events for z and −z, hence the
result.

Theorem 10. � Let us have d the greater common divisor of n and p − 1
where p is a prime number

d = gcd(n, p− 1).
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The (original) cardinal matrix CX(r, s) of xn in the p_environment is a cir-
culant matrix with �rst column image components equal to:

CX(1, 1) = 1
CX(gu.d, 1) = d, u = 0 to (p− 1)/d− 1
CX(r, 1) = 0, r ̸= 1 and r ̸= gu.d mod p

Proof. � By "original" we mean here before normalization.
That said, we have the traditional result:

gp−1 ≡ 1 mod p

The cardinal image of xn is obtained thanks to the list {0n, g0n, g1n, g2n,
· · · , g(p−2)n} mod p. It contains redundancies when d ̸= 1 and the distinct

elements reduce to {0, g0d, g1d, g2d, · · · , g(δ−1).d︸ ︷︷ ︸
d times

} mod p, where δ = p−1
d and

the d antecedents of gu.d are gu+v· p−1
d , v = 0, 1, · · · , d−1. Therefore the set xn,

x = 0, 1, 2, · · · ,+∞ can be written as {0, g0d, g1d, g2d, · · · , g(δ−1).d︸ ︷︷ ︸
d times

} mod p,

p + {0, g0d, g1d, g2d, · · · , g(δ−1).d︸ ︷︷ ︸
d times

} mod p, 2p + {0, g0d, g1d, g2d, · · · , g(δ−1).d︸ ︷︷ ︸
d times

}

mod p, · · · , +∞. The numbers of events of the congruence classes 0 and
gkgu.d, k ∈ {0, 1, 2} modulo p is therefore proportional to the value in the
right member of the following equations

#(0 mod p) = 1
#(g0gu.d mod p) = d
#(g1gu.d mod p) = 0
#(g2gu.d mod p) = 0
· · ·
#(gd−1gu.d mod p) = 0

for any u ∈ {0, 1, · · · , δ − 1}.

Theorem 11. � The cardinal image xn in the pk_environment is identical
to the case k = 1 except for multiples of p.
Proof. � A primitive root g modulo p is also a primitive root modulo pk unless
gp−1 = 1 mod p2 in which case p+g is a primitive root according to reference
[14]. We therefore can always chose some primitive root for which we can
represent the values xn, x = 0 to pk − 1 with the same d multiplicity of given
previously except for multiples of p. For those there will be equal cardinality
except for 0 (mod p).

Theorem 12. � The (original) cardinal matrix CY (r, s) of yn is equal to

CY = CX − I
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where I is the identity matrix of rank p.
Proof. � The set yn, y = 2, 3, 5, 7, 11, · · · ,+∞ modulo p gives equiprobable
events 1d, 2d, · · · , (p − 2)d mod p by the Chebotarev's density theorem (see
[2]). The only missing element compared to the case xn is therefore 0. This
means replacing CX(1, 1) = 1 in the previous case by CY (1, 1) = 0. The
matrix being circulant, we get CY (r, r) = 0 for all integers r = 1 up to
r = p.

Theorem 13. � The cardinal image yn in the pk_environment is identical
to the case k = 1. The degree of stability of yn is therefore equal to 1.
Proof. � There are no multiples of p involved in this case and theorem 11
enable then to conclude.

Theorem 14. � For a Diophantine expression sum or di�erence of indepen-
dent monomials containing at least one independent variable of prime numbers
yn, the global degree of stability is equal to 1.
Proof. � This is an immediate result of theorem 8. Indeed, when the target
c is a multiple of p the number of events #(u) contribution of yn is 0 which
cancels any combination of events (u, v, · · · ).
Note. � From now on, in all expressions involving exponentiation of g the
mod p term is implied. By gk, we systematically mean gk mod p even if not
expressly mentioned.
De�nition 6. � Let us have d the greatest common divisor of n and p − 1
where p is a prime number, d = gcd(n, p− 1). Let us have md a multiplier of
d and a divisor of p− 1 such that d ≤ md ≤ p− 1. A (primitive root) ordered
cardinal matrix CX(r, s) of xn versus md in the p_environment is a matrix
obtained by switching lines and columns of the original cardinal matrix in the
same way such than the �rst column (and therefore �rst line) of the new matrix
corresponds to the order 0, gi.gu.md, i = 0 to md, u = 0 to (p−1)/md−1, that
is, after 0, we take i = 0 and exhaust all the values u = 0 to (p − 1)/md − 1,
then we take i = 1 and exhaust again all the values u = 0 to (p − 1)/md − 1
and so on.
Example 1. � For p = 13, g = 2, n = 2, we have d = gcd(n,p-1) = gcd(2,12)
= 2. Let us take md = 4. Then the original order of targets

0 1 2 3 4 5 6 7 8 9 10 11 12
0 g0 g1 g4 g2 g9 g5 g11 g3 g8 g10 g7 g6

will be changed to

0 1 3 9 2 6 5 4 12 10 8 11 7
0 g0 g4 g8 g1 g5 g9 g2 g6 g10 g3 g7 g11

Property 3. � Equal values transfer property : Let us consider C the cardinal
matrix of xn (or yn ). Let us have X, a column vector of rank p and suppose
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that its kth components have same values for all line indices k such that k ≡
gi.gu.d mod p, i a �xed value and u any integer. Then the lth components of
C.X have same values for all line indices l such that l ≡ gj .gv.d mod p, j a
�xed value and v any integer.
Proof. � We consider respectively the r + 1th component of the following
objects: cr of the �rst column of the cardinal matrix C, xr of column vector X
and yr of column vector Y = C.X. We have yr = cr.x0 + cr−1.x1 + cr−2.x2 +
... + cr−p+1.xp−1. We then re-index the members of the equality replacing r

by gj to get ygi − cgi .x0 =
∑p−1

j=0 cgi−gj .xgj . The hypothesis is xk.gu.d = xk

and ck.gu.d = ck. It results ygi − cgi.gu.d .x0 =
∑p−1

j=0 c(gi−gj).gu.d .xgj .gu.d so that

trivially ygi = cgi.gu.d .x0 +
∑p−1

j=0 c(gi.gu.d−gj .gu.d).xgj .gu.d which right member is
the de�nition of ygi.gu.d .

Property 4. � The equal values transfer property is true for any integer md
multiple of d such that d ≤ md ≤ p− 1.
Proof. � This is a trivial consequence of property 3.

Note. � Note also that the column vector K in theorem 7 has the previous
property as all components except the �rst one are equal to 0.
Property 5. � Let us consider a permutation of two columns (or two lines)
of the cardinal matrix of xn (or yn). Then one recovers the said swapped
matrix by the same permutation of the eigenvector matrix, eigenvalues matrix
and inverse eigenvalues matrix.
Proof. � This is a general property for any matrix.

Property 6. � The eigenvectors matrix of an ordered matrix versus md is
composed of left circulant matrix blocks of rank (p− 1)/md except for the �rst
column and line.
Proof. � Using theorem 6 and property 5, let us consider the general term
1√
pw

gi.gj of the ordered matrix component in some matrix block. Then the
equality gi.gj = g−md+i.gj+md means conservation of value of the component
on the secondary diagonal so long that we stay in the block. The rank (p −
1)/md is a direct consequence of the primitive root property gp−1 ≡ 1 mod p.

Property 7. � The (p− 1)/md lines' sums of the blocks of the eigenvectors
matrix are equal to each other. So also for columns' sums.
Proof. � This is an immediate consequence of circulant matrices.

Property 8. � The (p − 1)/md lines' sums of the blocks of the conjugate
eigenvectors matrix are equal to each other. So also for columns' sums.
Proof. � This is again an immediate consequence of circulant matrices.
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Property 9. � The eigenvalues of an ordered matrix versus md are equal to
each other in the corresponding matrix blocks of rank (p − 1)/md facing the
eigenvectors matrix except for the component on the �rst column and line.
Proof. � This is an immediate result of the general value of the speci�c eigen-
values here (j > 1)

σj =
m−1∑
k=0

#k · w−(j−1)·k.

Here #k = d for k = gu.d and 0 otherwise, so that

σgk+1 = d
d−1∑
k=0

·w−(j−1)·gk.gu.d = σgk.gu.d+1

where u = 0 to (p − 1)/d − 1. Being a property for d it is also for a multiple
of d which is the case of md. Hence the same eigenvalues.

Property 10. � The multiplicity of the eigenvalues of a cardinal matrix,
except the eigenvalue p, is (p− 1)/d.
Proof. � This is an immediate result of the previous property.

Example 2. � p = 13, g = 2, n = 2, d = 2.
The three re-ordering cases are then:
Case versus md = 2.

0 g0 g2 g4 g6 g8 g10 g1 g3 g5 g7 g9 g11

0 1 4 3 12 9 10 2 8 6 11 5 7

13
√
13

√
13

√
13

√
13

√
13

√
13 −

√
13 −

√
13 −

√
13 −

√
13 −

√
13 −

√
13

Case versus md = 4.

0 g0 g4 g8 g1 g5 g9 g2 g6 g10 g3 g7 g11

0 1 3 9 2 6 5 4 12 10 8 11 7

13
√
13

√
13

√
13 −

√
13 −

√
13 −

√
13

√
13

√
13

√
13 −

√
13 −

√
13 −

√
13

Case versus md = 6.

0 g0 g6 g1 g7 g2 g8 g3 g9 g4 g10 g5 g11

0 1 12 2 11 4 9 8 5 3 10 6 7

13
√
13

√
13 −

√
13 −

√
13

√
13

√
13 −

√
13 −

√
13

√
13

√
13 −

√
13 −

√
13

With these starting premises, we are now able to condensed the cardinal
matrices reducing redundancies progressively from (p− 1)/d to 1 still keeping
all the original information. We will follow track using numerical examples.
Theorem 15. � Let us consider the components c(r, s) of the ordered cardi-
nal matrix versus md of xn (or yn) in the p_environment where integer md is
de�ned as multiplier of d and divider of p − 1 as earlier. The following con-
densed matrix with components cc(cr, cs) hold the same information in regard
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to the numbers of events for the targets gi.gu.md as the original ordered cardinal
matrix with reduced redundancies together with keeping property 3:

cc(1,1) = c(1,1)

cc(1+j,1) = c(2+(j-1) p−1
md , 1), j = 1 to md

cc(1,1+k) =
∑ p−1

md
i=1 c(1,1+i+(k-1)

p−1
md ), k = 1 to md

cc(1+j,1+k) =
∑ p−1

md
i=1 c(2+(j-1).

p−1
md ,1+i+(k-1)

p−1
md ), j = 1 to md, k = 1 to md

Proof. � Thanks to property 7, it is a trivial redundancy progressive reduction
from (p − 1)/d to 1, the parameter md, divider of p − 1 and multiplier of d,
being given some value in-between. Illustration is given by the examples in
appendix A.

De�nition 7. � We call condensed matrix the result of a reduction process
identical to the one described above which transforms a matrix of rank 1+(p−1)
to a matrix of rank 1 +md.
De�nition 8. � We call block and blocks' area the unit and the whole of
components covering a range of size ((p − 1)/md,(p − 1)/md) of the ordered
cardinal matrices before reduction (starting indexes r ≥ 2, s ≥ 2, indexes
speci�ed in theorem 15).
De�nition 9. � By extension, we call blocks' area the resulting area of the
condensed matrix, that is, the condensed matrix except �rst line and �rst
column.
Theorem 16. � The eigenvectors matrix of the condensed cardinal matrix
versus md of xn (or yn) in the p_environment is the condensed matrix of the
eigenvectors matrix of the ordered cardinal matrix of xmd (or ymd) versus md.
The eigenvalues matrix of the condensed cardinal matrix versus md of xn (or
yn) in the p_environment is the condensed matrix of the eigenvalues matrix of
the ordered cardinal matrix of xd (or yd) versus md.
Proof. � This is an immediate result of the equality of the sum in lines of the
eigenvectors ordered matrix blocks (property 7), the equality of the eigenvalues
in the eigenvalues matrix blocks facing it (property 9) and the equality of the
sums in columns of the conjugate eigenvectors matrix blocks (property 8).

Property 11. � Eigenvalues multiplication property. The targets propor-
tions for a Diophantine equation based on sums of monomials are carried out
essentially by eigenvalues multiplications.
Proof. � Let us haveK as de�ned in theorem 7. Let us haveMi the contracted
matrices of xi to the common 1 + md rank. The targets proportions #c are
obtained by the matrix multiplication M1.M2 · · ·Mk.K. By the invariance
property of the eigenvectors matrix of contracted matrix expressed by theorem
16, allMi share the same eigenvectors matrix U . ThereforeM1.M2 · · ·Mk.K =
(U.σ1.U

−1).(U.σ2.U
−1) · · · (U.σk.U−1).K = U.σ1.σ2 · · ·σk.U−1.K
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Theorem 17. � The condensed cardinal matrix of xn and yn, respectively
equating vi = 1 for xn and vi = 0 for yn, is given by

[C] = [U ][σ][U ]

where

[U ] =
1
√
p


1 λ0 λ0 · · · λ0

1 λ1 λ2 · · · λmd

1 λ2 λ3 · · · λ1

· · · · · · · · · · · · · · ·
1 λmd λ1 · · · λmd−1



[U ] =
1
√
p


1 λ0 λ0 · · · λ0

1 λ∗
1 λ∗

2 · · · λ∗
md

1 λ∗
2 λ∗

3 · · · λ∗
1

· · · · · · · · · · · · · · ·
1 λ∗

md λ∗
1 · · · λ∗

md−1



[σ] =


σ0 0 0 · · · 0
0 σ1 0 · · · 0
0 0 σ2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · σmd


and where [U ] is the conjugate matrix of [U ],
and for u ≥ 1

λu =

p−1
md

−1∑
r=0

wgu−1+r.md mod p−1

and

λ0 =
p− 1

md
.

and
σ0 = p− 1 + vi

and

σu = vi+ d.

p−1
md

−1∑
r=0

w−gu−1+r.d mod p−1

Note. � If md = d then
σu = vi+ d.λu

Proof. � It is a straightforward calculation from the initial ordered cardinal
matrix using gi.gj = gi+j .

Note. � The reader will �nd in appendix C a computer program enabling
to calculate any example of the condensed cardinal matrices. It gives also the
eigenvectors and eigenvalues matrices.
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Property 12. � As for the initial cardinal matrix, the di�erence between a
condensed matrix CX of xn and a condensed matrix CY of yn of same rank
(versus any admissible md) is the identity matrix.

CX = CY + I (8)

Proof. � According to theorem 17, the eigenvectors matrices are the same for
the two cases and the eigenvalues di�er by the identity. Hence the result.

Note. � We cannot stress enough the importance of this relationship between
the matrix of an integers' variable and its prime numbers' counterpart. Besides
being a fundamental property, it is also utterly useful and will come up in no
time.
Theorem 18. � Let us have some condensed cardinal matrix CY (a, b) versus
md of a prime variable yn. Here a ≥ 1, b ≥ 1. Let us re-index its components
cy(a, b) using r = a − 2, s = b − 2. Then the components' values such that
r ≥ 0, s ≥ 0 are given by the following expression

cy(r, s) = d ·#(u, v) \ gr ≡ gu.d + gs.gv.md mod p (9)

where #(u, v) is the number of event (u, v) satisfying the equation for u = 0 to
p−1
d − 1 and v = 0 to p−1

md − 1.
Proof. � It results from the initial de�nition of the cardinal matrix that #(i−
j) = d when i − j = gu.d for some u ∈ [0, p−1

d [, hence the multiplying factor

d. Within the blocks' area, we have i = gr.gw.md and j = gs.gv.md for some
for some (r, s, v, w) ∈ ([0,md− 1], [0,md− 1], [0, p−1

md [, [0,
p−1
md [). Then equality

gu.d = gr.gw.md − gs.gv.md is the same as gr.gw.md = gu.d + gs.gv.md. We know
by now that each target gr.gw.md has same events' cardinality in front of a
matrix' block as target gr. The ordering to get a condensed matrix versus md
means then to collect the events (u, v) ∈ ([0, p−1

d [, [0, p−1
md [) with constant s.

Note. � Again, for a second time but a di�erent subject, we cannot stress
enough the importance of equation 9 for any resolution of Diophantine equa-
tion based on monomials (but not only). Therefore, we purposely give here a
speci�c denomination to such kind of expression, namely "the primitive roots'
equation".
Property 13. � Let us consider a condensed matrix of a prime variable yn.
Equalities between components c(r, s) and c(r′, s′), r ≥ 0, s ≥ 0, r′ ≥ 0, s′ ≥ 0,
of such an object are de�ned by matrix involutions depending on two cases.
Case 1 : (p− 1)/2 ≡ 0 mod d(

r′

s′

)
=

(
0 1
1 0

)(
r
s

)
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Case 2 : (p− 1)/2 ≡ d/2 mod d(
r′

s′

)
=

(
0 1
1 0

)(
r
s

)
+

(
d/2
d/2

)
Proof. � As g is a primitive root, we use the property g

p−1
2 ≡ −1 mod p.

Then if gr ≡ gu.d + gs.gv.md mod p, we can write −gr ≡ gu.d.g
p−1
2 − gs.gv.md

mod p, that is gs ≡ gu.d−v.md+ p−1
2 + gr.g−v.md mod p. As d divides md all

values of u.d − v.md are reached by w.d for some integer w. Changing the

dummy indexes (u, v) we get gs ≡ gu.d+
p−1
2 + gr.gv.md mod p . The number

of events #(u, v) is therefore the same if (r′ = s, s′ = r, p−1
2 ≡ 0 mod d) or

(r′ = s+ d
2 , s

′ = r+ d
2 , (p−1)/2 ≡ d/2 mod d). Hence the result of each case.

It is easy to check that these transformations are involutions (self-inverse func-
tions).

Property 14. � For lesser condensed matrices of a prime variable yn, where
d ̸= md, in the blocks 'area, the blocks of rank d form a right circulant pattern.
That is, we have the following property for any components modulo md:(

r′

s′

)
=

(
1 0
0 1

)(
r
s

)
+

(
d
d

)
Proof. � If gr ≡ gu.d + gs.gv.md mod p, we can write gr+d ≡ gd+u.d +
gs+d+v.md mod p. The dummy parameter u being replaced by u − 1, we get
gr+d ≡ gu.d + gs+d+v.md mod p. Hence simultaneously r′ = r + d mod md
and r′ ≡ r + d mod md.

Note. � The property is true also in the case md = d but useless.
Note. � This kind of "symmetry" extents to a variable of integers (therefore
monomials xn) as the addition of 1 to each of the components of the main
diagonal preserves the previous relations.
Property 15. � Let us consider the most condensed matrix of a prime vari-
able yn, that is md = d. We then get the additional matrix involutions depend-
ing on two cases.
Case 1 : (p− 1)/2 ≡ 0 mod d(

r′

s′

)
=

(
−1 0
−1 1

)(
r
s

)
Case 2 : (p− 1)/2 ≡ d/2 mod d(

r′

s′

)
=

(
−1 0
−1 1

)(
r
s

)
+

(
0

d/2

)
Proof. � Using again the property g

p−1
2 ≡ −1 mod p, if gr ≡ gu.d + gs.gv.d

mod p, we can write g0 ≡ g−r.gu.d + gs−r.gv.d mod p, that is g−r ≡ gu.d +
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gs−r.gv.d+
p−1
2 mod p, changing the dummy indexes (u, v). The number of

events #(u, v) is therefore the same if (r′ = −r, s′ = −r+ s, p−1
2 = 0 mod d)

or (r′ = −r, s′ = −r + s + d
2 , (p − 1)/2 ≡ d/2 mod d). Hence the result of

each case. Again, it is easy to check that these transformations are involutions
(self-inverse functions).

Note. � The three previous properties are very useful if the condensed matrix
size is small as it allows quite shorter calculations.
Theorem 19. � The minimal size of a condensed cardinal matrix for a Dio-
phantine equation composed of monomials zn1

1 to znk
k , zi being either a variable

of integers or of primes is equal to

nr = 1 + lcm(d1, · · · , di, · · · , dk)

where di = gcd(p− 1, ni), i = 1 to k.
Proof. � In order to multiply matrices, they ought to be of the same size. For
each of the variable, the smallest size of the condensed matrix, excepting �rst
line and row is di and necessary size is therefore a multiple of this value (plus
one). Hence the lower common multiple when di�erent powers are present in
the equation.

Note. � There are an in�nity of condensed matrices of di�erent sizes in some
environment for a given Diophantine equation composed of monomials. But
there is only one condensed matrix with minimal size within this environment
and for this particular Diophantine equation. In order to simplify the upcoming
overview, the most condensed matrix will be denominated without more detail
as the condensed matrix.

6.4. The Polignac case. � With the previous study on the monomial case,
the Polignac case can be address quite rapidly. However, as it is our �rst
example, we will repeat some of the previous arguments, with speci�c details,
in order to make it easier on the reader. The Friedlander-Iwaniec will be
treated without going in such details again. We ought to start here with the
most trivial and seemingly useless case which of course is the monomial of
degree one, namely x. Its cardinal image is [1, 1, . . . , 1] in any environment
and therefore its degree of stability is 1. Its cardinal matrix is [1] which can
be extended to any normalized cardinal matrix with components all equal to
1/m in a m_environment.
We can then turn our attention to the y variable, that is a prime numbers'
variable case.
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Theorem 20. � The cardinal image and cardinal matrix of a P_variable in
a pi_environment, pi > 2 are respectively equal to:

pi
pi − 1


0
1
...
1
1


and

1

pi − 1


0 1 1 . . . 1
1 0 1 . . . 1
. . .

. . .
. . .

. . .
. . .

1 1 1 . . . 1
1 1 1 . . . 0

 (10)

Proof. � The projection, in am = pi environment, consists in the proportions
of values 0 to m − 1 obtained while y take all the values 2, 3, 5, 7, 11 up to
+∞. Referring to Dirichlet's and Chebotarev's theorem [2], we know that
there is an equal asymptotic repartition of the prime numbers ending on the
said values 0 to pi − 1 for a modulo pi process except for 0. In the latter case,
the only prime (ending on 0) is pi. This occurrence corresponds therefore to
a proportion equal to +1/∞. Asymptotically, we therefore get ##0 = 0 and
##c = pi

pi−1 if c ̸= 0, the last fraction common to all c ̸= 0 enabling to have

an overall average equal to 1. In the normalized cardinal matrix each of the
components are then multiplied by the inverse of the environment value, here
1/pi.

Theorem 21. � The degree of stability of the y variable is equal to 1 for any
instance pi > 0.
Proof. � One can repeat the same argument as in theorem 20 changing the
m = pi environment to an m = pri environment, r > 1, r ∈ N . The equiprob-
ability for all instance not multiple of pi is conserved. The only di�erence is
that the previous projection from pi onto 0 is just deviated onto pi. We there-
fore get a proportion equal to 0 on all multiples of pi. Going from r = 1 to
r > 1 consist only for the cardinal image to translate pr−1

i times the data by
pi steps.

Note. � We write the matrix with only 1 as components [1] and the identity
matrix as usually [I]. Then the cardinal matrix of theorem 10 is equal to

1

m− 1
([1]− [I]) (11)

Theorem 22. � The circulant matrix ([1] − [I])n �rst column components
di�er by a unit only.
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Proof. � Let us proceed by recurrence. The statement is true for n = 1
as there are only 0 and 1 in the column. Let us suppose ([1] − [I])n−1 =
f(m) · [1] ± [I] for n > 1. This is also the initial form of ([1] − [I])1 as
we just have to take f(m) = 1 and adjust the sign in front of [I]. Then
using [1][1] = m[1], we get ([1] − [I])n = (f(m) · [1] ± [I]) · ([1] − [I]) =
f(m)·[1][1]−f(m)[1]±[1]−±[I] = (mf(m)−f(m)±1)·[1]∓[I] = g(m)·[1]∓[I].
The �rst term has the same components and the second vary the result by 0
or 1. Hence the result.

Theorem 23. � When m −→ +∞, the ratio of the value of a component
of the �rst column of the matrix ([1] − [I])n to the value of the �rst row and
column tends towards 1.
Proof. � Let us use the previous annotation : g(m) = mf(m)− f(m)± 1 ∼
mf(m) −→ +∞ when m −→ +∞. As all components just di�er by 0 or 1,
the result follows.

Theorem 24. � The cardinal image and cardinal matrix of a P_variable in
a m = 2i2_environment, i2 −→ +∞ are respectively equal to:

2



0
1
0
1
...
0
1


and

2

m



0 1 0 1 . . . 0 1
1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1
1 0 1 0 . . . 1 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 1 0 1 . . . 0 1
1 0 1 0 . . . 1 0


(12)

Proof. � The integer 2 doesn't have a primitive root which makes this case
a very special one. The projection of the set P modulo 2, 4, 8, etc. gives
equal repartition on odd numbers (again according to Chebotarev), but no
even numbers are produced except when projecting 2. Hence a completely
di�erent pattern here.

Note. � Let us take the writing convention for the former cardinal matrix
2
m [(0, 1)]
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Theorem 25. � When m −→ +∞, the multiplication of ([1] − [I])n by
2
m [(0, 1)] is equivalent to a multiplication by the scalar 1.
Proof. � According to theorem 23, the values of the components of ([1]− [I])n

are asymptotically equivalent as the maximum di�erence between components
is 1 which becomes negligeable whenm −→ +∞. The multiplication by [(0, 1)]
give components di�ering by 0 orm/2, thus the multiplication by 2

m [(0, 1)] give
components di�ering by 0 or 1 again. The ratios between matrix coe�cients
is therefore tending towards 1. The sole noticable e�ect on the initial matrix
(remember that we are primarly interested in relative proportions) is therefore
a multiplicative e�ect which is 1 for normalized items.

Theorem 26. � The eigenvalues of the cardinal matrix of a P_variable in
a m = 2i2_environment, i2 −→ +∞ is equal to:

σ1 =
1
m , σ1+m

2
= − 1

m , σj = 0 if j ̸= {1, 1 + m
2 }

Proof. � The eigenvectors matrix of the cardinal matrix is the same of course
as given in theorem 5 as the matrix is still circulant and we use theorem 6 for
the eigenvalues expression. Here m is even and therefore we get:

σj =
1

m

m−1∑
k=0

#(m− k) · w(j−1)·k =
wj−1

m

m
2
−1∑

k=0

w2k·(j−1)

Going back to the de�nition of w, we get:

σj =
e

2π(j−1)·i
m

m

m
2
−1∑

k=0

e
4πk·(j−1)·i

m

The terms of the sum are roots of the unit. The sum is equal to 0 unless

e
4π(j−1)·i

m = 1 (case k = 1), that is j ≡ 1 mod m/2. Hence the result.

Theorem 27. � The relative proportion, c being the parameter, of solutions
of equation

y1 + y2 + ...+ yn = c

is given by:

##(c) = 2 ·
∏
pi\c
pi≥3

(1− (
−1

pi − 1
)n−1) ·

∏
pi∤c
pi≥3

(1− (
−1

pi − 1
)n)

Proof. � The degree of stability of a variable yk being 1 for any instance
pi > 2, we can use the theorems 10 and 12. Having the same result for all
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targets except 0, we can reduce the square matrix' rank to 2.
0 1 1 · · · 1
1 0 1 · · · 1
. . .

. . .
. . .

. . . 1
1 1 1 · · · 0

 −→
(

0 pi − 1
1 pi − 2

)

Then, after normalization, the matrix being identical for each variable, we
apply an exponent n to the said matrix and multiply by the column vector K
of theorem 7: (

##(c = 0)
##(c ̸= 0)

)
= pi

(
0 1
1

pi−1
pi−2
pi−1

)n

·
(

1
0

)
Using eigenvalues and eigenvectors, we then get:(
##(c = 0)
##(c ̸= 0)

)
= (pi−1)·

(
1 1
1 −1

pi−1

)
·
(

1 0
0 −1

(pi−1)

)n

·
( 1

pi−1 1

1 −1

)
·
(

1
0

)
and therefore �nally:(

##(c ≡ 0 mod pi)
##(c ̸= 0 mod pi)

)
=

(
1− ( −1

pi−1)
n−1

1− ( −1
pi−1)

n

)
We remind, in the last relations, the instance and environment in which we

operate. The result in environment p
ipk
k is the same as the degree of stability is

1. To upgrade the result to an environment 2i2 · 3i3 . . . pipkk . . . p
ipr
r , according

to theorem 8, we have to multiply together these results and, as r −→ +∞, we
get the in�nite products of the theorem except for the factor 2. In theorem 25,
we identi�ed the contribution of the instance pi = 2 as a mere multiplication
by a scalar (with global normalized e�ect a unit multiplication). A direct
look to the studied equation provides an immediate explanation. With even
respectively odd quantity of variables in y1 + y2 + ... + yn = c, the result
gives overwhelmingly even respectively odd c values, in other words a factor
2 ampli�cation to even numbers' class while a factor 0 to the odd numbers'
class. The multiplicative factor 2 will provide this e�ect in both (odd and even
number of variables) cases.

This result opens a window for a more generalized case of the Polignac
conjecture if we go further than the mere comparison of proportions. The
reader can refer to [18] Fermat Sheet Exercises 5 and 18 for full enumeration
resolution and more (Waring sums and so on).
But, let us now go back to our �rst objective here, the Polignac problem.

The projection of the set −P in the pi environment gives the same Chebotarev
distribution as for the set P . Going through all the previous step, we will end
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with the same cardinal image and cardinal matrix enabling us to settle the
case of the following Diophantine equation.
Theorem 28. � The asymptotic proportions of solutions #c of the equation
c = p1 − p2 is given by:

#(c) = 2
∏
pi\c
pi≥3

pi
pi − 1

∏
pi∤c
pi≥3

pi · (pi − 2)

(pi − 1)2

Proof. � We use the general result for n variables and take n = 2. Besides
the relative proportions is the same notion for #c and ##c.

Theorem 29. � Polignac conjecture [11].
The asymptotic number of solutions πc(x) of the equation c = p1 − p2, c =
2n ̸= 0, n ∈ N , is given by

lim
x−→+∞

πc(x) = 2 · C2 ·
∏
pi\c
pi≥3

pi − 1

pi − 2
· x

ln2(x)

where C2 =
∏

pi≥3(1−
1

(pi−1)2
) =

∏
pi≥3

pi(pi−2)
(pi−1)2

≈ 0, 66016 . . . is the twin prime

constant (see reference [6]).
Proof. � Any pi is dividing 0, thus from theorem 28 we get:

#(0) = 2
∏
pi≥3

pi
pi − 1

It follows the ratio of asymptotic events for a target di�erent from 0 and
target 0:

#(c ̸= 0)

#0
=

∏
pi∤c
pi≥3

pi(pi−2)
(pi−1)2∏

pi∤c
pi≥3

pi
pi−1

=
∏
pi∤c
pi≥3

pi − 2

pi − 1

This is equivalent to:

lim
x−→+∞

πc ̸=0(x) =
∏
pi∤c
pi≥3

pi − 2

pi − 1
lim

x−→+∞
π0(x)

The asymptotic number of solutions π(x) for c = 0, that is the number of
events p1 = p2 is the number of primes up to x when x −→ +∞ and is equal to
π0(x) ∽ x/ ln(x) according to the prime numbers theorem (see reference [3])
and therefore

lim
x−→+∞

πc ̸=0(x) =
∏
pi∤c
pi≥3

pi − 2

pi − 1
· x

ln(x)
=
∏
pi\c
pi≥3

pi − 1

pi − 2
·
∏
pi≥3

pi − 2

pi − 1
· x

ln(x)



26 HUBERT SCHAETZEL

Let us then evaluate∏
pi≥3

pi − 2

pi − 1
=
∏
pi≥3

pi(pi − 2)

(pi − 1)2
·
∏
pi≥3

pi − 1

pi
= C2 ·

∏
pi≥3

pi − 1

pi
= 2 ·C2 ·

∏
pi

pi − 1

pi

Besides, the Euler product derived from the Riemann zeta function according
to reference [7] is

ζ(z) =
∑
n⩾1

1

nz
=
∏
pi

pzi
pzi − 1

Therefore using the harmonic series and reference [6]∏
pi

pi
pi − 1

=
∑
n⩾1

1

n
= limn−→+∞Hn ∼ limn−→+∞ ln(n)

This gives us the ultimate 1
ln(n) factor needed to con�rm the Polignac formula.

6.5. A standard technique. � Dealing with the instance pi = 2, as the
reader may have noticed is quite cumbersome even for the simplest case exposed
here. It is much more e�cient to study this case without going back each time
to the original premises in the following way which besides is an equivalent
way to handle a Diophantine equation enumeration problem.

Solving R(z1, z2, . . . , zn) ≡ c mod p
ipk
k is simply to write the data process-

ing loop:

for z1 = 0 to p
ipk
k − 1

if z1 is a P_variable skip events z1 ≡ 0 mod pk

for z2 = 0 to p
ipk
k − 1

if z2 is a P_variable skip events z2 ≡ 0 mod pk
· · ·
for zn = 0 to p

ipk
k − 1

if zn is a P_variable skip events zn ≡ 0 mod pk

c ≡ R(z1, z2, . . . , zn) mod p
ipk
k

#c = #c+ 1
Next zn
· · ·
Next z2
Next z1

Skipping events of the type zj ≡ 0 mod pk is the process of transforming
zj into the proper cardinal image if zj is a P_variable while there is no need
of this operation otherwise.
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For pk = 2 the values are in general small enough for a direct calculation
from which one can deduce the proportions between the di�erent cardinals
#c and thereafter pinpointing the degree of stability with adapted number of
loops:

· · ·
for yj = 1 to 2k step 2
· · ·
c = R(yj , . . .)
#c = #c+ 1
· · ·
Next yj
· · ·
With the Polignac's equation, and p = 2, we get precisely:

for y1 = 1 to 2k step 2
for y2 = 1 to 2k step 2
c = y1 − y2
#c = #c+ 1
Next y2
Next y1

This give the following table with increasing k, showing a degree of stability
equal to 1:

#0 #1 #2 #3 #4 #5 #6 #7 ...
k = 1 1 0
k = 2 2 0 2 0
k = 3 4 0 4 0 4 0 4 0
... ... ... ... ... ... ... ... ... ...

We can use section 3 de�nition 3 equation 6 or directly evaluate the normal-
izing ratio providing a unit average on targets' enumeration (con�rming here
the multiplicative factor 2):

#0 #1 #2 #3 #4 #5 #6 #7 ...
2 0 2 0 2 0 2 0 ...

This standard technique brings us also back to the previous section dealing
with the degree of stability, section 4 de�nition 5 equation 7, the 2-period
pattern extending up to in�nity allowing us, after the instance p = 2, the
successive multiplications with the results given for the instances p = 3, p = 5,
and so on.

Appendix D provides an example of a computer program enabling to cal-
culate the normalized cardinal factors for the Friedlander-Iwaniec equation
which will be our next subject. A few adaptations would make it suitable for
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other types of equations with degree of stability equal to 1 according to the
standard technique just given above (change of monomials' powers, number of
loops, adaptation of normalizing factor). It can also be adapted of course to
higher degrees of stability according to the same exposed technique, but with
a risk of rapid time processing over�ow. However, for any dubious result with
alternative technique evaluation, going back for comparison to this standard
procedure is essential.

6.6. The Friedlander-Iwaniec case. � Friedlander and Iwaniec proved in
1996 the in�nite number of primes y of the type x21 + x42. We will generalize
the research to an equation

c = −y + x21 + x42

where we want to compare the number of solutions #c of the target c to the
number of solutions #0 of the target 0, when y −→ +∞, for which Friedlander
and Iwaniec gave the additional formula:

lim
y−→+∞

#{y = x21 + x42} = fan(0) · w · y3/4

ln(y)
(13)

where fan(0) = 4/π and w =
∫ 1
0 (1− t4)

1
2dt = Γ(1/2)Γ(5/4)

2·Γ(7/4) .

Theorem 30. � The degree of stability of the Friedlander-Iwaniec general
equation is equal to 1.
Proof. � The equation being composed of independent monomials including
a variable of prime numbers, we use theorem 14.

Theorem 31. � The ranks of the condensed matrices for the Friedlander-
Iwaniec equation are given by the following cases:

Matrices M0 M1 M2 M0.M1.M2
Instance var −y var x21 var x42 rank lesser

p gcd(p− 1, 1) gcd(p− 1, 2) gcd(p− 1, 4) 1 + lcm cases
2 1 1 1 2

1 mod 4 1 2 4 5
p = 1 mod 8
p = 5 mod 8

3 mod 4 1 2 2 3

Proof. � The case p = 2 is treated by a speci�c evaluation as described earlier.
Otherwise, the size of the condensed matrix except �rst line and column is given
for each monomial by d = gcd(p − 1, n) where n is the degree of the variable
in a p_environment. Theorem 19 then enables to conclude.
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Theorem 32. � Let us have M0 a condensed cardinal matrix of −y. Then:
Case 1: Rank = 5.

M0 =


0 (p− 1)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
1 (p− 5)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
1 (p− 1)/4 (p− 5)/4 (p− 1)/4 (p− 1)/4
1 (p− 1)/4 (p− 1)/4 (p− 5)/4 (p− 1)/4
1 (p− 1)/4 (p− 1)/4 (p− 1)/4 (p− 5)/4


Case 2: Rank = 3.

M0 =

 0 (p− 1)/2 (p− 1)/2
1 (p− 3)/2 (p− 1)/2
1 (p− 1)/2 (p− 3)/2


Proof. � The cardinal matrices of −y and y are identical according to theorem
9. Besides, using theorem 15, the condensed cardinal matrix of x is

1 (p− 1)/md · · · (p− 1)/md
1 (p− 1)/md · · · (p− 1)/md
· · · · · · · · · · · ·
1 (p− 1)/md · · · (p− 1)/md


where md is any multiple of d and divider of p − 1. Here we have d = 1, so
the only condition is that md divides p− 1. The condensed cardinal matrices
of each case is then deduced by subtracting the identity matrix according to
property 12.

Theorem 33. � Let us have M1 a condensed cardinal matrix of x21. Then:
Case 1: Rank = 5.

M1 =


1 (p− 1)/2 0 (p− 1)/2 0
2 x1 x2 x3 x4
0 x2 x3 + 1 x4 x1 + 1
2 x3 x4 x1 x2
0 x4 x1 + 1 x2 x3 + 1


where

x4 = p− 2− x1 − x2 − x3

and where, for u and v integers within the intervals [0, (p− 1)/2[ and [0, (p−
1)/4[ respectively,

x1 = 1 + 2.#(u, v) \ g0 ≡ g2u + g4v mod p
x2 = 2.#(u, v) \ g1 ≡ g2u + g4v mod p
x3 = 2.#(u, v) \ g2 ≡ g2u + g4v mod p
x4 = 2.#(u, v) \ g3 ≡ g2u + g4v mod p
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Case 2: Rank = 3.

M1 =

 1 0 p− 1
2 (p− 1)/2 (p− 3)/2
0 (p+ 1)/2 (p− 1)/2


Proof. � The values of the components for the �rst line and �rst column are
obtained straightforwardly thanks to theorem 15.
For case 1, as shown in theorem 31, we have p ≡ 1 mod 4, d = 2 and md = 4.
We get p−1

2 ≡ 0 mod 2 and the symmetry versus the principal diagonal in the
blocks' area is then deduced from property 13 case 1. Therefore M1 − I is
equal to

M1− I =


0 (p− 1)/2 0 (p− 1)/2 0
2 x1 − 1 x2 x3 x4
0 x2 x5 x6 x7
2 x3 x6 x8 x9
0 x4 x7 x9 x10


for some integers xi, i = 1 to 10, to be de�ned. Then using property 14 case
1, the transformations r′ ≡ r + 2 mod 4 and s′ ≡ s + 2 mod 4 lead to the
equivalence of positions starting with index (0, 0) on the second line and second
column of the condensed matrix:(

0
0

)
≡
(

2
2

)
,

(
1
0

)
≡
(

3
2

)
,

(
3
0

)
≡
(

1
2

)
,

(
1
1

)
≡
(

3
3

)
.

Therefore we get the following matrix:

M1− I =


0 (p− 1)/2 0 (p− 1)/2 0
2 x1 − 1 x2 x3 x4
0 x2 x5 x4 x7
2 x3 x4 x1 − 1 x2
0 x4 x7 x2 x5


The sum of the components of each line being the same provides the additional
equality 2+x1−1+x3 = x5+x7 as x2 and x4 are common terms in the second
and third lines of the matrix. Then using lemma 2, given later on in this article,
we can write x5 = x3 and therefore x7 = x1 + 1. So that now:

M1− I =


0 (p− 1)/2 0 (p− 1)/2 0
2 x1 − 1 x2 x3 x4
0 x2 x3 x4 x1 + 2
2 x3 x4 x1 − 1 x2
0 x4 x1 + 1 x2 x3


The sum of a line being equal to p − 1 by construction, we get x4 = p − 2 −
x1 − x2 − x3, reducing unknows to x1, x2 and x3. Using theorem 18, we then
can address the primitive roots' equations for the blocks' area.
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For case 2, p ≡ 3 mod 4, d = 2 and therefore (p − 1)/2 ≡ d/2 mod d, thus
the value p−1 on the third position of the �rst line instead of the second. The
initial matrix can then be written using property 13 case 2:

M1 =

 1 0 p− 1
2 x1 x2
0 x3 x1


The sum of the components of each line is the same, we get:

M1− I =

 0 0 p− 1
2 x1 − 1 x2
0 x2 + 2 x1 − 1


Having md = d, we can use property 15 case 2 which gives x2 = x1 + 1. Thus
we get the matrix

M1 =

 1 0 p− 1
2 x1 x1 − 1
0 x1 + 1 x1


Because the sum of the components of each line of M1 is equal to p, we get
the proposed result.

Theorem 34. � Let us have M2 the condensed cardinal matrix of x42. Then:
Case 1a: Rank = 5. Lesser case p ≡ 1 mod 8.

M2 =


1 p− 1 0 0 0
4 x1 − 3 x2 x3 x4
0 x2 x4 + 1 x5 x5
0 x3 x5 x3 + 1 x5
0 x4 x5 x5 x2 + 1


where

x3 =
p−1
3 − x1

3

x4 =
2(p−1)

3 − 2x1
3 − x2

x5 =
p−1
6 + x1

3

and where, for u and v integers within the interval [0, (p− 1)/4[,

x1 = 4 + 4.#(u, v) \ g0 ≡ g4u + g4v mod p
x2 = 4.#(u, v) \ g1 ≡ g4u + g4v mod p
x3 = 4.#(u, v) \ g2 ≡ g4u + g4v mod p
x4 = 4.#(u, v) \ g3 ≡ g4u + g4v mod p
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Case 1b: Rank = 5. Lesser case p ≡ 5 mod 8.

M2 =


1 0 0 p− 1 0
4 x3 + 1 x5 x3 x5
0 x4 x5 + 1 x5 x2
0 x1 x2 x3 + 1 x4
0 x2 x4 x5 x5 + 1


where

x3 =
p−5
3 − x1

3

x4 =
2(p+1)

3 − 2x1
3 − x2

x5 =
p−5
6 + x1

3

and where, for u and v integers within the interval [0, (p− 1)/4[,

x3 = 4.#(u, v) \ g0 ≡ g4u + g4v mod p
x4 = 4.#(u, v) \ g1 ≡ g4u + g4v mod p
x1 = 4.#(u, v) \ g2 ≡ g4u + g4v mod p
x2 = 4.#(u, v) \ g3 ≡ g4u + g4v mod p

Case 2: Rank = 3.

M2 =

 1 0 p− 1
2 (p− 1)/2 (p− 3)/2
0 (p+ 1)/2 (p− 1)/2


Proof. � The values of the components for the �rst line and �rst column are
again obtained straightforwardly thanks to theorem 15.
For case 1, d = md = 4, so that the cardinal matrix is the most condensed
possible. We can therefore use properties 13 and 15. Property 13 results in the
transformations r ≡ s mod 4 and s ≡ r mod 4 as in this case (p − 1)/2 ≡ 0
mod 4. Therefore the blocks'area of the condensed matrix is symmetrical and
we can write:

M2− I =


0 p− 1 0 0 0
4 x1 − 4 x2 x3 x4
0 x2 x5 x6 x7
0 x3 x6 x8 x9
0 x4 x7 x9 x10


Then, using property 15, the transformations r ≡ −r mod 4 and s ≡ −r + s
mod 4 lead to the equivalence of positions starting with index (0, 0) on the
second line and column of the condensed matrix:(

1
0

)
≡
(

3
3

)
,

(
2
0

)
≡
(

2
2

)
,

(
3
0

)
≡
(

1
1

)
,(

2
1

)
≡
(

2
3

)
,

(
3
1

)
≡
(

1
2

)
,

(
3
2

)
≡
(

1
3

)
.
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After reindexing x5 to x6, we get the following matrix:

M2− I =


0 p− 1 0 0 0
4 x1 − 4 x2 x3 x4
0 x2 x4 x5 x5
0 x3 x5 x3 x5
0 x4 x5 x5 x2


The sum of the components of each line being the same and equal to p−1 pro-
vides then the three additional equalities given above reducing the number of
unknowns to x1 and x2. Using theorem 18, we then can address the primitive
roots' equations for the blocks' area. Again, the exponent s in the theorem is
equal to 2 which provides the proposed result.
For the lesser case p ≡ 5 mod 8, (p − 1)/2 ≡ 2 mod 4 and, by property 13,
equal components' positions in the blocks' area are now given by transforma-
tions r ≡ s+ 2 mod 4 and s ≡ r + 2 mod 4.(

0
0

)
≡
(

2
2

)
,

(
1
0

)
≡
(

2
3

)
,

(
3
0

)
≡
(

2
1

)
,(

0
1

)
≡
(

3
2

)
,

(
1
1

)
≡
(

3
3

)
,

(
1
2

)
≡
(

0
3

)
.

This gives the matrix

M2− I =


0 0 0 p− 1 0
4 x3 x6 x8 x9
0 x4 x5 x9 x10
0 x1 x2 x3 x4
0 x2 x7 x6 x5


Then, using property 15, the transformations r ≡ −r mod 4 and s ≡ −r+s+2
mod 4 lead to the equivalence of positions:(

0
1

)
≡
(

0
3

)
,

(
0
2

)
≡
(

0
0

)
,

(
1
1

)
≡
(

3
2

)
,(

1
3

)
≡
(

3
0

)
,

(
3
1

)
≡
(

1
0

)
.

This provides the matrix:

M2− I =


0 0 0 p− 1 0
4 x3 x5 x3 x5
0 x4 x5 x5 x2
0 x1 x2 x3 x4
0 x2 x4 x5 x5


Again, the sum of the components of each line being the same and equal to p,
we get the three former additional equalities reducing the number of unknowns
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to two.
For case 2, p ≡ 3 mod 4, d = 2 and therefore we get the same matrix of rank
3 as earlier for the monomial x21.

Now we can go back to theorem 31 and construct the matrices products to
solve our general Friedlander-Iwaniec equation. We get the following cases:
Theorem 35. � Let us name M0 the condensed matrix for variable −p, M1
the condensed matrix for variable x21, M2 the condensed matrix for variable x42
and the column vector K as de�ned earlier. Then:

Case 1: p = 2. (
##(0)
##(gu)

)
=

(
1
1

)
Case 2: p ≡ 3 mod 4. ##(0)

##(g2u)
##(g.g2u)

 =
1

p.(p− 1)

 p2 − 1
p2 − p− 1
p2 − p− 1


Case 3 : p ≡ 1 mod 4.

##(0)
##(g4u)
##(g.g4u)
##(g2.g4u)
##(g3.g4u)

 =
1

p.(p− 1)


(p− 1)2

p2 − 2− 4x1
p2 − 4x2

p2 − 2− 4x3
p2 − 4x4


where

x4 = p− 2− x1 − x2 − x3

and where, for u and v integers within the intervals [0, (p− 1)/2[ and
[0, (p− 1)/4[ respectively,

x1 = 1 + 2.#(u, v) \ g0 ≡ g2u + g4v mod p
x2 = 2.#(u, v) \ g1 ≡ g2u + g4v mod p
x3 = 2.#(u, v) \ g2 ≡ g2u + g4v mod p
x4 = 2.#(u, v) \ g3 ≡ g2u + g4v mod p

Proof. � Let us name M0 the condensed matrix for variable −p, M1 the
condensed matrix for variable x21, M2 the condensed matrix for variable x42,
each one with appropriate rank. Let us consider also the column vector K as
de�ned earlier.
Then case 1, p = 2 is obtained by direct calculation:(

##(0)
##(gu)

)
= 1

p(p−1)M0.M1.M2.Kto the left to the left to the left to the left to the left

void = 1
2

(
0 1
1 0

)(
1 1
1 1

)(
1 1
1 1

)(
1
0

)
to the left to the left to the left
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void =

(
1
1

)
to the left to the left to the left to the left to the left

For case 2, p ≡ 3 mod 4, we have M1 = M2 and the following calculations: ##(0)
##(g2u)
##(g.g2u)

 = 1
p.(p−1)M0.M1.M2.Kto the left to the left to the left to the left

void = 1
p.(p−1)M0.M1.

 1 0 p− 1
2 (p− 1)/2 (p− 3)/2
0 (p+ 1)/2 (p− 1)/2

 1
0
0

 to the left to the left to the left

void = 1
p.(p−1)M0

 1 0 p− 1
2 (p− 1)/2 (p− 3)/2
0 (p+ 1)/2 (p− 1)/2

 1
2
0

 to the left to the left to the left

void = 1
p.(p−1)

 0 (p− 1)/2 (p− 1)/2
1 (p− 3)/2 (p− 1)/2
1 (p− 1)/2 (p− 3)/2

 1
p+ 1
p+ 1

 to the left to the left to the left

void = 1
p.(p−1)

 p2 − 1
p2 − p− 1
p2 − p− 1

 to the left to the left to the left to the left to the left

The reader is invited to remembered the distinctive respective de�nitions of xi
in di�erent Mj matrices. Then, for case 3a, p ≡ 1 mod 8, we get:

##(0)
##(g4u)
##(g.g4u)
##(g2.g4u)
##(g3.g4u)

 = 1
p.(p−1)M0.M1.M2.Kto the left to the left to the left

void = 1
p.(p−1)M0.M1.


1 p− 1 0 0 0
4 x1 − 3 x2 x3 x4
0 x2 x4 + 1 x5 x5
0 x3 x5 x3 + 1 x5
0 x4 x5 x5 x2 + 1




1
0
0
0
0

 to the left to the left to the left

void = 1
p.(p−1)M0


1 (p− 1)/2 0 (p− 1)/2 0
2 x1 x2 x3 x4
0 x2 x3 + 1 x5 x6
2 x3 x5 x1 x2
0 x4 x6 x2 x3 + 1




1
4
0
0
0

 to the left to the left to the left
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void = 1
p.(p−1)


0 (p− 1)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
1 (p− 5)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
1 (p− 1)/4 (p− 5)/4 (p− 1)/4 (p− 1)/4
1 (p− 1)/4 (p− 1)/4 (p− 5)/4 (p− 1)/4
1 (p− 1)/4 (p− 1)/4 (p− 1)/4 (p− 5)/4




2p− 1
2 + 4x1
4x2

2 + 4x3
4x4

 to the left to the left to the left

void = 1
p.(p−1)


(p− 1)(x1 + x2 + x3 + x4 + 1)

(p− 1)(x1 + x2 + x3 + x4 + 1) + 2p− 3− 4x1
(p− 1)(x1 + x2 + x3 + x4 + 1) + 2p− 1− 4x2
(p− 1)(x1 + x2 + x3 + x4 + 1) + 2p− 3− 4x3
(p− 1)(x1 + x2 + x3 + x4 + 1) + 2p− 3− 4x4

 to the left to the left to the left

void = 1
p.(p−1)


(p− 1)2

p2 − 2− 4x1
p2 − 4x2

p2 − 2− 4x3
p2 − 4x4

 to the left to the left to the left to the left to the left

Then we go back to theorem 33 case 1 for the primitive roots' equations.
For case 3b, p ≡ 5 mod 8, we get:

##(0)
##(g4u)
##(g.g4u)
##(g2.g4u)
##(g3.g4u)

 = 1
p.(p−1)M0.M1.M2.Kto the left to the left to the left

The M0 and M1 matrices are the same as for case 3a. Matrix M2 is now
di�erent, but the product M2.K is the same column vector:

1
4
0
0
0


Therefore the product will be the same as for case 3a. Besides the primitive
roots' equation as also unchanged. Hence the result.

Note. � Let us observe that there is no need here for the full expression of
the cardinal matrix M2 to solve the Friedlander-Iwaniec equation. However,
this matrix would be indispensable to compare asymptotically, for example, for
di�erent targets c, the number of solutions of the speci�c Waring type equation

p = x41 + x42 + ...+ x4k + c.

In this case, one would use the matrix product

M = M0.M2k.
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Theorem 36. � Asymptotically, the ratio between the number of solutions of
the Friedlander-Iwaniec equation with target c compared to the equation with
target 0 is equal to:

∏
p≡1 mod 4

i\{c≡gi mod 4 mod p}

1 +
p−4(xi+1+

(i+1) mod 2
2

)

p(p−1)

1− 1
p

∏
p≡3 mod 4

1− 1
p(p−1)

1 + 1
p

Proof. � According to theorem 8, the ratio between the number of solutions of
the Diophantine equation with target c compared to the equation with target
0 is the ratio of the cardinal factors fan(c)/fan(0). The multiplicative factors
for p = 2 is 1 as indicated in theorem 35 and therefore has no e�ect. Then using
the other values obtained in theorem 35, the in�nite product of the factors of
fan(0) and fan(c ̸= 0) are respectively∏

p≡1 mod 4

1− 1

p

∏
p≡3 mod 4

1 +
1

p

and ∏
p≡1 mod 4

i\{c≡gi mod 4 mod p}

1 +
p− 4(xi+1 +

(i+1) mod 2
2 )

p(p− 1)

∏
p≡3 mod 4

1− 1

p(p− 1)

In the second subscript, it is of course i which has to be deduced from c, p and
g at each occurrence p ≡ 1 mod 4. Regrouping the terms having modulo 4 in
common, we get the result.

Appendix E provides a computer program enabling to calculate the data
resulting from theorem 35. It gets the data faster than the basic program
given previously in appendix D.
The Friedlander-Iwaniec theorem was re�ned by Roger Heath-Brown and Li

Xiannan in 2017 [14]. In particular, they proved that the polynomial x2 + p4

represents in�nitely many primes where the variable p is required to be prime
numbers. With the premises of our study, we can immediately get the general
enumeration's result for the Diophantine equation p = x2 + y4 − c for some
target c compared with the enumeration of target 0. All we have to do to
get a literal formula is to replace the previous M2 matrices with M2− I and
to multiply the former normalizing factor 1

p(p−1) by
p

p−1 , thus getting
1

(p−1)2
.

This leads straightforward to:

Theorem 37. � The enumeration of the Heath-Brown−Xiannan equation is
pending on the three cases:
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Case 1: p = 2. (
##(0)
##(gu)

)
=

(
1
1

)
Case 2: p ≡ 3 mod 4. ##(0)

##(g2u)
##(g.g2u)

 =
1

(p− 1)2

 p(p− 1)
p2 − 2p+ 1
p2 − 2p− 1


Case 3 : p ≡ 1 mod 4.

##(0)
##(g4u)
##(g.g4u)
##(g2.g4u)
##(g3.g4u)

 =
1

(p− 1)2


(p− 1)(p− 2)
p(p− 1)− 4x1
p(p− 1)− 4x2
p(p− 1)− 4x3
p(p− 1)− 4x4


where

x4 = p− 2− x1 − x2 − x3

and where, for u and v integers within the intervals [0, (p− 1)/2[ and [0, (p−
1)/4[ respectively,

x1 = 1 + 2.#(u, v) \ g0 ≡ g2u + g4v mod p
x2 = 2.#(u, v) \ g1 ≡ g2u + g4v mod p
x3 = 2.#(u, v) \ g2 ≡ g2u + g4v mod p
x4 = 2.#(u, v) \ g3 ≡ g2u + g4v mod p

Proof. � We operate as with the previous example.
For case 1:(

##(0)
##(gu)

)
= 1

(p−1)2
M0.M1.(M2− I).Kto the left to the left to the left to the left to the left

void =

(
0 1
1 0

)(
1 1
1 1

)(
0 1
1 0

)(
1
0

)
to the left to the left to the left

void =

(
1
1

)
to the left to the left to the left to the left to the left

For case 2, p ≡ 3 mod 4, we have M1 = M2 and the following calculations: ##(0)
##(g2u)
##(g.g2u)

 = 1
(p−1)2

M0.M1.(M2− I).Kto the left to the left to the left to the left

void = 1
(p−1)2

M0.M1.

 0 0 p− 1
2 (p− 3)/2 (p− 3)/2
0 (p+ 1)/2 (p− 3)/2

 1
0
0

 to the left to the left to the left
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void = 1
(p−1)2

M0

 1 0 p− 1
2 (p− 1)/2 (p− 3)/2
0 (p+ 1)/2 (p− 1)/2

 0
2
0

 to the left to the left to the left

void = 1
(p−1)2

 0 (p− 1)/2 (p− 1)/2
1 (p− 3)/2 (p− 1)/2
1 (p− 1)/2 (p− 3)/2

 0
p− 1
p+ 1

 to the left to the left to the left

void = 1
(p−1)2

 p(p− 1)
p2 − 2p+ 1
p2 − 2p− 1

 to the left to the left to the left to the left to the left

For case 3, p ≡ 1 mod 8, we get:
##(0)
##(g4u)
##(g.g4u)
##(g2.g4u)
##(g3.g4u)

 = 1
(p−1)2

M0.M1.(M2− I).Kto the left to the left to the left

void = 1
(p−1)2

M0.M1.


0 p− 1 0 0 0
4 x1 − 4 x2 x3 x4
0 x2 x4 x5 x5
0 x3 x5 x3 x5
0 x4 x5 x5 x2




1
0
0
0
0

 to the left to the left to the left

void = 1
(p−1)2

M0


1 (p− 1)/2 0 (p− 1)/2 0
2 x1 x2 x3 x4
0 x2 x3 + 1 x5 x6
2 x3 x5 x1 x2
0 x4 x6 x2 x3 + 1




0
4
0
0
0

 to the left to the left to the left

void = 1
(p−1)2


0 (p− 1)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
1 (p− 5)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
1 (p− 1)/4 (p− 5)/4 (p− 1)/4 (p− 1)/4
1 (p− 1)/4 (p− 1)/4 (p− 5)/4 (p− 1)/4
1 (p− 1)/4 (p− 1)/4 (p− 1)/4 (p− 5)/4




2(p− 1)
4x1
4x2
4x3
4x4

 to the left to the left to the left

void = 1
(p−1)2


(p− 1)(x1 + x2 + x3 + x4)

(p− 1)(x1 + x2 + x3 + x4) + 2p− 2− 4x1
(p− 1)(x1 + x2 + x3 + x4) + 2p− 2− 4x2
(p− 1)(x1 + x2 + x3 + x4) + 2p− 2− 4x3
(p− 1)(x1 + x2 + x3 + x4) + 2p− 2− 4x4

 to the left to the left to the left
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void = 1
(p−1)2


(p− 1)(p− 2)
p(p− 1)− 4x1
p(p− 1)− 4x2
p(p− 1)− 4x3
p(p− 1)− 4x4

 to the left to the left to the left

where x1, x2, x3 and x4 are the values extracted from the primitive roots'
equation of theorem 35.

Theorem 38. � Asymptotically the ratio between the number of solutions
of the Heath-Brown−Xiannan equation with target c compared to the equation
with target 0 is equal to:

∏
p≡1 mod 4

i\{c≡gi mod 4 mod p}

1 + p−1−4xi+1

(p−1)2

1− 1
p−1

∏
p≡3 mod 4

i\{c≡gi mod 2 mod p}

1− 1−(−1)i

(p−1)2

1 + 1
p−1

Proof. � According to 8 the ratio between the number of solutions of the
Diophantine equation with target c compared to the equation with target 0 is
the ratio of the cardinal factors fan(c)/fan(0). The multiplicative factors for
p = 2 is 1 as indicated in theorem 35 and therefore has no e�ect. Then using
the other values obtained in theorem 37, the in�nite product of the factors of
fan(0) and fan(c ̸= 0) are respectively∏

p≡1 mod 4

1− 1

p− 1

∏
p≡3 mod 4

1 +
1

p− 1

and ∏
p≡1 mod 4

i\{c≡gi mod 4 mod p}

1 +
p− 1− 4xi+1

(p− 1)2

∏
p≡3 mod 4

i\{c≡gi mod 2 mod p}

1− 1− (−1)i

(p− 1)2

In the second subscripts, it is of course i which has to be deduced from c, p
and g. For the occurrences p ≡ 3 mod 4 where i = 0, we get 1 − (−1)i = 0
and therefore the local cardinal factor is simply 1. Regrouping the modulo 4
terms, we get the result.

Proposition 1. � The Friedlander-Iwaniec and the Heath-Brown−Xiannan
generalized equations have an in�nite number of solutions for any target c.
Partial proof. � The Hardy-Littlewood twin prime constant is equal to∏

p>2

1− 1

(p− 1)2
≃ 0.6601061
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according to reference [8]. Therefore∏
p>2

1− 1

p(p− 1)

and ∏
p>2

1 +
1

p(p− 1)

converge as well as ∏
p≡1 mod 4

1− 1

p(p− 1)

and ∏
p≡3 mod 4

1 +
1

p(p− 1)

The following Euler product converges and is equal to:∏
p≡1 mod 4

1− 1

p

∏
p≡3 mod 4

1 +
1

p
=

4

π

according to reference [8] using the Leibniz formula.
Then:∏
p≡1 mod 4

1− 1

p− 1

∏
p≡3 mod 4

1+
1

p− 1
=

4

π

∏
p≡1 mod 4

1− 1
p−1

1− 1
p

∏
p≡3 mod 4

1 + 1
p−1

1 + 1
p

Asymptotically 1
p −→ 0 and therefore:

1− 1
p−1

1− 1
p

≃ 1− 1

p− 1
+

1

p
= 1− 1

p(p− 1)

and similarly

1 + 1
p−1

1 + 1
p

≃ 1 +
1

p(p− 1)

This gives a second order correction to the Leibniz formula and the in�nite
product with p− 1 on the denominators, instead of p, will also converge (and
the correction factor is about 1.0781). The same is true for the product∏

p≡3 mod 4
i\{c≡gi mod 2 mod p}

1− 1− (−1)i

(p− 1)2
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leaving us with the last checks to be done on∏
p=≡ mod 4

i\{c≡gi mod 4 mod p}

1 +
p− 4(xi+1 +

(i+1) mod 2
2 )

p(p− 1)

∏
p≡1 mod 4

i\{c≡gi mod 4 mod p}

1 +
p− 1− 4xi+1

(p− 1)2

We have x1+x2+x3+x4 = p− 2, each xi being a positive integer. Thus xi is
a fractional part of p, written underneath frac(p). Therefore the two previous
expressions are Euler in�nite products looking like∏

p≡1 mod 4
i\{c≡gi mod 4 mod p}

1± 3.frac(p)

(p− 1)2

The multiplicative factor 3 in this expression will only multiply the constant
value of the expression compared with the result of a factor 1 as in this Leibniz'
type formula, therefore not changing the limit property (that is convergence or
divergence). However, because the sum of the reciprocals of all prime numbers
diverges, we need the same proportion of + and − signs (where we wrote ±)
in order to get a convergent value here, which depends on the equal even and
odd proportions of i resulting from c ≡ gi mod 2 mod p equation. Even a
slight di�erence will give a divergent result. In this case, if the Euler product
diverges to +∞, the number of solutions of the Diophantine equation will be
in�nite. If on the contrary it "diverges" to the 0 value, the number of solutions
may still be in�nite (it depends of the rate of convergence towards 0).

Although of no critical scope, the primitive roots' equation remains some-
what cumbersome to use. A "simpler" expression with faster data processing
performance would be welcome. In order to do that, let us start with the
following theorem before going further. void

Theorem 39. � Let us have g a primitive root of p. The numbers, respec-
tively n1 and n2, of integer solutions #(u, v), u ∈ [0, p−1

2 [, v ∈ [0, p−1
2 [ to the

equations
n1 = #(u, v) \ g0 ≡ g2u + g2v mod p
n2 = #(u, v) \ g1 ≡ g2u + g2v mod p

is given by (
n1 + 1
n2

)
=

 p−(−1)
p−1
2

4

p−(−1)
p−1
2

4
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Proof. � Let us use the cardinal matrix of the monomial y2.
If p ≡ 1 mod 4, we refer to the property 13 case 1 to get: 0 p− 1 0

2 x1 x2
0 x2 x3


Therefore using property 15, the transformations r ≡ −r mod 2 and s ≡
−r + s mod 2 lead to the equivalence of positions in the block's area (the
positions being referenced as previously):(

1
0

)
≡
(

1
1

)
so that we get the following matrix: 0 p− 1 0

2 x1 x2
0 x2 x2


Using equalities to p− 1 for each line, we end with the matrix: 0 p− 1 0

2 (p− 5)/2 (p− 1)/2
0 (p− 1)/2 (p− 1)/2


According to theorem 18, the �rst column of the block's area gives the primitive
roots' equations with a factor d correction and therefore:

x1 = (p− 5)/2
x2 = (p− 1)/2

where
x1 = 2 ·#(u, v) \ g0 ≡ g2u + g2v mod p
x2 = 2 ·#(u, v) \ g1 ≡ g2u + g2v mod p

and where u ∈ [0, p−1
2 [, v ∈ [0, p−1

2 [.
The case p ≡ 3 mod 4, has already being solve earlier using the same tools.
The matrix is equal to:  0 0 p− 1

2 (p− 3)/2 (p− 3)/2
0 (p+ 1)/2 (p− 3)/2


resulting in

x1 = (p− 3)/2
x2 = (p+ 1)/2

The theorem follows then by taking n2 = 1
2x2, the correction 1/2 coming

from the primitive roots' equation, and n1 is deduced afterwards in a similar
way.
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Lemma 1. � Let us have p = 1 mod 4 and g a primitive root of p. Then
the numbers of integer solutions #(u, v), u ∈ [0, p−1

2 [, v ∈ [0, p−1
4 [, to the

underneath primitive roots' equations are as follows

p−1
4 = #(u, v) \ 0 ≡ g2u + g4v mod p,
0 = #(u, v) \ 0 ≡ g2u+1 + g4v+2 mod p.

Proof. � The �rst result is obtained by writing g2u ≡ −g4v ≡ g4v+(p−1)/2

mod p, so that 2u ≡ 4v+(p−1)/2 mod p−1, which is equivalent to u ≡ 2v+
(p−1)/4 mod (p−1)/2, (p−1)/4 being an integer according to the hypothesis.
The previous equation is linear with the coe�cient of u equal to 1. Therefore,
there is no constraint on this parameter to acquire any value provided by the
second member if the equation. On that side (p-1)/4 is a constant and therefore
can be ignored in numbering solutions. The coe�cient in front of v being 2,
the number of values taken by u is the cardinal of the domain of de�nition
of v divided by 2. Hence the �rst result. The second result derives from
g2u+1 ≡ −g4v+2 ≡ g4v+2+(p−1)/2 mod p, so that 2u + 1 ≡ 4v + 2 + (p − 1)/2
mod p − 1, equivalent to u + 1/2 = 2v + 1 + (p − 1)/4 + k(p − 1)/2 for some
integer k which is impossible as 1/2 is not an integer while the rest of the terms
are by the hypothesis. Hence the void set.

Lemma 2. � Let us have p = 1 mod 4 and g a primitive root of p. The
numbers of integer solutions #(u, v), u ∈ [0, p−1

2 [, v ∈ [0, p−1
4 [, to the equations

n1 = #(u, v) \ gk ≡ g2u + g4v mod p
n2 = #(u, v) \ gk ≡ g2u+1 + g4v+2 mod p

are such that
n2 − n1 = 0 if k ̸= 0 mod 4
n2 − n1 = 1 if k = 0 mod 4

Proof. � Let us consider A the set of integers {g2u+g4v mod p}∪{g4w mod p}
with (u, v) integers describing one time the cross product ([0, (p−1)/2[, [0, (p−
1)/4[) and w integers describing one time [0, (p − 1)/4[. In the same way, let
us have the set B′ of integers {g2u + g2.g4v mod p} ∪ {g2.g4w mod p} with
(u, v) in ([0, (p−1)/2[, [0, (p−1)/4[) and w in [0, (p−1)/4[ to which we remove
the (p − 1)/4 zero-value elements {0, ..., 0} and let us then call the resulting
set B. Lemma 1 proves that there are exactly (p − 1)/4 zeroes in the sets A
and B′. Therefore B contains no zeroes. Now B is the complementary set
of A in the set T composed of (p − 1)/4 times the integers {0, 1, ..., p − 1}.
Let us then have the set C ′ of integers {g.g2u + g2.g4v mod p} with (u, v) in
([0, (p − 1)/2[, [0, (p − 1)/4[) and C = C ′ ∪ {0, ..., 0} with (p − 1)/4 zeroes in
the second member of the union. By lemma 1, there are no zeroes in the set
C ′ and therefore there are now exactly (p− 1)/4 zeroes in C. The set C is the
complementary set of B in T . Therefore A and C are the same sets submitted
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to some permutation of the elements keeping the equal cardinality property.
The di�erence n2−n1 is then again a consequence of lemma 1 and can be easily
checked using either a numerical example or the above kind of arguments.

Lemma 3. � Let us have g a primitive root of p. The numbers, respectively
n1, n2, n3 and n4, of integer solutions #(u, v), u ∈ [0, p−1

2 [, v ∈ [0, p−1
2 [, to

the equations

n1 = #(u, v) \ g0 ≡ g2u + g4v mod p
n2 = #(u, v) \ g1 ≡ g2u + g4v mod p
n3 = #(u, v) \ g2 ≡ g2u + g4v mod p
n4 = #(u, v) \ g3 ≡ g2u + g4v mod p

is the numbers of solutions #(u, v) to the equation systems

n1 = #(u, v) \ g0 ≡ g2u + g2v mod p ∩ v = 0 mod 2
n2 = #(u, v) \ g1 ≡ g2u + g2v mod p ∩ v = 0 mod 2
n3 = #(u, v) \ g2 ≡ g2u + g2v mod p ∩ v = 0 mod 2
n4 = #(u, v) \ g3 ≡ g2u + g2v mod p ∩ v = 0 mod 2

Proof. � This is a trivial result.

Note. � We will soon see that the condition v even (and its opposite v odd
condition) is of quite signi�cant importance and the only purpose of this trivial
lemma is to highlight that point.
Theorem 40. � The equation

p = (2α)2 + β2

has a unique solution (α, β), α > 0, β > 0, β odd, p ≡ 1 mod 4.
There is no solution to the previous equation if p ≡ 3 mod 4.
Proof. � This is Fermat's theorem on the sums of two squares. See reference
[15]. A prime such that p ≡ 1 mod 4 is called a Pythagorean prime.

Theorem 41. � The positive values of α and β are given by

a ≡ 1
4

(
( p−1

2 )!
( p−1

4 )!

)2

mod p b ≡ 1
2

( p−1
2 )!

(( p−1
4 )!)

2 mod p

2α = min(2a, p− 2a) β = min(b, p− b)

Proof. � This is a result by Friedrich Gauss. See reference [16].

Lemma 4. � The integer α is always a square modulo p.
Proof. � Theorem 41 shows obviously that a is a square. Moreover -1 is a
square because −1 ≡ g(p−1)/2 mod p and p ≡ 1 mod 4 implies (p − 1)/2 ≡
0 mod 2.

Lemma 5. � The integer β is square modulo p if and only if 1
2

(
p−1
2

)
! is a

square.
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Proof. � This is an immediate consequence of theorem 41 with the same ar-
gument applied on −b.

Lemma 6. � The integer 2 is a square modulo p if p ≡ or(1, 7) mod 8 and
is not if p ≡ or(3, 5) mod 8.
Proof. � Using the Legendre symbol [9],

(
a
p

)
= a(p−1)/2 mod p for any integer

a, we apply the relationship, speci�c to 2, 2(p−1)/2 mod p ≡
(
2
p

)
= (−1)(p

2−1)/8

= if(p ≡ ±1 mod 8, 1,−1). Let us have g a primitive root of p so that gi ≡ 2

mod p for some integer i. Then gi.(p−1)/2 = if(p ≡ ±1 mod 8, 1,−1) mod p.
Therefore i is even if p ≡ ±1 mod 8 and i is odd if p ≡ ±3 mod 8. Hence
the result modulo 8.

Lemma 7. � The two integers 2α and β are linked by the relationship

2α ≡ g
p−1
4

+or(0, p−1
2

).β mod p

where g is a primitive root of p.
Proof. � For some integers u and v, we have 2α = gu mod p and β = gv

mod p. Then p = (2α)2+β2 implies g2u+ g2v = g2u.(1+ g2(v−u)) = 0 mod p.

As g2u ̸= 0 mod p, we have necessarily g2(v−u) = −1 = g(p−1)/2 mod p and
therefore v−u = p−1

4 mod p−1
2 . The interval ]− (p− 1)/2, (p− 1)/2] covering

the whole domain of de�nition needed here to address values of u and v, we get
u− v = or(1,−1).p−1

4 with one of the two terms u and v eventually negative.

More simply, one can just write (2α)2 + β2 = 0 mod p = 1 + (−1) mod p =
(1 + g2.(p−1)/4) mod p giving the result by straight identi�cation of terms. Of

course, similarly β ≡ or(1,−1).g
p−1
4 .(2α) mod p. An alternative writing to

or(1,−1).g
p−1
4 is then g

p−1
4

+or(0, p−1
2

).

Note. � The g
p−1
4 mod p value emerges here unsurprisingly. Another way

to bring it forward is by writing:

p = (2α)2 + β2

≡ −g
p−1
2 (2α)2 + β2 mod p

≡ −(g
p−1
4 2α+ β)(g

p−1
4 2α− β) mod p

or
p = (2α)2 + β2

≡ (2α)2 − g
p−1
2 β2 mod p

≡ −(g
p−1
4 β + 2α)(g

p−1
4 β − 2α) mod p.

Lemma 8. � Let us have p ≡ 1 mod 4. Then(
p− 1

2

)
! ≡ g

p−1
4

+or(0, p−1
2

) mod p

where g is a primitive root of p.
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Proof. � By the Gauss formulas (theorem 41), the ratio 2α
β mod p is equal

to
(
p−1
2

)
! mod p. Then lemma 7 allows to conclude. Note that numerical

veri�cation shows that the previous result does not apply to the case p ≡ 3
mod 4.

Lemma 9. � The integer β is always a square modulo p.
Proof. � This is an immediate consequence of lemmas 5, 6 and 8.

Lemma 10. � Let us have p ≡ 1 mod 4 and α, β the positive integer solu-
tions of p = (2α)2 + β2. Then

p = 1 mod 8 ⇔ α ≡ 0 mod 2
p = 5 mod 8 ⇔ α ≡ 1 mod 2

Proof. � Let us consider the square of an odd integer : (1+2r)2 = 1+4r(1+r).
The r(1+r) factor is the product of an even term by an odd term and therefore,
β being an odd number, β2 ≡ 1 mod 8. Then, using (2α)2 = p− β2, if p ≡ 1
mod 8 we get (2α)2 ≡ 0 mod 8 and if p ≡ 5 mod 8 we get (2α)2 ≡ 4 mod 8,
thus respectively 2α ≡ 0 mod 4 and 2α ≡ 2 mod 4. Hence the result after
division by 2 to get α.

Lemma 11. � Let us have p ≡ 1 mod 4 and (α, β) the positive integer
solutions of p = (2α)2+β2. Then, for I1 = [0, (p−1)/4[ and I2 = [0, (p−1)/2[,
and (u, v) integers, up to p = 9973,

p ≡ 1 mod 16 ⇔ ∃ (u, v) ∈ I12 \ g4u ≡ 2α mod p
⋂

g4v ≡ β mod p
p ≡ 9 mod 16 ⇔ ∃ (u, v) ∈ I12 \ g4u ≡ 2α mod p

⋂
g4v+2 ≡ β mod p

{∅} ⇐ ∃ u ∈ I1 \ g4u+2 ≡ 2α mod p
p ≡ 5 mod 8 ⇔ ∃ (u, v) ∈ I22 \ g2u−1 ≡ 2α mod p

⋂
g2v ≡ β mod p

{∅} ⇐ ∃ v ∈ I2 \ g2v−1 ≡ β mod p

Proof. � For some (r, s) ∈ N2, we can write gr ≡ 2α mod p and gs ≡ β
mod p. Then p = (2α)2 + β2 ≡ g2r + g2s ≡ 0 mod p. Thus g2r−2s + 1 ≡ 0

mod p, that is g2r−2s ≡ g(p−1)/2 mod p, so that �nally r − s ≡ (p − 1)/4
mod (p− 1)/2. With the I1 and I2 domains of de�nition, we can ignore the
mod (p−1)/2 framework changing eventually simultaneously the sign of r and
s if needed. We get then p = 1 + 4(r − s). Hence the immediate cases: If
r ≡ 0 mod 4 and s ≡ 0 mod 4 then p ≡ 1 mod 16. If r ≡ 0 mod 4 and
s ≡ 2 mod 4 then p ≡ −7 mod 16 ≡ 9 mod 16. If r ≡ 1 mod 2 and s ≡ 0
mod 2 then p ≡ 5 mod 8. Now, in this two last cases, the symmetric pairs,
respectively (r ≡ 2 mod 4, s ≡ 0 mod 4) and (r ≡ 0 mod 2, s ≡ 1 mod 2)
are to be addressed. This is veri�ed, as well as the �rst void case, numerically.
Besides, the last void case is precisely lemma 9.
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Theorem 42. � Let us have a prime number p, such that p ≡ 1 mod 4, and
its Pythagorean decomposition (2α)2 + β2 and g a primitive root of p. Then,
up to p = 9973,

2α = | #v even −#v odd | \ g1 ≡ g2u + g2v mod p
β = | #v even −#v odd+ 1 | \ g0 ≡ g2u + g2v mod p

where || is the absolute value operator, u ∈ [0, p−1
1 [ and v ∈ [0, p−1

2 [.
Proof. � The proof is obtained by direct numerical veri�cation.

Note. � The result is conjectured to be true for any prime number p such
that p ≡ 1 mod 4.
Note. � The same result is of course found with the choice of parameter u
instead of v or a sampling u ∈ [0, p−1

1 [ and v ∈ [p−1
2 , p−1

1 [.
In the �rst part of appendix G, the reader will �nd the example for p = 89,

g = 3, α = 4, β = 5 of the solutions of:

eq1 : g0 ≡ g2u + g2v mod p ∩ v ≡ 0 mod 2
eq2 : g0 ≡ g2u + g2v mod p ∩ v ≡ 1 mod 2
eq3 : g1 ≡ g2u + g2v mod p ∩ v ≡ 0 mod 2
eq4 : g1 ≡ g2u + g2v mod p ∩ v ≡ 1 mod 2

As gp−1 = 1 mod p, the second and fourth quarters of the data give redundant
values of v and gaps p−1

2 = 44 for the values of u.
Counting even and odd values for v provides:

even odd ∆even−odd

eq1 | eq2 12 + 6 12 + 12 −6 = −(β + 1)
eq3 | eq4 10 + 16 10 + 8 8 = 2α

Theorem 43. � Let us have g a primitive root of p. The number of integer
solutions #(u, v), u ∈ [0, p−1

2 [, v ∈ [0, p−1
2 [ to the equations

n1 = #(u, v) \ g0 ≡ g2u + g4v mod p
n2 = #(u, v) \ g1 ≡ g2u + g4v mod p
n3 = #(u, v) \ g2 ≡ g2u + g4v mod p
n4 = #(u, v) \ g3 ≡ g2u + g4v mod p

is given for p ≡ 1 mod 4, up to p = 9973, by
n1 + 1
n2

n3

n4

 =


(p− 3)/4 + signβ · β

2
(p− 1)/4 + signα · α
(p− 3)/4− signβ · β

2
(p− 1)/4− signα · α
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where

signα = sign(#v even −#v odd) \ g1 ≡ g2u + g2v mod p
signβ′ = sign(#v even −#v odd+ 1) \ g0 ≡ g2u + g2v mod p
signβ = if(sign(β′) = 0,−1, sign(β′))

and where

u ∈ [0,
p− 1

1
[, v ∈ [0,

p− 1

2
[.

Proof. � This is an immediate result of theorem 42 as g2v simply evolves
to g4v in the equations. Two implications provide the key to the process
eq_i ⇒ eq_i+4 where

eq5 : g0 ≡ g2u + g4v mod p
eq6 : g2 ≡ g2u + g4v mod p
eq7 : g1 ≡ g2u + g4v mod p
eq8 : g3 ≡ g2u + g4v mod p

and eq_i are the equations given here and in the former paragraph.
These implications are:

If v ≡ 0 mod 2, gi ≡ g2u + g2v mod p ⇒ gi ≡ g2u + g4
v
2 mod p

If v = 1 mod 2, gi ≡ g2u + g2v mod p ⇒ gi+2 ≡ g2(u+1) + g4
v+1
2 mod p

Note. � The result is conjectured to be true for any prime number p such
that p ≡ 1 mod 4 as it was for former theorem 42.
The second table in appendix G provides the solutions (u, v) to the equations

gi ≡ g2u + g4v mod p for p = 89, i = 0 to 3, and the sampling u ∈ [0, p−1
1 [,

v ∈ [0, p−1
2 [. The reader can check the way the (u, v) data is modi�ed from

its original values, given in the �rst part of the appendix, to the values in the
second part accordingly to the two previous implications.
Theorem 44. � The previous signs in front of the positive α and β, up to
p = 9973, are given by

signα = if(i = 0, (#v even−#v odd)/(2α), 2− i)

signβ = (−1)
−1+p mod 8

4
+β+1

2

where i is the solution of

gi mod 4 ≡ 2α mod p

and where #v even and #v odd are evaluated by the number of solutions of
g1 ≡ g2u + g2v mod p within the domain of de�nition given in the previous
theorem.
Proof. � The proof is obtained by direct numerical veri�cation. The reader
may refer to appendix H in that intent.
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Note. � Of course the theorem is conjectured to be true for any prime.
Note. � For parameter α, adding previous results on p mod 8 values, and
reminding that the case i = 2 is an empty set, it is equivalent to the following
table :

p mod 8 i #v even−#v odd
2α

1 0 or(1,−1)
1 2 {∅}
5 1 1
5 3 −1

Here, within the case p = 1 mod 8, up to p = 9973, we get #v even−#v odd
2α =

−1 when p is equal to either 97, 233, 281, 313, 401, 433, 521, 569, 593, 617,
673, 761, 769, 809, 857, 929, 977, 1009, 1033, 1097, 1153, 1193, 1217, 1289,
1433, 1553, 1657, 1697, 1753, 1777, 1889, 1993, 2017, 2089, 2137, 2161, 2273,
2393, 2441, 2473, 2609, 2617, 2633, 2689, 2713, 2729, 2753, 2801, 2857, 2953,
3041, 3121, 3137, 3169, 3257, 3449, 3593, 3761, 3881, 4177, 4241, 4273, 4337,
4409, 4441, 4457, 4481, 4729, 4793, 4801, 4937, 4969, 4993, 5009, 5113, 5273,
5393, 5417, 5441, 5641, 5657, 5689, 5801, 5849, 6089, 6121, 6217, 6257, 6337,
6353, 6481, 6521, 6553, 6569, 6673, 6737, 6793, 6833, 6857, 6961, 6977, 7121,
7193, 7297, 7321, 7369, 7457, 7529, 7561,7681, 7793, 7841, 7937, 8017, 8297,
8329, 8353, 8537, 8609, 8641, 8689, 8713, 9161, 9433, 9473, 9521, 9689, 9697,
9721, 9769, 9833, 9857.
Note. � For the sign in front of β, the simplicity of the rule is likely the
result of the trivial equivalence g0 ≡ 1 mod p that provides a systematic well
de�ned "anchor" c = 1 to the equation g0 ≡ g2u + g4v mod p (and therefore
indirectly to g2 ≡ g2u + g4v mod p). There is no possible confusion between
the enumeration results to attribute to g0 ≡ g2u + g4v mod p and those to
his closely linked g2 ≡ g2u + g4v mod p equation. It is not the case for g1 ≡
g2u+g4v mod p equation, and directly linked g3 ≡ g2u+g4v mod p equation.
For some di�erent choice of g, the former two enumeration results may be
swapped. The two classes, among the φ(φ(p)) primitive roots of some prime

p, are detected by verifying the g(p−1)/4 values (resulting from the fact of one

class for g2.(p−1)/4 ≡ −1 mod p with its systematic −1 result). For example,

for p = 17, the two classes for g are {3, 5, 12, 14} providing g(p−1)/4 = 13

mod p and {6, 7, 10, 11} providing g(p−1)/4 = 4 mod p. This easy distinction
however doesn't provide an attributing procedure for any literal formula. The
researched "anchor" may then be provided by solving the equation gi mod 4 ≡
2α mod p. This method is successful except for g0 mod 4 ≡ 2α mod p. It
necessitated here a one-by-one sign adjustment missing so far some additional
characteristic relationship.
Note. � Replacing −1+p mod 8

4 with α within the literal expression of signβ
will provide the same result according to lemma 10.
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Theorem 45. � Let us have p ≡ 1 mod 4 and g a primitive root of p. The
number of integer solutions #(u, v), u ∈ [0, p−1

2 [, v ∈ [0, p−1
2 [ to the equations

n1 = #(u, v) \ g0 ≡ g4u + g4v mod p
n2 = #(u, v) \ g1 ≡ g4u + g4v mod p
n3 = #(u, v) \ g2 ≡ g4u + g4v mod p
n4 = #(u, v) \ g3 ≡ g4u + g4v mod p

is given, up to p = 9973, by
n1 + 1
n2

n3

n4

 =


(p− 3)/4 + if(p ≡ 1 mod 8, signβ.3β2 , 1 + signβ.β2 )

(p+ 1)/4 + signα.2α− signβ.β2 − if(p ≡ 1 mod 8, 1, 0)

(p− 3)/4 + if(p ≡ 1 mod 8, − signβ.β2 , 1− signβ.3β2 )

(p+ 1)/4− signα.2α− signβ.β2 − if(p ≡ 1 mod 8, 1, 0)


where we still have the same de�nitions of α, β and the signs in front of them.
Proof. � The proof is obtained by direct numerical veri�cation.

Note. � Again, the result is conjectured to be true for any prime number p
such that p ≡ 1 mod 4.

Now, as mentioned earlier, the impact of missing very simple literal for-
mulas for high values of p is totally minor for su�ciently precise numerical
veri�cations. There is need for results on only a few instances of p to get good
trending values as the reader can ascertain underneath.
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Numeric veri�cation. � The Friedlander-Iwaniec equation.
The following table gives the non-cumulative cardinal factors of the

Friedlander-Iwaniec equation.

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

2 1 1 1 1 1 1 1 1 1 1

3 1.33333 0.83333 0.83333 1.33333 0.83333 0.83333 1.33333 0.83333 0.83333 1.33333

5 0.8 0.95 0.85 1.25 1.15 0.8 0.95 0.85 1.25 1.15

7 1.14286 0.97619 0.97619 0.97619 0.97619 0.97619 0.97619 1.14286 0.97619 0.97619

11 1.09091 0.99091 0.99091 0.99091 0.99091 0.99091 0.99091 0.99091 0.99091 0.99091

13 0.92308 1.04487 0.98077 1.04487 0.96795 0.98077 0.98077 1.03205 1.03205 1.04487

17 0.94118 1.01103 0.99632 0.97426 1.01103 0.97426 1.03309 1.03309 0.99632 0.99632

19 1.05263 0.99708 0.99708 0.99708 0.99708 0.99708 0.99708 0.99708 0.99708 0.99708

23 1.04348 0.99802 0.99802 0.99802 0.99802 0.99802 0.99802 0.99802 0.99802 0.99802

29 0.96552 0.98892 0.99631 0.99631 1.01355 1.01355 1.01355 0.98892 1.00616 1.01355

31 1.03226 0.99892 0.99892 0.99892 0.99892 0.99892 0.99892 0.99892 0.99892 0.99892

37 0.97297 0.99925 1.00976 1.00225 1.00225 0.99174 0.99174 0.99925 0.99174 0.99925

41 0.97561 1.00671 0.99451 1.00549 1.00671 0.99451 0.99573 1.00549 0.99451 0.99451

43 1.02326 0.99945 0.99945 0.99945 0.99945 0.99945 0.99945 0.99945 0.99945 0.99945

47 1.02128 0.99954 0.99954 0.99954 0.99954 0.99954 0.99954 0.99954 0.99954 0.99954

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
293 0.99659 0.99961 0.99996 0.99996 1.00041 0.99996 1.00041 0.99996 1.00006 1.00041

The cardinal factors tend towards 1 quite rapidly as the di�erence to 1 is
typically plus or minus the order of magnitude of the inverse of the instance
value p. The ten �rst instances give already a good prognosis of the cumulative
cardinal factors in�nite products as indicates the underneath table.

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

2 1 1 1 1 1 1 1 1 1 1

3 1.33333 0.83333 0.83333 1.33333 0.83333 0.83333 1.33333 0.83333 0.83333 1.33333

5 1.06667 0.79167 0.70833 1.66667 0.95833 0.66667 1.26667 0.70833 1.04167 1.53333

7 1.21905 0.77282 0.69147 1.62698 0.93552 0.65079 1.23651 0.80952 1.01687 1.49683

11 1.32987 0.76579 0.68518 1.61219 0.92701 0.64488 1.22527 0.80216 1.00762 1.48322

13 1.22757 0.80015 0.67201 1.68454 0.89730 0.63248 1.20170 0.82787 1.03992 1.54977

17 1.15536 0.80898 0.66953 1.64118 0.90720 0.61620 1.24147 0.85527 1.03609 1.54407

19 1.21617 0.80661 0.66758 1.63638 0.90454 0.61440 1.23784 0.85277 1.03306 1.53956

23 1.26905 0.80502 0.66626 1.63315 0.90276 0.61318 1.23539 0.85108 1.03102 1.53652

29 1.22529 0.79610 0.66380 1.62712 0.91499 0.62149 1.25213 0.84165 1.03737 1.55733

31 1.26481 0.79524 0.66308 1.62537 0.91400 0.62082 1.25078 0.84074 1.03626 1.55566

37 1.23063 0.79464 0.66955 1.62903 0.91606 0.61569 1.24045 0.84011 1.02770 1.55449

41 1.20061 0.79997 0.66588 1.63797 0.92220 0.61232 1.23516 0.84472 1.02206 1.54596

43 1.22853 0.79953 0.66551 1.63706 0.92169 0.61198 1.23447 0.84425 1.02149 1.54510

47 1.25467 0.79916 0.66520 1.63630 0.92127 0.61169 1.23390 0.84386 1.02102 1.54439

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
293 1.26320 0.80058 0.66351 1.62966 0.91868 0.61372 1.22177 0.83498 1.02317 1.53646

frc/0 1 0, 63377 0, 52526 1, 29010 0, 72726 0, 48585 0, 96720 0, 66100 0, 80998 1, 21632
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The ratio frc/0 at the last line of the table gives the ratio of the cardinal
factors for the targets c compared to that of the target 0.
The e�ective numbers of solutions of the Friedlander-Iwaniec equation x21 +

x42 = p + c, such that p < pi, is indicated in the underneath table. These
enumerations are available using appendix F. The ratio rc/0 of numbers of
solutions for the targets c compared to the number of solutions for the target
0, corresponding to the case i = 3000000, is given at the last line of the table:

i c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

100 21 10 20 37 19 16 28 21 27 33

1000 118 67 82 176 91 81 140 97 111 149

10000 623 382 386 866 464 335 675 433 561 782

100000 3348 2058 1910 4511 2510 1661 3320 2261 2783 4082

1000000 18101 11282 9936 23793 13256 9078 17463 12043 14867 22245

3000000 40381 25314 21522 52575 29223 20040 39282 26598 33223 49878

rc/0 1 0.62688 0.53297 1.30197 0.72368 0.49627 0.97278 0.65868 0.82274 1.23518

Now we can compare the ratios frc/0 and rc/0 which are supposedly equal
asymptotically:

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

frc/0 1 0, 63377 0, 52526 1, 29010 0, 72726 0, 48585 0, 96720 0, 66100 0, 80998 1, 21632

rc/0 1 0.62688 0.53297 1.30197 0.72368 0.49627 0.97278 0.65868 0.82274 1.23518

−1, 09% 1, 47% 0, 92% −0, 49% 2, 14% 0, 58% −0, 35% 1, 58% 1, 55%

Note. � The �rst comment that can be made here is that the proportions of
the number of solutions from one target to another meet the expectations in a
satisfactory way.
Note. � The asymptotic value of the cardinal factor fan(0) is 4/π in the
Friedlander-Iwaniec formula. The approximate value at stage p = 293 shows
a −0, 79 % o�set to this value. It continues to oscillate between high and low
o�sets in the following way as p increases:

p 353 383 409 461 503 569 617 659

offset −0.107% −0.026% −0.127% −0.147% −0, 002% −0, 040% −0, 056% −0, 008%

Note. � Using equation 13, the literal formula for any value of c in Z of the
Friedlander-Iwaniec equation is:

lim
y−→+∞

#{y = x21 + x42 − c} = fan(c)
Γ(1/2)Γ(5/4)

2 · Γ(7/4)
· y3/4

ln(y)

where fan(c) is the cardinal factor of c.
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Numeric veri�cation. � The Heath-Brown−Xiannan equation.
The following table gives the non-cumulative cardinal factors of the Heath-

Brown−Xiannan equation.

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

2 1 1 1 1 1 1 1 1 1 1

3 1.5 1 0.5 1.5 1 0.5 1.5 1 0.5 1.5

5 0.75 1 0.75 1.25 1.25 0.75 1 0.75 1.25 1.25

7 1.16667 1 1 0.94444 1 0.94444 0.94444 1.16667 1 1

11 1.1 1 0.98 1 1 1 0.98 0.98 0.98 1

13 0.91667 1.05556 0.97222 1.05556 0.97222 0.97222 0.97222 1.02778 1.02778 1.05556

17 0.9375 1.01562 1 0.96875 1.01562 0.96875 1.03125 1.03125 1 1

19 1.05556 1 0.99383 0.99383 1 1 1 1 0.99383 1

23 1.04545 1 1 1 1 0.99587 1 0.99587 1 1

29 0.96429 0.98980 0.99490 0.99490 1.01531 1.01531 1.01531 0.98980 1.00510 1.01531

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
293 0.99658 0.99962 0.99995 0.99995 1.00042 0.99995 1.00042 0.99995 1.00005 1.00042

The cumulative cardinal factors follow:

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

2 1 1 1 1 1 1 1 1 1 1

3 1.5 1 0.5 1.5 1 0.5 1.5 1 0.5 1.5

5 1.12500 1.00000 0.37500 1.87500 1.25000 0.37500 1.50000 0.75000 0.62500 1.87500

7 1.31250 1.00000 0.37500 1.77083 1.25000 0.35417 1.41667 0.87500 0.62500 1.87500

11 1.44375 1.00000 0.36750 1.77083 1.25000 0.35417 1.38833 0.85750 0.61250 1.87500

13 1.32344 1.05556 0.35729 1.86921 1.21528 0.34433 1.34977 0.88132 0.62951 1.97917

17 1.24072 1.07205 0.35729 1.81080 1.23427 0.33357 1.39195 0.90886 0.62951 1.97917

19 1.30965 1.07205 0.35509 1.79962 1.23427 0.33357 1.39195 0.90886 0.62563 1.97917

23 1.36918 1.07205 0.35509 1.79962 1.23427 0.33219 1.39195 0.90511 0.62563 1.97917

29 1.32028 1.06111 0.35327 1.79044 1.25316 0.33727 1.41325 0.89587 0.62882 2.00946

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
293 1.36198 1.07474 0.35320 1.79168 1.26721 0.33289 1.37582 0.88937 0.62004 1.99581

frc/0 1 0, 78911 0, 25933 1, 31550 0, 93042 0, 24441 1, 01017 0, 65300 0, 45525 1, 46538

The e�ective numbers of solutions of the Heath-Brown−Xiannan equation
x2 + y4 = p + c such that p < pi is indicated in the underneath table. These
enumerations are available using appendix F pending on the suggested modi-
�cations of the program.

i c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

100 10 8 7 13 7 5 9 5 11 15

1000 62 43 34 73 39 30 54 43 48 73

10000 271 183 122 299 194 105 270 194 173 337

100000 1231 869 469 1493 958 402 1141 822 683 1590

1000000 5687 4235 1865 7239 4609 1777 5469 3617 2940 7843

3000000 12104 8883 3770 15554 9935 3550 11621 7651 6112 17093

6000000 18993 13987 5825 24246 15816 5469 18495 12139 9528 26725

rc/0 1 0, 73643 0, 30669 1, 27658 0, 83272 0, 28795 0, 97378 0, 63913 0, 50166 1, 40710
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The ratio rc/0 of numbers of solutions for the targets c compared to the number
of solutions for the target 0, corresponding to the case i = 6000000 (i the index
of pi), is given at the last line of the table. Comparing the ratios frc/0 and
rc/0 which are supposedly equal asymptotically, we get:

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

frc/0 1 0, 78911 0, 25933 1, 31550 0, 93042 0, 24441 1, 01017 0, 65300 0, 45525 1, 46538

rc/0 1 0, 73643 0, 30669 1, 27658 0, 83272 0, 28795 0, 97378 0, 63913 0, 50166 1, 40710

−6, 68% 18, 26% −2, 96% −10, 50% 17, 81% −3, 60% −2, 12% 10, 19% −3, 98%

The obvious comment that can be made here is that the comparison is much
less satisfactory than in the Friedlander-Iwaniec case. The explanation is not in
some hidden grounds making the cardinal factors method defective. Nor is the
explanation in the lesser numbers of solutions (about 3.5 times) in comparison
to the Friedlander-Iwaniec case, or at least, not exactly. The real cause is given
by the following table. We check the evolution of the o�set between the real
numbers of solutions and the sample at a given step p < pi:

i c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

1000 −12, 11% 111, 46% −10, 50% −32, 39% 97, 97% −13, 78% 6, 21% 70, 06% −19, 65%

10000 −14, 43% 73, 60% −16, 13% −23, 06% 58, 52% −1, 37% 9, 63% 40, 22% −15, 14%

100000 −10, 54% 46, 91% −7, 80% −16, 36% 33, 61% −8, 24% 2, 26% 21, 87% −11, 86%

1000000 −5, 63% 26, 46% −3, 24% −12, 89% 27, 84% −4, 80% −2, 60% 13, 56% −5, 89%

6000000 −6, 68% 18, 26% −2, 96% −10, 50% 17, 81% −3, 60% −2, 12% 10, 19% −3, 98%

The table shows a large discrepancy for low values of i. There are often many
more or many less solutions near the origin than expected asymptotically. The
situation is that, in order to reduce the o�sets, we need a lot more enumeration
of the solutions for the Heath-Brown−Xiannan type equations while we are
limited on our laptop by memory over�ows. For objection to the still far way
to the expected results, let us just remember that this kind of enumeration
evolution has likely a logarithmic trend and therefore, although rapid at the
start, will prevail extremely slowly afterwards. The observed trends suggest
an i = 1012 range requirement, at least, to establish a less than 1% deviation
for the above targets c = 2 or c = 5.
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7. Broadening the picture

The focus of our study has been on the term that usually is called the "fudge
factor" of the literal formula giving the number of solutions of a Diophantine
equation. We lean on already known results (here those for c = 0) to proceed
for other targets. Therefore it seems that the whole range of evaluations can
be extracted only if we know at least one among them. This is true if we
seek a mathematical proof of a literal formula. In case we don't dispose of an
initial data, our approach remains however fully useful if we limit ourself to
merely seeking what this formula should be. Indeed, the method here relies
on the separation of two evaluations, the �rst one enabling to get the fudge
factors, the second (not covered here) addressing the typical shape of the hyper-
volumes in which the solutions to the proposed Diophantine problem spread.
Normalization, as illustrated in this article, is the key to produce the relevant
fudge factors. Using alternative methods to get the hyper-volumes may then
give access to the general formula. Not being a proof then, it is nevertheless
the "only possible literal result" one would expect after the problem c = 0 (for
example) is properly solved. The unsaid premise (or axiom) here, of course, is
that the space (or hyper-volume) in which the solutions develop for di�erent
targets isn't physical. Numbers are concepts, therefore without weight able to
distort their environment as does for example mass in the universe. Speculating
on such possibility seems to us more outlandish, or non-mathematical, than
simply ignoring it.
A few theorems issued at the end of this article remain dependent on numer-

ical veri�cations and are therefore limited to a �nite number of prime numbers
of the p ≡ 1 mod 4 type. Although of no consequence to the enumeration
results, a general literal answer would provide more than empty satisfaction.
Further �ndings in that direction may well spread over the speci�c requirement
for monomials z2 and z4 and be crucial in more general primitive roots' equa-
tions cases. One can cite for examples primitive roots' equations linked to z3

and z6. The decompositions of p, there again, has a prevailing role. Indeed de-
compositions like p = r2+3s2 or p = ((t1+2t2)

2+(t1−t2)
2+(−(2t1+t2))

2)/6
emerge on these occasions. Literal evaluations nevertheless are rapidly more
complex when z12 or z24 cases are addressed and prioritizing the evaluation of
the number of primes equal to x2+xy+y2, or more generally ux2+vxy+wy2

to start with, before meddling with z31 + z21z2 + z1z
2
2 + z32 , may be more cap-

tivating (if interested, refer to [18] Fermat Sheet Exercise 10) than the mere
monomial cases.
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Appendix A. Cardinal matrices samples

x2

0 g0 g1 g4 g2 g9 g5 g11 g3 g8 g10 g7 g6

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 0 2 2 0 0 0 0 2 2 0 2
g0 1 2 1 2 0 2 2 0 0 0 0 2 2 0
g1 2 0 2 1 2 0 2 2 0 0 0 0 2 2
g4 3 2 0 2 1 2 0 2 2 0 0 0 0 2
g2 4 2 2 0 2 1 2 0 2 2 0 0 0 0
g9 5 0 2 2 0 2 1 2 0 2 2 0 0 0
g5 6 0 0 2 2 0 2 1 2 0 2 2 0 0
g11 7 0 0 0 2 2 0 2 1 2 0 2 2 0
g3 8 0 0 0 0 2 2 0 2 1 2 0 2 2
g8 9 2 0 0 0 0 2 2 0 2 1 2 0 2
g10 10 2 2 0 0 0 0 2 2 0 2 1 2 0
g7 11 0 2 2 0 0 0 0 2 2 0 2 1 2
g6 12 2 0 2 2 0 0 0 0 2 2 0 2 1

x2, << mp >>= 1

0 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

0 1 2 4 8 3 6 12 11 9 5 10 7
0 0 1 2 0 2 0 2 0 2 0 2 0 2 0
g0 1 2 1 2 2 0 0 0 0 2 0 2 2 0
g1 2 0 2 1 0 0 2 2 2 2 0 2 0 0
g2 4 2 2 0 1 2 2 0 0 0 0 2 0 2
g3 8 0 0 0 2 1 0 0 2 2 2 2 0 2
g4 3 2 0 2 2 0 1 2 2 0 0 0 0 2
g5 6 0 0 2 0 0 2 1 0 0 2 2 2 2
g6 12 2 0 2 0 2 2 0 1 2 2 0 0 0
g7 11 0 2 2 0 2 0 0 2 1 0 0 2 2
g8 9 2 0 0 0 2 0 2 2 0 1 2 2 0
g9 5 0 2 2 2 2 0 2 0 0 2 1 0 0
g10 10 2 2 0 0 0 0 2 0 2 2 0 1 2
g11 7 0 0 0 2 2 2 2 0 2 0 0 2 1
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x2, mp = 6

0 g0 g6 g1 g7 g2 g8 g3 g9 g4 g10 g5 g11

0 1 12 2 11 4 9 8 5 3 10 6 7
0 0 1 2 2 0 0 2 2 0 0 2 2 0 0
g0 1 2 1 0 2 2 2 0 0 2 0 2 0 0
g6 12 2 0 1 2 2 0 2 2 0 2 0 0 0
g1 2 0 2 2 1 2 0 0 0 2 2 0 2 0
g7 11 0 2 2 2 1 0 0 2 0 0 2 0 2
g2 4 2 2 0 0 0 1 0 2 2 2 0 0 2
g8 9 2 0 2 0 0 0 1 2 2 0 2 2 0
g3 8 0 0 2 0 2 2 2 1 2 0 0 0 2
g9 5 0 2 0 2 0 2 2 2 1 0 0 2 0
g4 3 2 0 2 2 0 2 0 0 0 1 0 2 2
g10 10 2 2 0 0 2 0 2 0 0 0 1 2 2
g5 6 0 0 0 2 0 0 2 0 2 2 2 1 2
g11 7 0 0 0 0 2 2 0 2 0 2 2 2 1

equivalent to

0 g0g6k g1g6k g2g6k g3g6k g4g6k g5g6k

0 1.g6k 2.g6k 4.g6k 8.g6k 3.g6k 6.g6k

0 0 1 4 0 4 0 4 0
g0g6k 1.g6k 2 1 4 2 2 2 0
g1g6k 2.g6k 0 4 3 0 2 2 2
g2g6k 4.g6k 2 2 0 1 4 2 2
g3g6k 8.g6k 0 2 2 4 3 0 2
g4g6k 3.g6k 2 2 2 2 0 1 4
g5g6k 6.g6k 0 0 2 2 2 4 3
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x2, mp = 4

0 g0 g4 g8 g1 g5 g9 g2 g6 g10 g3 g7 g11

0 1 3 9 2 6 5 4 12 10 8 11 7
0 0 1 2 2 2 0 0 0 2 2 2 0 0 0
g0 1 2 1 0 0 2 0 2 2 0 2 0 2 0
g4 3 2 0 1 0 2 2 0 2 2 0 0 0 2
g8 9 2 0 0 1 0 2 2 0 2 2 2 0 0
g1 2 0 2 2 0 1 2 2 0 2 0 0 2 0
g5 6 0 0 2 2 2 1 2 0 0 2 0 0 2
g9 5 0 2 0 2 2 2 1 2 0 0 2 0 0
g2 4 2 2 2 0 0 0 2 1 0 0 2 0 2
g6 12 2 0 2 2 2 0 0 0 1 0 2 2 0
g10 10 2 2 0 2 0 2 0 0 0 1 0 2 2
g3 8 0 0 0 2 0 0 2 2 2 0 1 2 2
g7 11 0 2 0 0 2 0 0 0 2 2 2 1 2
g11 7 0 0 2 0 0 2 0 2 0 2 2 2 1

equivalent to

0 g0g4k g2g4k g1g4k g3g4k

0 1.g4k 4.g4k 2.g4k 8.g4k

0 0 1 6 0 6 0
g0g4k 1.g4k 2 1 4 4 2
g1g4k 2.g4k 0 4 5 2 2
g2g4k 4.g4k 2 4 2 1 4
g3g4k 8.g4k 0 2 2 4 5
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x2, mp = 2

X 0 g0 g2 g4 g6 g8 g10 g1 g3 g5 g7 g9 g11

0 1 4 3 12 9 10 2 8 6 11 5 7
0 0 1 2 2 2 2 2 2 0 0 0 0 0 0
g0 1 2 1 2 0 0 0 2 2 0 0 2 2 0
g2 4 2 2 1 2 0 0 0 0 2 0 0 2 2
g4 3 2 0 2 1 2 0 0 2 0 2 0 0 2
g6 12 2 0 0 2 1 2 0 2 2 0 2 0 0
g8 9 2 0 0 0 2 1 2 0 2 2 0 2 0
g10 10 2 2 0 0 0 2 1 0 0 2 2 0 2
g1 2 0 2 0 2 2 0 0 1 0 2 2 2 0
g3 8 0 0 2 0 2 2 0 0 1 0 2 2 2
g5 6 0 0 0 2 0 2 2 2 0 1 0 2 2
g7 11 0 2 0 0 2 0 2 2 2 0 1 0 2
g9 5 0 2 2 0 0 2 0 2 2 2 0 1 0
g11 7 0 0 2 2 0 0 2 0 2 2 2 0 1

equivalent to
0 g0g2k g1g2k

0 1.g2k 2.g2k

0 0 1 12 0
g0g2k 1.g2k 2 5 6
g1g2k 2.g2k 0 6 7
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Appendix B. Equal values transfer property

p = 13, 4_periodicity of r in gr. Y = MX. Before re-ordering.

0 g0 g1 g4 g2 g9 g5 g11 g3 g8 g10 g7 g6 X Y
0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 6 7 6 4 7 7 3 3 6 4 3 4 3 570
g0 1 4 1 6 7 6 4 7 7 3 3 6 4 3 15 536
g1 2 3 4 1 6 7 6 4 7 7 3 3 6 4 4 582
g4 3 4 3 4 1 6 7 6 4 7 7 3 3 6 15 536
g2 4 6 4 3 4 1 6 7 6 4 7 7 3 3 11 545
g9 5 3 6 4 3 4 1 6 7 6 4 7 7 3 4 582
g5 6 3 3 6 4 3 4 1 6 7 6 4 7 7 4 582
g11 7 7 3 3 6 4 3 4 1 6 7 6 4 7 9 587
g3 8 7 7 3 3 6 4 3 4 1 6 7 6 4 9 587
g8 9 4 7 7 3 3 6 4 3 4 1 6 7 6 15 536
g10 10 6 4 7 7 3 3 6 4 3 4 1 6 7 11 545
g7 11 7 6 4 7 7 3 3 6 4 3 4 1 6 9 587
g6 12 6 7 6 4 7 7 3 3 6 4 3 4 1 11 545

p = 13, 4_periodicity of r in gr. Y = MX. After re-ordering.

0 g0 g4 g8 g1 g5 g9 g2 g6 g10 g3 g7 g11 X Y
0 1 3 9 2 6 5 4 12 10 8 11 7

0 0 1 6 6 6 7 7 7 4 4 4 3 3 3 3 570
g0 1 4 1 7 3 6 7 4 6 3 6 3 4 7 15 536
g4 3 4 3 1 7 4 6 7 6 6 3 7 3 4 15 536
g8 9 4 7 3 1 7 4 6 3 6 6 4 7 3 15 536
g1 2 3 4 6 3 1 4 6 7 4 3 7 6 7 4 582
g5 6 3 3 4 6 6 1 4 3 7 4 7 7 6 4 582
g9 5 3 6 3 4 4 6 1 4 3 7 6 7 7 4 582
g2 4 6 4 4 7 3 7 6 1 3 7 4 3 6 11 545
g6 12 6 7 4 4 6 3 7 7 1 3 6 4 3 11 545
g10 10 6 4 7 4 7 6 3 3 7 1 3 6 4 11 545
g3 8 7 7 3 6 3 3 4 6 4 7 1 6 4 9 587
g7 11 7 6 7 3 4 3 3 7 6 4 4 1 6 9 587
g11 7 7 3 6 7 3 4 3 4 7 6 6 4 1 9 587
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Appendix C. Eigenvectors, eigenvalues matrices' program

This appendix gives the eigenvectors, eigenvalues matrices and expression
of some condensed cardinal matrix. There are four parameters to be chosen
by the reader. It su�ces then to make a copy of the program on the Pari/gp
online application (menu Main, GP in your browser).
Note that sometimes the exponentiation sign � won't copy successfully and

has to be retyped manually (lines 14 and 17 of program).

{vi = 1; /* choose type of variable (1 for integers, 0 for prime numbers) */
p = 13; /* choose the prime number instance */
n = 2; /* choose natural number power of variable z */
rmd = 3; /* choose integer for rank of cardinal matrix r = rmd*d+1 */
d = gcd(n,p-1); md = rmd*d; delta = (p-1)/md+0.0;
if(delta%1 <> 0, print("CAUTION : md must divide p-1"); md = p-1,
if(md > p-1, print("CAUTION : md must divide p-1"); md = p-1));
v = vector(md); g = vector(p-1); sigm = vector(md+1);
g[1] = 1; sigm[1] = p-1+vi; w = exp(2*I*Pi/p);
for(gg = 2,p-2, g[2] = gg;
for(i = 3, p-1, g[i]= (g[i-1]*gg)%p; if(g[i] == 1, break,ii = i));
if(ii == p-1, break));
for(i = 0, md-1,
sigm[i+2] = vi+d*sum(j = 0, (p-1)/d-1, w�(-g[1+(i+d*j)%(p-1)])));
SIG = matrix(md+1,md+1,i,j,if(j == i,sigm[i],0));
for(i = 0, md-1,
v[i+1] = sum(j = 0, (p-1)/md-1, w�(g[1+(i+j*md)%(p-1)])));
PL = matrix(md+1,md+1,i,j,if(j ==1,1,if(i ==
1,(p-1)/md,v[(i+j-4)%md+1])));
PC = conj(PL); MM = (1/p)*PL*SIG*PC;
print(); print("Eigenvector matrix real part of PL");
printf("%.3f",real(PL));
print(); print("Eigenvector matrix imaginary part of PL");
printf("%.3f",imag(PL));
print(); print("Eigenvalues matrix real part of SIG");
printf("%.3f",real(SIG));
print(); print("Eigenvalues matrix imaginary part of SIG");
printf("%.3f",imag(SIG));
print(); print("Condensed cardinal matrix MM");
printf("%.0f",real(MM))}
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Appendix D. F-I-cardinal factors: Basic program

This appendix enables to get the normalized cardinal factors for the
Friedlander-Iwaniec equation (F-I-equation) over a range of targets and in-
stances (prime numbers) with the online PARI/GP platform. One can use it
for other type of equations with degree of stability equal to 1. It su�ces to
make a copy of the program on the Pari/gp online application (menu Main,
GP in your browser).
Note that sometimes the exponentiation sign � won't copy successfully and

has to be retyped manually (line 11 of program).

{cmax = 20; /* choose targets range */
pmax = 97; /* choose prime numbers range */
print("First vector : cardinal factor for p");
print("Second vector : product of cardinal factors from p = 2 to p");
fanc = vector(cmax+1);
for(j = 1, cmax+1, fanc[j] = 1);
forprime(p = 2, pmax, nc = vector(cmax+1);
for(y = 1, p-1,
for(x1 = 0, p-1,
for(x2 = 0, p-1,
c = (-y+x1�2+x2�4)%p+1;
if(c <= cmax+1, nc[c] = nc[c]+1.0))));
if(p <= cmax, for(j = 0, cmax-p, k = cmax-j; nc[k+1] = nc[k%p+1]));
nc = (1/(p*(p-1)))*nc;
print(""); print("p = " p" c = 0 to " cmax);
printf("%.7f", nc);
for(j = 1, cmax+1, fanc[j] = fanc[j]*nc[j]);
print(""); printf("%.7f", fanc))}
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Appendix E. F-I-cardinal factors: Primitive roots' program

This appendix enables to get the normalized cardinal factors for the
Friedlander-Iwaniec equation over a range of targets and instances (prime
numbers). It su�ces to make a copy of the program on the Pari/gp online
application (menu Main, GP in your browser).

For equation: p = x21 + x42 − c, (x1, x2) ∈ (N,N)

{cmax = 13; /* choose targets' range */
pmax = 97; /* choose prime numbers' range */
print("Vector 1: None-cumulative cardinal factor for c = 0 to "cmax);
print("Vector 2: Cumulative cardinal factor for c = 0 to "cmax);
xa = vector(cmax+1); xc = vector(cmax+1);
print("p = 2");
for(c = 0, cmax, xa[c+1] = 1.0); printf("%.7f", xa);
print(""); xc = xa; printf("%.7f", xc);
forprime(p = 3, pmax, pmod4 = p%4; print(""); print("p = "p);
if(pmod4 == 3, for(c = 0, cmax, cmodp = c%p;
if(cmodp == 0, x = p*p-1, x = p*p-p-1); xa[c+1] = x/p/(p-1)+0.0),
g = lift(znprimroot(p));
g2 = (g*g)%p; g3 = (g2*g)%p; g4 = (g2*g2)%p;
nv = vector(4);
g2t = 1; for(u = 0, (p-1)/2-1,
g2t = g2*g2t; g4t = 1;
for(v = 0, (p-1)/2-1,
g4t = g4*g4t; t = g2t+g4t; t = t%p;
if((t-1)%p == 0, nv[1] = nv[1]+1,
if((t-g)%p == 0, nv[2] = nv[2]+1,
if((t-g2)%p == 0, nv[3] = nv[3]+1,
if((t-g3)%p == 0, nv[4] = nv[4]+1)))))); nv[1] = nv[1]+1;
for(c = 0, cmax, cmodp = c%p;
if(cmodp == 0, x = (p-1)*(p-1),
gj = 1; for(j = 1, p-1, gj = (gj*g)%p;
if(gj == cmodp, jg = j%(p-1); jg = jg%4;
jgpar = 2*frac(jg/2);
if(jgpar == 0, x = p*p-2-4*nv[jg+1]; break, x = p*p-4*nv[jg+1]; break))));
xa[c+1] = x/p/(p-1)+0.0));
printf("%.7f", xa); print("");
for(c = 0, cmax, xc[c+1] = xa[c+1]*xc[c+1]);
printf("%.7f", xc))}
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For equation: p = x2 + y4 − c, x ∈ N , y ∈ P

{cmax = 13; /* choose targets' range */
pmax = 97; /* choose prime numbers' range */
print("Vector 1 : None-cumulative cardinal factor for c = 0 to "cmax);
print("Vector 2 : Cumulative cardinal factor for c = 0 to "cmax);
xa = vector(cmax+1); xc = vector(cmax+1);
print("p = 2");
for(c = 0, cmax, xa[c+1] = 1.0); printf("%.7f", xa);
print(""); xc = xa; printf("%.7f", xc);
forprime(p = 3, pmax, pmod4 = p%4; print(""); print("p = "p); g =
lift(znprimroot(p));
if(pmod4 == 3,
for(c = 0, cmax, cmodp = c%p;
if(cmodp == 0, x = p*(p-1),
gj = 1; for(j = 1, p-1, gj = (gj*g)%p;
if(gj == cmodp, jg = j%(p-1); jg = jg%2; break));
if(jg == 0, x = p*p-2*p+1, x = p*p-2*p-1));
xa[c+1] = x/(p-1)/(p-1)+0.0),
nv = vector(4);
g2 = (g*g)%p; g3 = (g2*g)%p; g4 = (g2*g2)%p; g2t = 1;
for(u = 0, (p-1)/2-1,
g2t = g2*g2t; g4t = 1;
for(v = 0, (p-1)/2-1,
g4t = g4*g4t; t = g2t+g4t; t = t%p;
if((t-1)%p == 0, nv[1] = nv[1]+1,
if((t-g)%p == 0, nv[2] = nv[2]+1,
if((t-g2)%p == 0, nv[3] = nv[3]+1,
if((t-g3)%p == 0, nv[4] = nv[4]+1))))));
nv[1] = nv[1]+1;
for(c = 0, cmax, cmodp = c%p;
if(cmodp == 0, x = (p-1)*(p-2),
gj = 1; for(j = 1, p-1, gj = (gj*g)%p;
if(gj == cmodp, jg = j%(p-1); jg = jg%4;
x = p*(p-1)-4*nv[jg+1])));
xa[c+1] = x/(p-1)/(p-1)+0.0));
printf("%.7f", xa); print("");
for(c = 0, cmax, xc[c+1] = xa[c+1]*xc[c+1]);
printf("%.7f", xc))}
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Appendix F. F-I-equation's exact number of solutions

This appendix enables to get the number of solutions of the Friedlander-
Iwaniec equation x2 + y4 = p+ c over a range of targets c with the condition
p < pmax.
It su�ces to make a copy of the program on the Pari/gp online application
(menu Main, GP in your browser). Note that sometimes the exponentiation
sign � won't copy successfully and has to be retyped manually (lines 5 and 9
of program).

{ i= 100000; /* choose i such pmax = pi */
pmax = primes(i)[i];
print("i = "i);
print("pmax = "pmax);
limit1 = f loor(pmax�(1/2)); limit2 = f loor(pmax�(1/4));
for(c = -5, 15, s = 0;
for(x = 0, limit1,
for(y = 0, limit2,
t = x�2+y�4-c; if(t < 0, t = -t);
if(isprime(t),
if(t < pmax, s++))));
print("c = "c" nbsol = "s))}
void

For the Heath-Brown−Xiannan equation, the only thing to do is to replace
"for(y" with "forprime(y" in line 8.
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Appendix G. Primitive roots' solutions

Case 1: p = 89, g = 3, α = 4, β = 5.

Solutions of:

eq1 : g0 ≡ g2u + g2v mod p ∩ v ≡ 0 mod 2
eq2 : g0 ≡ g2u + g2v mod p ∩ v ≡ 1 mod 2
eq3 : g1 ≡ g2u + g2v mod p ∩ v ≡ 0 mod 2
eq4 : g1 ≡ g2u + g2v mod p ∩ v ≡ 1 mod 2

where u ∈ [0, p−1
1 [, v ∈ [0, p−1

2 [, w = 2u+ 2v.

eq1 eq2 eq3 eq4
u v w u v w u v w u v w

1 2 6 2 1 6 13 24 74 24 13 74
3 10 26 10 3 26 5 34 78 34 5 78
19 6 50 6 19 50 39 12 102 12 39 102
15 34 98 34 15 98 27 36 126 36 27 126
21 42 126 42 21 126 35 30 130 30 35 130
35 38 146 38 35 146
45 2 94 46 1 94 57 24 162 68 13 162
47 10 114 54 3 114 49 34 166 78 5 166
63 6 138 50 19 138 83 12 190 56 39 190
59 34 186 78 15 186 71 36 214 80 27 214
65 42 214 86 21 214 79 30 218 74 35 218
79 38 234 82 35 234

8 22 60 9 25 68 16 22 76 7 25 64
22 8 60 25 9 68 22 16 76 25 7 64

23 43 132 2 42 88 31 41 144
43 23 132 42 2 88 41 31 144

36 36 144 29 41 140 8 44 104
41 29 140 44 8 104

26 28 108
28 26 108

52 22 148 53 25 156 60 22 164 51 25 152
66 8 148 69 9 156 66 16 164 69 7 152

67 43 220 46 42 176 75 41 232
87 23 220 86 2 176 85 31 232

80 36 232 73 41 228 52 44 192
85 29 228 88 8 192

70 28 196
72 26 196
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Case 2: p = 89, g = 3, a = 4, b = 5.

Solutions of:
eq5 : g0 ≡ g2u + g4v mod p
eq6 : g2 ≡ g2u + g4v mod p
eq7 : g1 ≡ g2u + g4v mod p
eq8 : g3 ≡ g2u + g4v mod p

where u ∈ [0, p−1
1 [, v ∈ [0, p−1

2 [, w = 2u+ 4v.

eq5 eq6 eq7 eq8
u v w u v w u v w u v w

1 1 6 3 1 10 13 12 74 25 7 78
3 5 26 11 2 30 5 17 78 35 3 82
19 3 50 7 10 54 39 6 102 13 20 106
15 17 98 35 8 102 27 18 126 37 14 130
21 21 126 43 11 130 35 15 130 31 18 134
35 19 146 39 18 150
45 1 94 47 1 98 57 12 162 69 7 166
47 5 114 55 2 118 49 17 166 79 3 170
63 3 138 51 10 142 83 6 190 57 20 194
59 17 186 79 8 190 71 18 214 81 14 218
65 21 214 87 11 218 79 15 218 75 18 222
79 19 234 83 18 238

8 11 60 10 13 72 16 11 76 8 13 68
22 4 60 26 5 72 22 8 76 26 4 68

24 22 136 2 21 88 32 21 148
44 12 136 42 1 88 42 16 148

36 18 144 30 21 144 8 22 104
42 15 144 44 4 104

26 14 108
28 13 108

52 11 148 54 13 160 60 11 164 52 13 156
66 4 148 70 5 160 66 8 164 70 4 156

68 22 224 46 21 176 76 21 236
88 12 224 86 1 176 86 16 236

80 18 232 74 21 232 52 22 192
86 15 232 88 4 192

70 14 196
72 13 196
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Appendix H. Sign recti�cations of α and β

This appendix enables to get the signs of the ratios |#v even−#v odd|/2α
and |#v even − #v odd+1|/beta as de�ned more precisely in the main text
(taking speci�c power of g in each case in account).
It su�ces to make a copy of the program on the Pari/gp online application
(menu Main, GP in your browser).

{pmax = 1000;
forprime(p = 3, pmax, g = lift(znprimroot(p));
g2 = (g*g)%p; g3 = (g*g2)%p; g4 = (g2*g2)%p;
if(p%4 == 1,for(j = 1, p, b = sqrt(p-4*j*j);
if(b-truncate(b) == 0, a = j; b = truncate(b); break));
rgg2 = 0;
w3 =1; for(u = 1, (p-1), w3 = (w3*g)%p;
if(w3 == 2*a, rga = u; break));
bb = (b+1)/2+(-1+p%8)/4; bb = 1-2*(bb%2);
pp = ((p-1)/4)%2; if(pp == 0, pp = "even", pp = "odd");
rga4 = rga%4; if(rga4 ==3, aa = -1, aa = 1);
rgb4 = rgb%4;
g2 = (g*g)%p; aeven = 0; aodd = 0; beven = 0; bodd = 0;
w1 =1; for(u = 1, (p-1)/1, w1 = (w1*g2)%p;
w2 =1; for(v = 1, (p-1)/2, w2 = (w2*g2)%p;
t = w1+w2; tt = t%p; pv = v%2;
if(tt == g, if(pv == 0, aeven = aeven+1, aodd = aodd+1));
if(tt == 1, if(pv == 0, beven = beven+1, bodd = bodd+1))));
r1 = (aeven -aodd)/(2*a)*aa;
r2 = (beven -bodd+1)/(b)*bb;
print("p = "p" (p-1)/4 is "pp" g = "g" a = "a" b = "b
" r1 = "r1" r2 = "r2" rga4 = "rga4)))}
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