
TWO PROPERTIES OF THE RIEMANN ZETA FUNCTION

ZEROS

HUBERT SCHAETZEL

Abstract. The purpose of this article is to give proofs, in fact closely
related one to each other, of the Riemann hypothesis, hypothesis which
states that all non-trivial zeros of the Zeta function are on the critical
line. Ahead of that, we will establish that there are no double zeros of
the said function, result which is also a novel contribution.
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1. The tools

The Riemann Zeta function is defined over the complex half-planeRe(s) >
1 by

ζ(s) =

∞∑
n=1

1

ns

where s = σ + i.t is the standard notation of the complex variable s. This
function has an analytic continuation over the whole complex plane except at
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its unique pole s = 1+0.i. The resulting function is therefore a meromorphic
function according to the following definitions.

Definition 1. A function f is holomorphic on an open set D in the complex
plane if, for any z0 ∈ D, one can write

f(z) =

∞∑
n=0

an(z − z0)
n

in which the coefficients an are complex numbers and the series is convergent
to f(z) for z in a neighbourhood of z0.
Alternatively, a complex analytic function is an infinitely differentiable func-
tion such that the Taylor series at any point z0 in its domain converges to
f(z) for z in a neighbourhood of z0 pointwise. (See reference [14]).

Definition 2. A meromorphic function on an open subset D of the complex
plane is holomorphic on all of D except for a set of isolated points, which
are the poles of the function. (See reference [14]).

These reminders being made, the following theorems will also be useful
later on.

Theorem 1. Isolated zeros principle.
The zeros of a non-constant analytic function are isolated.

Proof. See reference [14]. □

Theorem 2. If U is an open subset of the complex plane C, then a function
f : U → C is conformal if and only if it is holomorphic and its derivative
is everywhere non-zero on U . The Riemann mapping theorem states that
any non-empty open simply connected proper subset of C admits a bijective
conformal map to the open unit disk in C.

Proof. See reference [13]. Note that the theorem applies to a function f of
one and only one variable s. □

Theorem 3. According to the Abel summation formula, for Re(s) > 0, the
Zeta function can be expressed as

ζ(s) =
s

s− 1
− s

∫ ∞

1

{u}
u1+s

du

where {u} is the mantissa of u.

Proof. See reference [11]. □

Theorem 4. Besides, the Dirichlet Eta function is another analytical con-
tinuation of the Zeta function, valid this time, for 0 < Re(s) < 1, and writes
down as

η(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns

Proof. See reference [11]. □
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The Riemann’s hypothesis, formulated in 1859 [1] [10], is that the non-
trivial zeros of the function are such that Re(s) = 1

2 , the zeros quoted as
trivial being s = −2n, n ∈ N∗. This can be illustrated by the traditional
figure 1.

Figure 1. ζ(s) for σ = 1/2, t ∈ [0, 50]

A well-established result is that all the non-trivial zeros are located within
the critical band 0 < Re(s) < 1. In search of zeros, one can reduce the review
to the domain 0 < σ ⩽ 1/2 (or 1/2 ⩽ σ < 1) thanks to the following fact:

Theorem 5. Within the critical band, the non-trivial ζ−function zeros are
symmetrical to the axis s = 1/2.

Proof. It is an immediate result of the functional equation (see references
[2] and [11])

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s),

in which the expression 2sπs−1 sin πs
2 Γ(1− s) never cancels if 0 < σ < 1. □

Lemma 1. The nth derivative of the Zeta function is

ζ(n)(s) = if(n = 0, 1, 0) + (−1)n( n!
(s−1)n+1 + n

∫∞
1

lnn−1(u){u}
u1+s du

−s
∫∞
1

lnn(u){u}
u1+s du).

Proof. The equation is true for n = 0. The proof is deduced by induction
on the parameter n. One can also use the nth derivative of ζ(s)− 1 to write

ζ(n)(s) − if(n = 0, 1, 0) = (ζ(s) − 1)(n) in order to avoid the n = 0 peculiar
case within the former formula. □

The Pari gp on-line application is chosen here whenever we wish to provide
some numerical data and the resulting illustrations are given after injecting
the data on an Excel spreadsheet.
Given some coordinate s = σ + i.t value, we will call, here and there, σ the
abscissa and t the ordinate.
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2. The absence of double zeros of the Zeta function

Theorem 6. The Riemann Zeta function and its first derivative never can-
cel simultaneously, that is there is no solution s such that ζ(s) = ζ ′(s) = 0.

Proof. Let us suppose Re(s) > 0. Recalling theorem 3, let us take the
derivatives on each side of the corresponding expression. We get using the
product rule for derivatives

ζ ′(s) = − s
(s−1)2

+ ( 1
s−1 −

∫∞
1

{u}
u1+sdu

) + s
∫∞
1

(ln(u)){u}
u1+s du

= − s
(s−1)2

+ ζ(s)
s + s

∫∞
1

(ln(u)){u}
u1+s du

Then (again using 3) ∫ ∞

1

{u}
u1+s

du =
1

s− 1
− ζ(s)

s

and (from the expression de ζ ′(s))∫ ∞

1

(ln(u)){u}
u1+s

du =
1

(s− 1)2
− ζ(s)

s2
+
ζ ′(s)

s
.

Thus∫∞
1

(ln(u)){u}
u1+s du

(
∫∞
1

{u}
u1+s du)

2
=

1
(s−1)2

− ζ(s)

s2
+

ζ′(s)
s

( 1
s−1

− ζ(s)
s

)2

=
1

(s−1)2
−2

ζ(s)
s(s−1)

+(
ζ(s)
s

)2− ζ(s)

s2
+

ζ′(s)
s

+2
ζ(s)

s(s−1)
−(

ζ(s)
s

)2

1
(s−1)2

−2
ζ(s)

s(s−1)
+(

ζ(s)
s

)2

= 1 +
− ζ(s)

s2
+

ζ′(s)
s

+2
ζ(s)

s(s−1)
−(

ζ(s)
s

)2

( 1
s−1

− ζ(s)
s

)2

= 1 +
1
s
(ζ′(s)+ζ(s)( s+1

s(s−1)
− ζ(s)

s
))

( 1
s−1

− ζ(s)
s

)2

Let us have s0 a double root (at least) of the Zeta function, that is
ζ(s0) = ζ ′(s0) = 0.

Then ∫ ∞

1

{u}
u1+s0

du =
1

s0 − 1

and ∫ ∞

1

(ln(u)){u}
u1+s0

du =
1

(s0 − 1)2

and therefore ∫∞
1

(ln(u)){u}
u1+s0

du

(
∫∞
1

{u}
u1+s0

du)2
= 1

The Riemann Zeta function is continuous. Therefore, when s → s0, we
get

1
s (ζ

′(s) + ζ(s)( s+1
s(s−1) −

ζ(s)
s ))

( 1
s−1 − ζ(s)

s )2
→ 0
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while the following expressions tend towards fixed non-null values

1

s
→ 1

s0
and (

1

s− 1
− ζ(s)

s
)2 → (

1

s0 − 1
− ζ(s0)

s0
)2 → 1

(s0 − 1)2

Therefore, as ζ(s) → ζ(s0) = 0, we get

ζ ′(s) + ζ(s)(
s+ 1

s(s− 1)
− ζ(s)

s
) → ζ ′(s) +

s+ 1

s(s− 1)
ζ(s) → 0

Thus, the zeros being isolated, and therefore ζ(s) ̸= 0, it follows

ζ ′(s)

ζ(s)
→ − s+ 1

s(s− 1)

Let us choose some complex coordinate s, not a zero but close to a non-
trivial zero s0 of ζ, thus s = s0 + ∆s0, with n the multiplicity of the zero
s0. With this choice, the complex value s has an inverse. There is no zero
near the pole of the studied function and therefore we can also make the
choice of s such that 1/(s − 1) and 1/(s0 − 1) have always finite values in
our arguments. From definitions 2 and 1, the terms of higher degrees being
negligible in the Taylor series, we deduce

ζ(s) → α(s− s0)
n as s→ s0

where α is some finite non-zero value. The number n being the multiplicity
of the zero s0, we are interested in the cases n ⩾ 2. Let us start by evaluating
the first derivative near that zero

ζ ′(s) → nα(s− s0)
n−1 as s→ s0

Therefore
ζ ′(s)

ζ(s)
→ n

s− s0
as s→ s0

Thus we have necessarily

n

s− s0
→ − s+ 1

s(s− 1)

As s tends towards s0, the first term is diverging so that s→ 0 or s→ 1 (if
s → +∞, the second term is tending towards 0 and cannot be a solution).
But there are definitively no zeros of the Riemann Zeta function near the
coordinates s = 0 or s = 1, therefore the hypothesis ζ(s0) = ζ ′(s0) = 0 is
impossible. The result being true within the critical band, it is true in the
whole complex plane. □

Note. One may find interesting to evaluate in some way the ”distance” that
exists really to the simultaneous events ζ(s) = 0 and ζ ′(s) = 0. That can

be done, for example, by evaluating the ratio
∫∞
1

(ln(u)){u}
u1+s du/(

∫∞
1

{u}
u1+sdu)

2

and comparing it to 1. The strategy could be to research the closest value
to 1 within the critical band as t is taking increasing values. This is however
somewhat cumbersome to implement. We choose here to get the point clouds
of the ratio when only one of the events occurs. It won’t give the optimum
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data but the approach still gives some notable information. The figures
2A and 2B represents the point clouds obtained. These figures provide
the Napierian logarithm and therefore the two events’ coincidence would to
achieved for Ln(1) = 0, hence at the ordinate 0. Figure 2A shows that
the more likely solutions, if they existed, would be near t = 0, an expected
consequence of the former proof. As there is no expected case where ζ ′(s) =
0 for σ < 1/2 (see reference [4]), there can be no tendency towards σ = 0
in the second point cloud, the way it is calculate. In figure 2B, we see
instead a tendency towards the average value of the expected s = 0 or s = 1
(thus σ = (0 + 1)/2). We see also that the upper side of the point cloud
culminates mainly around σ = 1 and the point cloud get its broadest size
around that abscissa. To finish with, let us note also that the four points
that are ”escaping” the point cloud are part of the seven first solutions of
ζ ′(s) = 0, where 0 < t < 70, an interval where the s

s−1 contribution in the

Abel summation of ζ(s) is still of some highly differentiating importance.

Figure 2. Point clouds of f = Ln(

∫∞
1

(ln(u)){u}
u1+s du

(
∫∞
1

{u}
u1+s du)

2
)

ζ(s) = ζ ′(s) = 0 if f = 0.

(a) Point cloud for ζ(s) = 0, t < 1400 (b) Point cloud for ζ ′(s) = 0, t < 1000

Let us have also a glance at a sample of trajectories ζ(s), at constant
t = t0, where ζ

′(σ0 + i.t0) = 0 occurs for values of σ0 close to 1/2. Let us
focus on the evolution of the curves while σ increases from some value lower
than 1/2 (here 1/4) up to σ quite larger than 1/2 (here 5). The reader will
then notice immediately the reverse direction at the abscissas σ0 cancelling
the derivative of the function as if there was some kind of repulsive force
from 0 operating as the curves head closer to 0.

This results in the trajectories pointing towards 0 at the said events
ζ ′(s0) = 0. This pointing phenomena won’t of course necessarily persist
when σ is significantly larger then 0.5 (let say for example 0.6) but gets quite
obvious as the value of σ gets closer to 1/2 (let say for example < 0.55).
Hence, there is naturally a great temptation to correlate the mentioned re-
pulsion to the interdiction of any double zero.
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Figure 3A shows a sample of examples. For the chosen t0 values, we
have ζ ′(s0) = 0 for some σ0 > 1/2, indicated in the figure’s header, and
we chose here the sample with the smallest σ0 values occurring through out
the interval 0 < t0 < 1000. Thus, on the basis of this graphic, to envisage
σ0 < 1/2, while ζ ′(s0) = 0, seems already altogether absurd.

Now we may raise the question if there is some way to prolong the tra-
jectories of the curves towards the seemingly 0 aim. We know that analytic
functions generate conformal maps. Thus angles in the domain are con-
served in the image except at domain coordinates where the derivative can-
cels in which cases the angles double. Prolonging trajectories straight ahead
means introducing π angles. Requiring it, at some derivative cancellation’s
coordinate, is therefore, in the domain, an angle equal to π

2 which, in the
complex plane, is equivalent to a multiplication by the complex number i.
This means, instead of s, we ought to use i.s, a move that exchanges the role
of σ and t in our specific context: In figure 3A, σ was the variable and t was
fixed. Choosing to prolong trajectories in the way we just described means
now to have t to be the variable and σ to be fixed. In figure 3B, we im-
plement the trajectories extension in dotted lines. The doubling of angles,
in conformal mappings’ context, exists only at the derivative cancellation
coordinates while the conservation of angles takes effect immediately after
such events. It produces a progressive enlargement of the angle between the
inwards and the outwards pieces of dotted trajectories, phenomena which
again may be interpreted as some kind of repulsion as the coordinate 0 gets
closer. The ”middle” trajectory of that dotted prolongation however would
again approximatively head towards 0 the closer σ0 to 0.

Figure 3. Trajectories of ζ(s), σ ∈ [1/4, 5].
ζ ′(s0) = 0 at the coordinates (σ0, t0) ≈

(0.529499 , 750.81110), (0.531397 , 946.92177),
(0.532358 , 630.63582), (0.534289 , 564.33442),
(0.537986 , 728.58139), (0.548197 , 963.36963),
(0.550028 , 540.41864), (0.551299 , 415.24751).

(a) General view (b) Close up view
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To be precise, what we have shown here is that there is an effective barrier
to the simultaneous events ζ(s) and ζ ′(s) tending together towards 0, but
the involvement of the limit σ = 1

2 is only derived here from a sample of
numerical observations. Therefore, let us add some arguments although
those are not rigorous. If ζ(s) → 0, using the functional equation, we get
ζ(1 − s) → 0. If we add the constraint ζ ′(s) → 0 and use the derivation
of the functional equation, we get ζ ′(s) = (2sπs−1 sin πs

2 Γ(1− s))′ζ(1− s) +

2sπs−1 sin πs
2 Γ(1−s)ζ ′(1−s). Therefore ζ ′(s) → 2sπs−1 sin πs

2 Γ(1−s)ζ ′(1−s),
thus finally ζ ′(1−s) → 0. It means that ζ(s) and its derivative tend towards
ζ(1 − s) and its derivative. If we take that for granted in the vicinity of s
also, ζ(s) and ζ(1 − s) would locally be approximatively the same. The
image trajectories being more or less the same, we could then assume it in
the domain also. This means s → 1 − s or s → 1

2 . Observe that the two
cancellations’ constraint leads to a much stronger conclusion then the one
we initially hoped for, namely σ → 1

2 , the discrepancy lying either in the
impossibility to have ζ ′(s) = 0 on the left side of the critical line (therefore an
impossible symmetry) or\and the trivial non-bijectivity between the domain
s and the image ζ(s).

To finish this section, let us add a correlated lemma.

Lemma 2. The function ϖ(s) = ζ
ζ′ (s) has no double zeros.

Proof. The function is defined for ζ ′(s) ̸= 0. Deriving, we get ϖ′(s) =

( ζ(s)
ζ′(s))

′ = (ζ′(s))2−ζ(s)ζ′′(s)
(ζ′(s))2 . This expression cancels if and only if (ζ ′(s))2 −

ζ(s)ζ ′′(s). Supposing we already have ϖ(s) = 0, which implies ζ(s) = 0,
we get (ζ ′(s))2 = 0 that is ζ ′(s) = 0. Therefore the function ϖ may have a
double zero only if the function ζ has a double zero, which by now we know
is impossible. □

3. The half-wave phase shift proof

In the following development, we will see that focusing mainly on the can-
celling property of the zeros of the Riemann Zeta function may be irrelevant
and rather a trap to address the Riemann hypothesis. Only the symmetry of
the zeros towards the critical line is necessary to meet an interesting result.

Let us investigate the real and imaginary parts of the Zeta function. Let
us have χ(1/2,∆, t) = ζ(1/2 − ∆ + i.t) − ζ(1/2 + ∆ + i.t). We want to
solve χ(1/2,∆, t) = 0 where ∆ is real valued again. Then χ(1/2,∆, t) =
Re(ζ(1/2 − ∆ + i.t)) − Re(ζ(1/2 + ∆ + i.t)) + i.(Im(ζ(1/2 − ∆ + i.t)) −
Im(ζ(1/2+∆+i.t))) = 0 . Cancelling the expression means at least therefore

Re(ζ(1/2−∆+ i.t)) = Re(ζ(1/2 + ∆+ i.t))
Im(ζ(1/2−∆+ i.t)) = Im(ζ(1/2 + ∆+ i.t))

Here of course, we examine only the cases where ∆ ̸= 0, the equalities
being trivial otherwise. The figures 4A to 4C give a sample of the evolution
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of each of the members of these equalities Re(ζ(1/2−∆+ i.t)), Re(ζ(1/2 +
∆ + i.t)), Im(ζ(1/2 −∆ + i.t)) and Im(ζ(1/2 + ∆ + i.t)) over the interval
t ∈ [103, 109]. In these figures, one has to focus on the intersection positions
of similar color curves. One will observe, when Re(ζ(1/2 − ∆ + i.t)) =
Re(ζ(1/2+∆+ i.t)) that, at the same position t, the difference Im(ζ(1/2−
∆ + i.t)) − Im(ζ(1/2 + ∆ + i.t)) is heading towards some approximative
maximum, therefore a non-null value. The same occurs when Im(ζ(1/2 −
∆+ i.t)) = Im(ζ(1/2 + ∆ + i.t)), with this time the difference Re(ζ(1/2−
∆+ i.t))−Re(ζ(1/2 + ∆+ i.t)) in ”search of” some maximum.

Figure 4. Trajectories real and imaginary parts of
ζ(t)∆=constant.

(a) ∆ = 0.1 (b) ∆ = 0.3

(c) ∆ = 0.8 (d) ∆ = 5.0

This is an immediate consequence of theorem 4. The Zeta function and
the Dirichlet Eta function share the same zeroes within the critical band.
The Zeta function is merely a slightly deformed version, by the 1

1−21−s factor,
of the sum
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n=1

(−1)n−1

ns =
∑∞

n=1
(−1)n−1

nσ (cos(ln(n).t)− i.sin(ln(n).t))

=
∑∞

n=1
(−1)n

nσ (sin(ln(n).t− π
2 ) + i.sin(ln(n).t))

Here the π
2 phase shift between the real and imaginary parts leads nat-

urally to the alternating minima (that is a null value) and maxima of
the differences between Re(ζ(1/2 − ∆ + i.t)) − Re(ζ(1/2 + ∆ + i.t)) and
Im(ζ(1/2 − ∆ + i.t)) − Im(ζ(1/2 + ∆ + i.t)). Therefore, if three entities
among Re(ζ(1/2−∆+ i.t)), Re(ζ(1/2+∆+ i.t)), Im(ζ(1/2−∆+ i.t)) and
Im(ζ(1/2+∆+i.t)) take nearly the same value, the fourth one will necessar-
ily distance itself from that common value (hence confirming the Riemann
hypothesis).

Note. The π
2 phase shift is an indisputable fact and therefore, there is no

need for three close values to get a nearby maximal difference for the fourth
item. The intersection of two blue tone curve will result in two red tone
curve distancing and the same inverting the color tones. But one will likely
head towards an absolute maximum difference situation rather than a vague
middle tendency in the case of a ”three common”. Note however that three
close value doesn’t mean at all broader peaks or broader differences. It is
not a matter of size but of existence.

Note. The crossings of Re(ζ(1/2 − ∆ + i.t)) with Re(ζ(1/2 + ∆ + i.t)),
respectively Im(ζ(1/2−∆+ i.t)) with Im(ζ(1/2+∆+ i.t)), as ∆ increases
steadily, are heading locally to equal spaced intervals (on the t axis) as
Re(ζ(1/2 + ∆ + i.t)), respectively Im(ζ(1/2 + ∆ + i.t)), become negligible
in regard to Re(ζ(1/2−∆+ i.t)), respectively Im(ζ(1/2−∆+ i.t)), and the
former Re(ζ(1/2+∆+i.t)), respectively Im(ζ(1/2+∆+i.t)), are meanwhile
heading towards local almost sinusoidal curves. We call them local because
of the simultaneous exponential growth of the amplitude with t. In fact,
the whole underlining pattern in work in the figures 4C to 4A is merely a
deformation, as the value of ∆ is shrinking, of two local sinusoids (let us say
one sine and the other a cosine and two lines, one at approximate ordinate
1 representing Re(ζ(1/2+∆+ i.t)) and the other at approximate ordinate 0
for Im(ζ(1/2+∆+ i.t)), as illustrated by the figure 4D for a larger interval
of the parameter t. That deformation despite not being uniform keeps the
alternating intersections of same tone color curves in the same order.

Note. We added the curves for ∆ = 0 in the figures 5A and 5B to show that
the intersections of likewise color curves don’t match with the positions t of
the zeros of the Zeta function.

Note. One may still object that the Zeta function is not
∑∞

n=1
(−1)n−1

ns , but
1

1−21−s

∑∞
n=1

(−1)n−1

ns and therefore that function must verify the half-wave
shift we argued above. So let us do that verification. For that, we will write

1
1−21−s

∑∞
n=1

(−1)n−1

ns =
∑∞

n=1
(−1)n−1n−s

1−21−s =
∑∞

n=1
(−1)n−1n−σ−i.t

1−21−σ−i.t

=
∑∞

n=1
(−1)n−1

nσ
(cos(t.ln(n))−i. sin(t.ln(n)))(1−21−σ(cos(t.ln(2))−i. sin(t.ln(2))))

(1−21−σ cos(t.ln(2)))2+(21−σ sin(t.ln(2)))2
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=
∑∞

n=1
(−1)n−1

nσ

cos(t.ln(n))− 21−σ cos(t.ln(2)). cos(t.ln(n))− 21−σ sin(t.ln(2)). sin(t.ln(n))
+i.(− sin(t.ln(n)) + 21−σ cos(t.ln(2)). sin(t.ln(n))−21−σ sin(t.ln(2)). cos(t.ln(n))

1+22(1−σ)−22−σ cos(t.ln(2)))

= 1
1+22(1−σ)−22−σ cos(t.ln(2))

∑∞
n=1

(−1)n−1

nσ

( cos(t.ln(n))− 21−σ cos(t.ln(n/2))
− i.(sin(t.ln(n))− 21−σ sin(t.ln(n/2)))

)
= 1

1+22(1−σ)−22−σ cos(t.ln(2))

∑∞
n=1

(−1)n−1

nσ

( cos(t.ln(n))− 21−σ cos(t.ln(n/2))
− i.(cos(π2 + t.ln(n))− 21−σ cos(π2 + t.ln(n/2)))

)
The fraction in front of the sum depends on t, but it acts only as a same

scaling real variable on each corresponding real and imaginary term of the
sum, therefore not affecting the half-wave phase shift between those two.

Figure 5. Trajectories real and imaginary parts of
Re(ζ(1/2, t,∆)) and Im(1/2, t,∆).

(a) ∆ = 0.1 (b) ∆ = 0.5

Theorem 7. The Riemann hypothesis is true.

Proof. Having simultaneously Re(ζ(1/2−∆+ i.t)) = Re(ζ(1/2+∆+ i.t)) =
Im(ζ(1/2−∆+ i.t)) = Im(ζ(1/2+∆+ i.t)) is impossible and therefore even
more so the whole line of equalities equal to 0. Hence the above theorem
remembering theorem 5. □

Developing on the previous subject, and in order to simplify the notations,
let us pose first :

δRe = δRe(∆, t) = Re(ζ(1/2−∆+ i.t))−Re(ζ(1/2 + ∆+ i.t))
δIm = δIm(∆, t) = Im(ζ(1/2−∆+ i.t))− Im(ζ(1/2 + ∆+ i.t))

That done, it might be interesting to have a more precise view on the
locus of the intersections of the real parts (δRe = 0) between pairs of imag-
inary parts’ intersections (δIm = 0) and vice versa for the intersections of
the imaginary parts (δIm = 0) between pairs of real parts’ intersections
(δRe = 0).
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Figure 6. Distribution of r(δIm), respectively r(δRe).

(a) ∆ = 0.0005, δRe = 0 (b) ∆ = 0.0005, δIm = 0

(c) ∆ = 0.1, δRe = 0 (d) ∆ = 0.1, δIm = 0

(e) ∆ = 0.5, δRe = 0 (f) ∆ = 0.5, δIm = 0
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Let us consider the ordinates t1 and t2 (t2 > t1) of a pair of consecutive
intersections of one color tone curves (blue for real parts and red for imag-
inary parts as illustrated in the figures 4A to 4D). We then calculate the
locus of the ordinate t3 the intersection of the intermediate intersections of
the other color shade. We compute the difference t3− t1+t2

2 that we compare
to t2− t1. In order to get a 100 % deviation if the ordinate t3 is equal either
to t1 or t2, we add a multiplicative factor of 2 to the testing ratio getting in

so doing r = 2
t3− t1+t2

2
t2−t1

. We draw that percentage choosing as abscissa δIm

when we investigate the real parts’ intersections (δRe = 0) and δRe when we
investigate the imaginary parts’ intersections (δIm = 0). The illustrations
are given in figures 6A to 6F covering data within the interval t ∈ [0, 1000].

Remarkably, the distributions are not normal distributions (and far from
it in the case δIm = 0). However, most of the time, the higher the differences
δIm, respectively δRe, the better the chances to have a small deviation to
the middle expected ordinates. The exception is δIm = 0 and δRe > 0
where we observe an asymptotic limit range around ±10%.

That said, for our part, what remains the most important is the confine-
ment to the general ±100% range and that the distributions as a whole are
getting systematically smaller in size as ∆ increases (barely from ∆ ≈ 0
to ∆ ≈ 1/10 but much father so from thereon, the in-middle process being
mostly completed when δ reaches approximately the value 2). A few sample
is given in the figures 7A and 7B.

Figure 7.
Evolution of r(δIm), respectively r(δRe), with ∆.

(a) δRe = 0 (b) δIm = 0

The illustrations given in figures 8A to 8F are constructed in a similar
way. This time, we compute the ratio h = δIm

δImmax
, respectively h = δRe

δRemax
,

where δImmax, respectively δRemax, are the corresponding local maximum
values of Im(ζ(1/2−∆+i.t))−Im(ζ(1/2+∆+i.t)), respectively Re(ζ(1/2−
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Figure 8. Distribution of h(δIm), respectively h(δRe).

(a) ∆ = 0.0005, δRe = 0 (b) ∆ = 0.0005, δIm = 0

(c) ∆ = 0.1, δRe = 0 (d) ∆ = 0.1, δIm = 0

(e) ∆ = 0.5, δRe = 0 (f) ∆ = 0.5, δIm = 0
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∆+ i.t))−Re(ζ(1/2 +∆+ i.t)). We observe the same kind of exception as
previously and the tightening of the distributions as ∆ increases.

Note. One can be suspect of the later proof. Of course the distances between
crossings and maximal spacings can be infinitesimal defying some arguments
made. So let us recourse to an analytic proof inspired by the previous work
but requiring no graphical support. Due to the difficulty of such task in the
general context, we will add the legitimate supplementary condition which
is that the four previous terms are not only equal but also equal to 0.

4. The analytic proof

Lemma 3. The function Ξ(s) =
∑∞

n=1
(−1)n−1

ns is analytic, thus infinitely
derivable, within the domain of definition 0 < Re(s) < 1. Therefore Ξ(s)
and in particular its second derivative are well defined over that domain.

Proof. Using theorem 4, we get
∑∞

n=1
(−1)n−1

ns = (1 − 21−s)η(s). The func-

tions η(s) and (1 − 21−s) are analytic over the said domain and so their
product. In particular

Ξ′′(s) =
∞∑
n=1

(−1)n−1ln2(n)

ns

□

Lemma 4. The zeros of the function Ξ(s) and ζ(s) are the same within the
strict critical band.

Proof. We have
∑∞

n=1
(−1)n−1

ns = (1− 21−s)η(s). Therefore the zeros of Ξ(s)

are those of η(s) plus those of (1− 21−s), that is σ = 1 and t = 2πk/ln(2),
k an integer, and hence are outside the strict domain of definition. The
functions η(s) and ζ(s) have the same zeros in the mentioned domain, hence
the lemma. □

So, being only interested in the non-trivial zeros of the Riemann Zeta

function, we can now simplify our task to merely solving
∑∞

n=1
(−1)n−1

ns = 0.
In order to have homogeneous notations, let us have

Λ1(m,σ, t, ϕ) =
m∑
k=1

(−1)k−1k−σ sin(t.ln(k) + ϕ)

and

Λ2(m,σ, t, ϕ) =

m∑
1≤i≤m
1≤j≤m

(−1)i+j(i.j)−σ sin(t.ln(i/j) + ϕ).

Lemma 5. Solving
∑m

k=1
(−1)k−1

ks = 0 is equivalent to solving

Λ1(m,σ, t, 0) = Λ1(m,σ, t,
π

2
) = 0.
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Proof. 1
ks = k−σk−i.t = k−σe−i.ln(t) = k−σ(cos(t.ln(k)) − i.sin(t.ln(k))),

hence the result after separating real and imaginary parts. □

Lemma 6. Solving

Λ1(m,σ, t, 0) = Λ1(m,σ, t,
π

2
) = 0

is equivalent to solving

Λ2(m,σ, t,
π

2
) = 0.

Proof. Using cos(a−b)≡ cos(a) cos(b) + sin(a) sin(b), we get (Λ1(m,σ, t, 0))
2

+ (Λ1(m,σ, t,
π
2 ))

2 = (
∑m

k=1 (−1)k−1 k−σ sin(t.ln(k)))2 + (
∑m

k=1 (−1)k−1

k−σ cos(t.ln(k)))2 =
∑

1≤i≤m
1≤j≤m

(−1)i+j (i.j)−σ cos(t.ln(i/j)) =
∑

1≤i≤m
1≤j≤m

(−1)i+j (i.j)−σ sin(t.ln(i/j) + π
2 ) = Λ2(m,σ, t,

π
2 ). Then a2 + b2 = 0 ⇔

{a = 0, b = 0} allows to conclude. □

Note. It is remarkable that the counterpart Λ2(m,σ, t, 0) of Λ2(m,σ, t,
π
2 )

is identically null, since (−1)i+j (i.j)−σ sin(t.ln(i/j)) = −(−1)j+i (j.i)−σ

sin(t.ln(j/i)), which in some way also explains why only one equation sub-
sides :

Λ2(m,σ, t, 0) ≡ 0.

Lemma 7. The non-trivial zeros of the Riemann Zeta function are the zeros
of

m→∞∑
1≤i≤m
1≤j≤m

(−1)i+j(i.j)−σ cos(t.ln(i/j)) = 0

provided the proper convergence at the asymptotic limit.

Proof. This is the immediate result of the former lemmas. □

Lemma 8. Let us have some given values σ ∈]0,∞[ and t > 0. The ex-
pression Λ2(m→ ∞, σ, t, π2 ) is a semi-convergent series. The truncations at
rank m give acceptable approximations of the value of the infinite sum for
m > t.

Proof. For m → ∞, the functions Λ1(m,σ, t, 0) and Λ1(m,σ, t,
π
2 ) iden-

tify, via lemma 4, with the real and imaginary parts of (1 − 21−s)η(s)
an analytic function. So the functions Λ1(m,σ, t, 0) and Λ1(m,σ, t,

π
2 ) are

semi-convergent. The finite sum (so in particular the sum of two func-
tions) of semi-convergent functions is semi-convergent. The square of a
semi-convergent function is semi-convergent (see reference [17]). Therefore
Λ2(m,σ, t,

π
2 ) is semi-convergent recalling that we use the same trivial order

m for Λ1(m,σ, t, ϕ) and Λ2(m,σ, t, ϕ) as we add progressively terms to the
sums.

The graphics in figures 9A to 9F are typical of the way the values of Λ1

evolves as m increases. It shows sudden jumps in values that may seem ran-
dom. Therefore, it is advisable to trace the origin of these jumps, in order
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Figure 9.
Evolution of Λ1(m,σ, t, ϕ) versus m.

(a) σ = 0, t = 3000, ϕ = 0 (b) σ = 0, t = 4000, ϕ = 0

(c) σ = 1/2, t = 3000, ϕ = 0 (d) σ = 1/2, t = 4000, ϕ = 0

(e) σ = 1, t = 3000, ϕ = 0 (f) σ = 1, t = 4000, ϕ = 0

to discard any useless doubts. The function Λ1 is not a systematic alter-
nating sum. A jump results visually, at some stage, from enough successive
terms of same sign. Within the series’ term (−1)i−1 i−σ sin(t.ln(i) + ϕ),
the term i−σ has no effect on the change of sign. It remains therefore (−1)i

sin(t.ln(i)+ϕ). Multiple terms of same sign starts with at least two succes-
sive terms. For two same sign successive terms, it is sufficient asymptotically
to have (−1)i sin(t.ln(i) + ϕ) ≈ (−1)i+1 sin(t.ln(i+ 1) + ϕ). From that, we
deduce sin(t.ln(i + 1) + ϕ) ≈ − sin(t.ln(i) + ϕ), or sin(t.ln(i + 1) + ϕ) ≈
sin(π + t.ln(m) + ϕ), and then t.ln(i+ 1) ≈ (1 + 2k).π + t.ln(i), or finally

t.ln(1 + 1
i )

π
≈ 1 + 2k

where k ∈ Z.
For t > 0 and i > 0, k is necessarily in N .
When i→ +∞, and t has some given value, the expression t.ln(1+1/i)/π →
0, so that, considering the order 0 < 1 < 1 + 2k if k > 0, the value of m for
which t.ln(1 + 1/m))/π ≈ 1 is the last one for which a jump occurs. The
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initial expression will start to converge towards its asymptotic value after
this last leap which intervenes therefore at rank

m ≈ 1

exp(πt )− 1

In the case of the graphics in figure 9, we have m ≈ 1/(exp(π/3000)− 1) ≈
954 and m ≈ 1/(exp(π/4000) − 1) ≈ 1273 which are right on spot of the
values obtained numerically. The other jumps occur around the ranks m
such as

mk ≈ 1

exp( (1+2k)π
t )− 1

This gives Table 1. This table shows that we still get jumps right on spot

Table 1

t = 3000 t = 4000
k mk mk

· · · · · · · · ·
5 86 115
4 106 141
3 136 181
2 190 254
1 318 424
0 954 1273

Table 2

t = 3000 t = 4000
k nk nk
· · · · · · · · ·
5 95 127
4 119 159
3 159 218
2 238 318
1 477 636
0 ∞ ∞

where they are expected. But as one gets down towards smaller ranks m,
the ”randomness” will take over completely in the numerical results.
This allows to give the lower bound approximate rank masymp, for some t,
to get a fair asymptotic evaluation. Typically, one can choose twice the rank
of the last jump

masymp ≈ 2
1

exp(πt )− 1

or approximately, as soon as t >> π,

masymp ≈
2t

π
≈ 0.64 t

Now, when we are interested in areas where the function studied is not
subject to a jump, but is rather close to a zero slope, the equation to be
solved is (−1)i sin(t.ln(i)) ≈ −(−1)i+1.sin(t.ln(i + 1)) and therefore, for
k ∈ Z,

t.ln(1 + 1
i )

π
≈ 2k

The corresponding ranks nk for the plateau zones are

nk ≈ 1

exp(2πkt )− 1
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So that, for our examples, we get table 2.
The same truncation m will be adequate for Λ2(m,σ, t,

π
2 ). □

Lemma 9. The expression Λ2(m→ ∞, σ, t, π2 ) is positive or null.

Proof. The expression is a sum of two real value squares. □

Lemma 10. Let us have for some variable σ and a given fixed choice of real
value t and positive integer m

τ(σ) =
∑

1≤i≤m
1≤j≤m

ai,j(i.j)
−σ

where

ai,j = (−1)i+j cos(t.ln(i/j)).

Then τ(σ) has at most one and only one zero over σ in ]0,∞[.

Proof. The function τ(σ) is identical Λ2(m,σ, t,
π
2 ). Hence it is positive or

null. We use that alternative in order to avoid a cumbersome notation
underneath as we are only interested on the evolution of the function while
varying σ. Let us have

τ(σ) = τ+(σ) + τ−(σ)

where

τ+(σ) =
∑

1≤i≤m, 1≤j≤m
ai,j>0

ai,j(i.j)
−σ

and

τ−(σ) =
∑

1≤i≤m, 1≤j≤m
ai,j<0

ai,j(i.j)
−σ.

Each term of τ+(σ) is positive and each term of τ−(σ) is negative. The
second derivative of τ+(σ), respectively τ−(σ) (versus σ) are obtained by
multiplying each term of the sum by ln2(i.j) which has no effect on the
sign of the addends. Therefore τ+(σ) has a positive second derivative over
all of ]0, 1[ while τ−(σ) has a negative second derivative over all of ]0, 1[.
Therefore three possibilities arise. Either the trajectories of τ+(σ) and τ−(σ)
don’t cross, cross exactly at two points or at one point. Remember these
trajectories are drawn for some given value t (and m). In the first case, it
means that we chose an ordinate t without any crossing solution which is the
standard expected result for a random choice (of t). Envisaging the second
case, with an adapted choice of t, would mean that τ(σ) is negative for the
range of abscissa σ between the two distinct points of intersections of the
trajectories τ+(σ) and τ−(σ). This cannot happen as the function τ(σ) is
positive or null. The third case, with one unique tangential common point,
is therefore the only one available when the trajectories τ+(σ) and τ−(σ) do
share some coordinates. □



20 HUBERT SCHAETZEL

Figure 10.
Evolution of τ(σ) ≡ Λ2(m,σ, t,

π
2 ).

(a) m = 15, t = 25.0108575801456 (b) m = 15, t = 25.0108575801456

(c) m = 50, t = 25.0108575801456 (d) m = 50, t = 25.0108575801456

A sample of the trajectories is given in the figures 10A to 10D illustrating
the 3rd Zeta function’s zero. The ordinates’ scale in the left side’s graphics
is the standard linear scale while it is logarithmic in the right side’s graphics
in order to highlight the approximate zero. We choose two values for m. For
small values of m, before the final convergence is initiated, there is no reason
to even see for τ(σ) a trajectory in the form of a potential well at some σ.
(It would be the case here for m ≤ 10). We meet the final convergence
threshold for this example with the small rank m = 15 (as 15/t ≈ 15/25 =
0.6). As m increases further, the trajectory of τ(σ) varies little while, on
the contrary, τ+(σ) and τ−(σ) increase in absolute values fast at abscissas
σ << 1

2 .

Note. The domain is which the previous arguments are true is larger than
]0, 1[. However one cannot use it in order to address any property or data
relative to ζ(s) on the left side of that domain. We extended the graphics
to [−1/2, 5/2] on the sole purpose to get a broader view on the evolution of
the trajectories.

Lemma 11. The trajectories of τ+(σ) and τ−(σ) share one tangential point
at most asymptotically.

Proof. As m→ ∞, the functions τ+(σ) and −τ−(σ) tends towards the same
trajectories around the eventual common point. Asymptotically, as the tra-
jectories flatten, either the trajectories τ+(σ) and −τ−(σ) are the same line,
so that τ(σ) ≡ 0, which is absurd as clearly τ(σ) ≡ Λ2(m → ∞, σ, t, π2 ) is
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not identically null, or the unique point intersection subsides, as it is the
only authorized option (in case of intersection) for any m ∈ N . □

Theorem 8. The Riemann hypothesis is true.

Proof. For some given t, the function Λ2(m → ∞, σ, t, π2 ) can take at most
one value σ for which it cancels according to lemma 11. By the symmetry
of the Zeta function’s zeros imposed by theorem 5, which zeros when they
exist are therefore located on the same ordinate t, that unique cancellation
over the interval σ ∈]0, 1[ can only occur on the critical line. □

Note. The symmetry imposed by theorem 5 doesn’t apply, by the result
obtained above, to the trivial zeros of ζ(s) as their locus is outside the
critical line on its left side where η(s) and ζ(s) do not match at all.

5. The complex plane graphical context

5.1. The standard context. The Riemann Zeta function is an odd func-
tion in regard to the t ordinate. Therefore, our study will be focused on the
positive values of that variable, once for all.

Lemma 12. Let us consider two oriented parallel vertical segments in the
complex plane s and s+ ϵ where s = σ + i.t, σ has some fixed value, ϵ is a
real valued infinitesimal and t ∈ [t1, t2], 0 < t1 < t2. The rectangular section
between the two segments does not contains the pole of the Zeta function
(because t > 0). Then the oriented images, obtained by applying the Zeta
function, to these lines stay on the same side one in regard to the other. For
a line on the right side of its neighbour, its image is on the right side of its
neighbour’s image also.

Proof. This results from the fact that the ζ−function is analytic (except
at the pole). Therefore, locally according to theorem 2, for a small enough
region of the domain, it provides a bijective conformal map from the domain
to the codomain except if the domain contains a zero of the first derivative
(or the pole). The zeros of the first derivative (function which is analytic
also) are isolated zeros by theorem 1 and therefore the preceding argument
holds in any sufficiently infinitesimal domain near but not containing the
zero. Considering two parallel oriented lines in that region, the composition
by the Zeta function provides two oriented lines in the codomain which do
not cross. Of course, by extending the domain, the bijection at some step
will eventually fail.
The respective side in the image for some given respective side in the domain
being necessarily always the same according to the first part of this proof, a
numerical example enables to conclude immediately that right side provides
right side (and left provides left). □

Let us then consider the complex plane domain t ∈ [t1, t2] where t1, t2
are the imaginary parts of two successive non-trivial positive zeros of the
Zeta function, choosing here expressly zeros with real part value 1/2. The
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image of the continuous network of vertical segments of that domain by the
Riemann Zeta function provides a continuous network of curves that divides
a priori into two types of configurations.

The first one derives from the absence of a zero of the first derivative of
the Zeta function in the chosen domain. The second one derives from the
presence of one and only one zero of the first derivative of the Zeta function
at some abscissa σ greater than 1/2.

Figure 11. Trajectories ζ(σ + i.t) for constant σ

(a) t ∈ [43.32707, 48.00515] (b) Close-up view of figure 11A

To gather these two kind of drawings, it suffices to consider a rectangular
domain σ ∈ [σ1, σ2] and t ∈ [t1, t2] where for example σ1 = 0 or some finite
sufficient lesser value and σ2 = 5 or some finite sufficient greater value.

Before distinguishing the two configurations, let us start by noting the
common feature. There is a progressive evolution from a large scale image
for ”large” negative values of σ to minute forms for ”large” positive values
of σ, the later forms converging to the coordinate (1, 0). The exponential
evolution results from the 1

nσ contribution of each of the Riemann Zeta
function terms. It leads, and that is seen clearly on any sample, to a rapid
reducing scaling effect. Figures 11 and 12 are such samples as σ is given
higher values while keeping the same sized vertical segments in the domain.
The image of two infinitesimal close segments shift progressively on the same
side in the absence of a zero of the derivative within the domain and therefore
the image will head asymptotically to the coordinate (1, 0) as illustrated
by figures 11A and 11B, this example being the first and simplest type of
configuration, the case where, let us say abruptly, nothing special happens.

The second type is produced when ζ ′(s) = 0 for some coordinate s within
the chosen wide enough rectangular domain. Supposing any such event,
we get the examples of the figures 12A to 12F. Here the conformal map
argument holds for the image of the left part of the rectangular domain
up to the abscissa of the zero of the derivative on one hand and again
separately for the image of the right part of rectangular domain starting at
the abscissa of the said zero of the derivative on the other hand. This time,



TWO PROPERTIES OF THE RIEMANN ZETA FUNCTION ZEROS 23

Figure 12. Trajectories ζ(σ + i.t) for constant σ

(a) t ∈ [185.59878, 184.87447] (b) Close-up view figure 12A
ζ ′(0.61598 + i.185.21481) ≃ 0

(c) t ∈ [40.91872, 43.32707] (d) Close-up view figure 12C
ζ ′(1.38276 + i.42.29096) ≃ 0

(e) t ∈ [161.18896, 163.030710] (f) Close-up view figure 12E
ζ ′(1.55035 + i.162.66556) ≃ 0

the exponential reducing trend may be false locally. Indeed, by definition,
ζ(s+ ϵ)− ζ(s) → ζ ′(s).ϵ as ϵ→ 0 and therefore the distances ζ(s+ ϵ)− ζ(s)
are locally shorter near the image’s locus where ζ ′(s) is small, including
thus the case ζ ′(s) = 0. Therefore, the same way that there is logic for
a reduction of size of the images before the event ζ ′(s) = 0, there is no
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surprise for eventually an increase of the lengths of the vertical lines’ images
after that event is crossed (see for example figure 12B where that occurs
between σ ≈ 0.616 and σ ≈ 1). The effect is much more visible if one
reduces the domain to a smaller height band which still includes the zero of
the derivative.

Note. The lemma is also true when the oriented parallel segments are not
vertical.

Note. For the first type of configuration, in the absence of ”disturbance”
by a zero of the derivative, all curves shifting on the same side to each
other, there exists only the double intersection solution, among all image’s
segments on the right side of the critical line, this line included, with the
(0, 0) coordinate which results from the initial choice of the two successive
zeros on the said critical line. No intersection for the strict right side means,
as we know, no intersection also on the strict left side neither, thus the
Riemann hypothesis confirmation for this first case.
For the second type of configuration, the remarks are quite analogous but the
arguments in favour of the Riemann hypothesis are trickier to explicit and
somewhat opposable in the case of the existence of a zero of the derivative
with abscissa lesser than 1/2. Indeed, one can recall the Speicher’s theorem
which confirms the Riemann conjecture’s if σ > 1/2 for all Zeta function
derivative’s zeros (see reference [4]).

The two configurations being presented, let us frame it more precisely,
in regard to the Riemann hypothesis, balancing between shortcomings or
plausibility.

Let us consider the figure 1. If the Riemann hypothesis is true, as t
increases, each loop formed by the trajectory of ζ(0.5 + i.t) will exactly
cross one time the (0, 0) coordinate. If the Riemann hypothesis is false,
as t increases, the trajectory of ζ(0.5 + i.t) will necessarily be short of the
intersection with (0, 0) and, because of the pairing of the zeros expressed
in theorem 5, the same trajectory will also experience an overdrive of the
coordinate (0, 0). The typical graphical result, for that piece of the trajec-
tory, of that constrain is represented in figure 13A. Of course, the short shot
and the overdrive may not be consecutive. There can be one or more loops,
in-between these two events, intersecting with (0, 0), but these cases would
not change in any way the arguments coming next. Indeed, the typical tra-
jectories for ζ(0.5 −∆+ i.t) and ζ(0.5 + ∆ + i.t), ∆ > 0, corresponding to
intersections with (0, 0), are then represented in figure 13B. Their respective
evolutions, as σ evolves from 0.5 to 0.5−∆ and from 0.5 to 0.5 +∆, result
from lemma 12 that we will prove later on. In figure 13B, the intersections
of these first and second trajectories with (0, 0) can be in reverse pointed
back to the ordinates t1 and t2 respectively on the ζ(0.5 + i.t) trajectory,
the red arrows being a help to indicate the said ordinates. The relevant
ordinates are, of course, shown in a very approximative way here. However,
these ordinates t1 and t2 are necessarily distinct on the trajectory ζ(0.5+i.t)
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which contradicts theorem 5, the later compelling to their equality. Hence
the Riemann hypothesis should not be false.

Note. One of the variant to the figure 13A is that the overdrive happens
before the short shot of (0, 0). In this case it would result to a simple
reversal of the direction of the y-coordinates to restore the same pattern. It
wouldn’t change any thing to our previous arguments.

Note. To be truly exhaustive, we have to prove also that the trajectory
ζ(σ+ i.t), σ being some constant, consists of loops that always occur always
in a clockwise manner, as t increases, a point that we will address in the
proofs of lemmas 14 and 18. Otherwise alternative designs to the one in
figure 13A may be proposed with a risk they won’t meet all the previous
arguments.

Note. The scaling of the figure 13B (and figure 13A) is absolutely arbitrary.
Therefore the difference t2 − t1 can be arbitrary small. That makes it so
difficult to prove the Riemann hypothesis in any other way.

Figure 13. Trajectories ζ(σ + i.t) for constant σ

(a) (b)

(c) (d)

All these arguments don’t however resist to the graphics proposed in
figures 13C and 13D in which we simply position the blue loop (where σ =
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1/2) at a more challenging place. Of course, figure 13C is not likely, because
when σ increases, ζ(s) would head towards the coordinate (1, 0) instead of
(0, 0) (that is towards the right direction instead of keeping its left direction
as suggested in the graphic) as soon as the loop vanishes. Similarly figure
13D is not much more plausible, because it supposes a positioning of the
”center” of the blue loop at the left of the y-axis which numerical examples
never show (it would likely mean that ζ ′(s) = 0 for some σ < 1/2). Although
none of these two latest examples match an expected design, referring to
the standard configurations, we can’t just affirm that it can’t happen. More
arguments are needed here to confirm the Riemann hypothesis.

5.2. Understanding the standard context. Let us consider the domain
of vertical lines of positive ordinates and apply the Riemann Zeta function
from large negative abscissas σ up to large positive values of that variable.

Lemma 13. The image of a positive oriented vertical half line s = σ + i.t,
σ << 0, t > 0, by the zeta function, consists of an approximative outwards
logarithmic spiral clockwise trajectory around the (1,0) coordinate. The im-
age of a positive oriented vertical half line s = σ + i.t, σ >> 1, t >> 10, by
the zeta function, consists of an approximative circular clockwise trajectory
around the (1, 0) coordinate.

Proof. As σ tends towards +∞, comparing the results corresponding to two
constant such σ, the term 1

2s is getting rapidly preponderant in ζ(s) − 1 =∑∞
n=2

1
ns . This term is equal to 2−σ(cos(ln(2).t)− i.sin(ln(2).t) and thus

provides a circular trajectory of periodicity ∆t = 2π
ln(2) , oriented clockwise,

hence the resulting approximate circle trajectory for the whole sum. A nu-
merical check shows that the approximation is satisfactory (for our purpose)
as early as σ > 10. The sum

∑∞
n=3

1
ns , in the same way, for high value of σ,

has preponderant term 1
3s . Therefore solving

∑∞
n=2

1
ns1 =

∑∞
n=2

1
ns2 , s1 ̸= s2,

is pretty much solving the approximation 1
2s1

+ 1
3s1

≈ 1
2s2

+ 1
3s2

, hence con-

sists in getting a crossing of the circle 1
2s1

, which trajectory experienced a

perturbation by the additional much smaller term 1
3s1

, with the same kind
of shifted trajectory. It is obvious that a progressive shifting of the value of
s2 will provide such crossing event quite soon. That shifting of s2 can be
repeated at will, thus the infinity of self-crossings of the trajectory for large
constant values σ as t increases to infinity.
As σ tends towards −∞, the zeta function is getting way off the values (and
trajectories) of the sum

∑∞
n=1

1
ns . However, taking the Euler-Maclaurin

summation [5] for its analytic continuation, the various terms containing
n−s still confirm the divergence observed in the original sum thanks to the
n−σ corresponding parts while spiralling due to n−I.t components. It results
in an outwards clockwise logarithmic-like trajectory at constant σ and pos-
itive t increasing values. The divergence of that trajectory will be faster as
the absolute value of σ is chosen greater. Contrary to the preceding case,
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no self-crossing of the trajectory can occur in these conditions. The approx-
imation is plainly satisfactory (for our purpose) as early as σ < −10.
The figures 14A and 14C underneath illustrate the two preceding cases. In
the second instance there are self-crossings of the trajectory while in the
first one there are none. □

Note. The (1, 0) coordinate, we refer in this lemma is not of course the pole
as we are in the codomain instead of the domain of the function.

Figure 14. Trajectories ζ(σ + i.t)
σ = −10, 1/2 and 10

(a) (b) (c)

Note. In a nutshell, for a domain consisting in vertical half-lines of positive
ordinate and abscissa increasing from (almost) −∞ to +∞, the initial part
of this article will be to tell the story of the contraction of their successive
continuous images from the infinite spiral in figure 14A down to the figure
14C. It consist in the progressive building of an infinite number of local loops
which sizes get smaller and smaller until vanishing and a residual infinite
number of loops which head towards the unique point (1, 0). In particular,
the story will show that loops don’t pop up suddenly but are only the result
of the said contraction. This is coherent only if all loops are oriented in the
same way as we will assess now.

5.2.1. Adding oriented circles.

Lemma 14. Let us consider a positive oriented vertical segment in the com-
plex plane s = σ+ i.t, with σ > 1, t ∈ [t1, t2] and its image ζ(s). Then every
closed loop within the image can only be fully completed clockwise (i.e. on a
right-side trajectory).

Proof. (1). For σ > 1, we get by definition

ζ(s)− 1 =

∞∑
n=2

1

ns
=

∞∑
n=2

n−σ(cos(ln(n).t)− i.sin(ln(n).t)).

Each term of the series describes the trajectory of a circle of radius n−σ

with centre (0,0) in the complex plane and periodicity 2π
ln(n) . The function
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ζ(s) − 1 is locally a sum of partial circles all with the same centre and
same clockwise orientation, and ζ(s) is obtained with a simple unit shift
of abscissa of the resulting sum maintaining trivially the same trajectory
shape. To get a clockwise trajectory by adding clockwise circles shouldn’t
come as a surprise. Additional arguments are however welcome. In order to
prove the lemma, let us proceed by induction. Figures 15A to 15C confirm
the lemma for the initial step, being a trivial circle, and some additional
cases. The value of σ is sparsely relevant as it is only a scaling factor in
the present argument, thus it doesn’t matter to take it here equal to 1/2,
instead of greater then 1, as we did in the figures. These initial examples
provide a sample of curves with the said clockwise loops and the last figure
shows also an example of an ”aborted” loop with a ”cusp-like” silhouette.
Of course, it is only cusp-like, but it is never a cusp, as the sum of analytic
function terms, here 1

ns , is analytic.

Figure 15. Trajectories
∑k

n=2
1
ns

s = 1/2 + i.t and t ∈ [0, 20]

(a) C1 : k = 2, C2 : k = 3 (b) C3 : k = 4, C4 : k = 5

(c) C5 : k = 6, C6 : k = 7

Let us suppose then, for
∑j

n=2
1
ns , the lemma true at some given step j.

We then consider the sum λ 1
(j+1)s +

∑j
n=2

1
ns with λ ∈ [0, 1]. As we increase

λ from 0 to 1, we pass from the case j to the case j + 1. Examining the
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change of the trajectory as we increase λ, after a smooth evolution, one or
more loops will eventually pop up with infinitesimal sizes, for let say the
value λ = λ0, before growing further. This popping-up can occur only at
the bottom of the cusp-like silhouettes because of the cusp-like geometry at
that precise spot (the function being analytical, again, no truly cusp can
occur there) and will then grow to provide examples like those displayed
in figures 16B to 16E. Depending on the corresponding phase value of the
circle at the cusp-like bottom, instead of a loop, the sum with the cusp-like
trajectory may give, like in figure 16A, a wider open trajectory. This kind
of cases is of no peculiar need to be addressed and therefore disregard in the
further development of the present argument. As (λ0 + ϵ) 1

(j+1)s is added

to the sum
∑j

n=2
1
ns , for infinitesimal ϵ, the one or more nascent loops in

the resulting trajectory are necessarily on the same side as the bottom of
the cusp-like silhouette as shown in the figures with the loops’ orientations
as indicated by arrows. As this bottom was on the right hand side of the
trajectory at step j, it will be likewise at that stage. As λ grows further,
the general direction of the axis of ”symmetry” of the loop and its size
may vary but as long as the loop keeps close it will remain clockwise as
the different resulting trajectories can’t cross locally according to lemma 12.
The three figures 16B to 16D display standard trajectories. This is not the
case of figure 16E which is the result of a loop popping-up within a larger
loop, thus the bottom of the silhouette is oriented to the opposite side in
regard to the complex plan centre (0, 0). Note that all these figures are
not extracted from real cases of the zeta co-domains but do however reflect
them. We can express the previous argument in plain equations. We use
the conventional writing if(a, b, c) which means if a is true then b else c.
Choosing new orthonormal axis with an adapted angle to the usual complex
plane axis, the threshold cusp-like trajectory can be written down as two
pieces of circles if(t < t00, σ1 + i.t1 + r1(cos(α1.t+ ϕ1)− i.sin(α1.t+ ϕ1)),
σ2+i.t2+r2(cos(α2.t+ϕ2)−i.sin(α2.t+ϕ2))), the first of centre (σ1, t1) and
radius r1, the second of centre (σ2, t2) and radius r2 with both coefficients α1

and α2 positive and t00 the value of t at the ”cusp”. Joining them at (σ0, t0)
at the end for the first one and at the beginning for the second one, we get
the series of equalities σ0 = σ1+r1.cos(α1.t00+ϕ1) = σ2+r2.cos(α2.t00+ϕ2)
and t0 = t1 − r1.sin(α1.t00 + ϕ1) = t2 − r2.sin(α2.t00 + ϕ2). The centres
of the circles being aligned with (σ0, t0), we have also r2 = −σ2−σ0

σ1−σ0
r1 =

− t2−t0
t1−t0

r1. Adding then an infinitesimal-sized circle to the ”cusp”, we get

the trajectory if(t < t0, σ1 + i.t1 + r1(cos(α1.t + ϕ1) − i.sin(α1.t + ϕ1)) +
ϵ(cos(α0.t+ϕ0)− i.sin(α0.t+ϕ0)), σ2+ i.t2+r2(cos(α2.t+ϕ2)− i.sin(α2.t+
ϕ2)) + ϵ(cos(α0.t + ϕ0) − i.sin(α0.t + ϕ0))). Then a shift from t = t00 to
t = t00 + dt, dt > 0, means a shift of the trajectory sum by ϵ(cos(α0.(t00 +
dt)+ϕ0)− i.(sin(α0.(t00+dt)+ϕ0))) which goes to the right and down as dt
increases, which either opens the cusp (for values ϕ0 around ϕ0 ≈ −α0.t00)
or is the starting point of a clockwise loop.
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Each further increase of λ will provide the same situations leading to step
j + 1 completion when λ = 1. This j to j + 1 step can be repeated until a

large enough j for which
∑∞

n=j+1
1
ns will be negligible in front of

∑j
n=2

1
ns

to have any annoyance on the local trajectory of the zeta function. □

Figure 16. Adding circles to cusp-like shapes

(a) (b)

(c) (d)

(e) (f)

Proof. (2). A shorter proof is to assume the existence of a non-zero finite
size counter-clockwise loop. In this case, recalling lemma 12 as σ increases,
the corresponding trajectories are necessarily, at least partially (new loops
may form), further and further outside that initial loop contradicting the
fact that eventually the whole design must converges towards the point with
coordinates (1, 0). □



TWO PROPERTIES OF THE RIEMANN ZETA FUNCTION ZEROS 31

Note. The figures 16B to 16E show the enlargement of a small loop while the
last 16F displays a contraction. Of course, any intermediary figures may ex-
ist with same configuration result. A loop may also provide a smooth curve
and a smooth curve may give a loop by some addition to a circle. What is
of importance, as shown here, is that the cusp-like shape can be oriented in
any direction vis-à-vis the circle and will still provides the required clock-
wise curvature. A counter-clockwise loop is impossible as it would need a
repeated series of ”aborted” loops with second parts in quite more outwards
oriented left-direction trajectory than their first part inwards oriented right-
direction trajectory. As the trajectories originate from circles and has thus
locally balanced first and second part with it proper local almost axis of
”symmetry”, the inwards trajectory being always first, the process is ”do-
undo” clockwise (but never ”undo-do” clockwise). The additional clockwise
benefit, due to the initial circles’ clockwise shape, prohibit even the primer
of a relevant counter-clockwise example.

Note. The k-th derivative of the Riemann Zeta function is defined over the
complex plane Re(s) > 1 by

ζ(k)(s) = (−1)k
∞∑
n=1

(ln(n))k

ns
.

Let us focus on the transformation of this expression with increasing k what-
ever the value of the real part of s. We don’t care here that this expression
is no more the effective k-th derivative of the Riemann function and we do
acknowledge that, within the critical band, we are outside the valid domain
of definition but it doesn’t really matter for our present purpose. In order
to get the said derivatives, we add again circles but with the initial scaling
factor lnk(n) for each of them at the condition that we drop the sign given
by (−1)k. A positive scaling, that is a homothety, can’t reverse a loop. As k
increases, the trajectories are converging more and more towards circle-like
loops turning around the origin with shapes approaching also that of the
cases σ << 0, values of σ where the clockwise result is trivial. Therefore
another hint in the same direction as the previous lemma.

Let us bring some additional developments to the previous note in regard
to derivatives. Although, it may be partially in some vague form, it is
nevertheless central to our investigation, as it contains critical arguments.

Lemma 15. The first derivative of the Riemann Zeta function implies the
curves’ shortening or elongation of the said function.

Proof. By definition, ζ(s + ϵ) − ζ(s) → ζ ′(s).ϵ as ϵ → 0 and therefore the
distances ζ(s+ϵ)−ζ(s) are locally shorter near the image’s locus where ζ ′(s)
is small and are longer elsewhere. ζ ′(s) is the direct and absolute gauge of
the distances of the ζ(s) images. □

Although one parameter is sufficient for our overview here, a more pre-
cise approach would be of course the use of the Jacobian matrix, the whole
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linear transformations being formed by a rotation and a scaling. Tristan
Needham, in his book ”Visual Complex Analysis” calls these transforma-
tions amplitwists. [6]
This point generalizes of course to higher derivatives.

Lemma 16. The kinship lemma. The successive derivatives of the Riemann
Zeta function have similar oriented designs modulo a sign adaptation.

Proof. This is largely an immediate result of the previous lemma and is illus-
trated by the figures 17A to 17F. There is a feedback between the successive
derived functions (downwards and upwards). As the reader may observe in
the figures, for the 3 values of k chosen (k = 0, k = 1, k = 2), and this
would hold for greater values, the trajectories have a lot of kinships, like
starting and ending points on an approximative same line, general orienta-
tion, number of loops\aborted loops up to a certain stage, so long as we

alternate the signs, therefore taking −ζ ′, ζ(2), −ζ(3), ..., when k increases
and taking −1+ζ(s) instead of ζ(s) for the initial drawings. The kinship can
be increase be using an adapted constant coefficient before each successive
function. The need of alternate signs is therefore a mere observation for the
said adapted constants’ choices. Changes in rotations occurs and evolves in
quite the same way as scalings do, that is progressively. □

Lemma 17. Let us choose a horizontal line of ordinate t as the domain s
and apply the Zeta function to it for σ ∈ [0, 1]. As σ increases, the distance
of the image ζ(s) to the coordinate (1, 0) decreases systematically as soon as
σ is greater than the abscissa of the closest zero z of the first derivative of
the Zeta function.

Proof. In the absence of some peculiar opposite phenomena, ζ(s) is obliged
to shrink exponentially towards (1, 0) due to the parameter σ (for constant
t). The only perturbative gauge is, according to lemma 15, the local field
of first derivative’s values. Thus, one can expect as soon as the distance
to the position of a cancelling derivative starts to increase, the expression
norm(ζ(s)− 1) must decrease exactly at that stage. □

The figures 18A to 18D illustrate the previous lemma. Ahead of the said
abscissa of the nearest first derivative’s cancellation, on the contrary, one
can observe in general an increase of the distance to (1, 0). However, in that
case, we still know that the trajectories of vertical lines are on the same
side of each other. It is only after a loop described by ζ(s) has vanished
that the image may take an adverse direction not heading further straight
ahead as shown in the typical figures 12A to 12F. But, this is denied by
the fact that, when a loop vanishes, it also means that the first derivative
abscissa is just overcome and an irremediable road towards (1, 0) is now set
up. In the labels of the figures 18A to 18C, we indicate the coordinates z
cancelling ζ ′(z) and we chose the corresponding t values for the horizontal
line’s domains. In the figure 18D, the parameter t is taken off the ordinate
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Figure 17. Kinship of −1 + ζ and its sign-corrected
derivatives. s = σ + i.t, t ∈ [120, 125].

(a) σ = -5 (b) σ = 0

(c) σ = 0.5 (d) σ = 0.75

(e) σ = 1 (f) σ = 2.5

of the current zero of the first derivative. Therefore, the ”potential well”
due to the mentioned cancelling feature progressively disappears.
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Figure 18. Evolution over σ ∈ [0, 1] of ||ζ(σ + i.t)− 1||2.

(a) ζ ′(0.52949926 + i.750.811097) ≈ 0 (b) ζ ′(0.63563859 + i.111.431018) ≈ 0

(c) ζ ′(σ + i.t) ≈ 0 (d) ζ ′(0.75090246 + i.278.819153) ≈ 0

5.2.2. Adding oriented spirals.

Lemma 18. Let us consider a positive oriented vertical segment in the com-
plex plane s = σ + i.t, 0 < σ ≤ 1, t ∈ [t1, t2], t1 >> 0 and its image ζ(s).
Then every loop in the image is only completed clockwise.

Proof. (1). According to theorem 3, for Re(s) > 0, the zeta function can be
expressed as

ζ(s) =
s

s− 1
− s

∫ ∞

1

{u}
u1+s

du =
s

s− 1
− s

∞∑
n=1

∫ n+1

n

{u}
u1+s

du.

Because of the mantissa {u}, the expression −
∫ n+1
n

{u}
u1+sdu describes, in-

stead of a circle, an inwards clockwise spiral as illustrated by figure 19A for
constant σ and increasing t. Locally, the clockwise bending will be there-
fore stronger than in the σ > 1 examples as the osculating circles possess
smaller radius and therefore greater clockwise curvature in the second half
of the cusp-like-shaped designs. The reverse loops are then even less imple-
mentable than previously and therefore inconceivable. Let us note that the
effect of the mantissa diminishes very rapidly and even for small values of n,
like n = 10, the spirals converges already towards almost circles (see figure
19B). Let us note also that 1

u1+σ , u ∈ [n, n+1], σ being some constant, has
here again only a scaling effect with no changing effect on the general spiral
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shape. Now, let us see the effect of the multiplier factor s on the integral
when t >> 0. Locally, as a loop is forming, and the modulus of s is varying
between s1 = σ+i.t1 and s2 = σ+i.t2, where t is in a range where a question
remains on the existence of non-trivial zeros, the relative variation of s for
the completion of the said loop is a factor quasi equal to 1. Therefore s is
only a scaling factor on the loop with no effect on its intrinsic shape, less
even so on some reversal. To finish with, the ratio s

s−1 tends towards 1 as
t >> 0 and provides only a shifting of abscissa. Therefore the lemma.

Let us observe another way to get the same result. When we shift from
σ > 1 to 0 < σ < 1, the function ζ(s), and this is more so with greater

values of t, is still well approximated by
∑L

n=1
1
ns when we choose some

appropriate finite L instead of an infinite value. The reader is given the
example of figure 20A and 20B. It is clear in these conditions that the prior
circles additions’ approach is still valid as again it is only a matter of a near
factor 1 scaling. □

Proof. (2). Refer word for word to proof 2 of lemma 14. □

Let us note that the condition t1 >> 0 in the lemma is not necessary as
one can easily check the absence of counter-clockwise loops numerically for
the contrary case.

Figure 19. Trajectories −
∫ n+1
n

{u}
u1+sdu

s = 1/2 + i.t and t ∈ [0, 20]

(a) n = 1 (b) n = 10

Note. For σ < 0.5, numerical checks display no counter-clockwise piece of
trajectory of the Riemann zeta function’s image whatsoever. For σ ≥ 0.5,
numerical checks provide only counter-clockwise pieces of trajectory devia-
tions of the tangent vectors adding up to a total value of π radians at most
preventing as said the primer example of a counter-clock loop.

5.3. The simplified context. The ”complexity” of the graphics’ designs
are due entirely to the zeros of the derivatives of the Zeta function. It is
possible however to simplify greatly the drawings by using another function.
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Figure 20. Trajectories ζ(s) and approximation
∑500

n=1
1
ns

s = σ + i.t and t ∈ [1000, 1006]

(a) σ = 1/2 (b) σ = 0

Indeed, trying to solve ζ(1/2 −∆+ i.t) = ζ(1/2 + ∆ + i.t) = 0, we may
rather start by solving χ(∆, t) = ζ(1/2−∆+ i.t)− ζ(1/2+∆+ i.t) = 0 and
then ζ(1/2 + ∆ + i.t) = 0 for example. This leads us to study χ(∆, t) in a
general way. The figures 21A to 21D are the ”cousins” of the figures 11 and
12 as we step from the ζ−function to the χ−function. These figures keep
similitudes as long as the zeros of the derivative are not reached (in the initial
figures), in particular for the extent of the rotations around their respective
”centres”. But no first derivative cancellations to be considered any more
at least apparently. Each of the graphs seems to be almost homothetic in
regard to the coordinate (0, 0) and therefore the only solution to χ(∆, t) = 0
would be ∆ = 0. The questions are then ”can we trust the obvious?” and
”where are now the zeros of the derivative hiding?”.

5.4. A mix graphic-analytic proof. Without divulging prematurely the
answers to the two previous questions, let us say that we need to deviate
from our so far choice σ = 1/2. Let us have a more general approach
by writing χ(σ,∆, t) = ζ(σ − ∆ + i.t) − ζ(σ + ∆ + i.t) and let us choose
0 ≤ ∆ ≤ 1/2 and t > 0.

Lemma 19. The function χ(σ,∆, t) is an odd function in regard to the
variable ∆.

Proof. χ(σ,−∆, t) = ζ(σ +∆ + i.t) − ζ(σ −∆+ i.t) = −(ζ(σ −∆+ i.t) −
ζ(σ +∆+ i.t)) = −χ(σ,∆, t). □

Note. This means that the function χ(σ,∆, t) is symmetrical in regard to
(0, 0). If one is interested to the solutions of χ(σ,∆, t) = 0, it is therefore
necessary and sufficient to study the function on the half line ∆ ≥ 0. Let
us note then that ∆ = 0 is an obvious solution to χ(σ,∆, t) = 0 and if it is
the only solution for arbitrary σ, it will be for σ = 1/2 meaning we are done
with the Riemann hypothesis.
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Figure 21. Trajectories
ζ(σ −∆+ i.t)− ζ(σ +∆+ i.t), σ = 1/2

(a) t ∈ [43.32707, 48.00515] (b) t ∈ [185.59878, 184.87447]

(c) t ∈ [40.91872, 43.32707] (d) t ∈ [161.18896, 163.030710]

Definition 3. Let us consider a closed circular neighbourhood of s = σ+i.t,
not reduced to a point, in the complex plane and [σmin, σmax] the range of
values of the abscissas over that neighbourhood, σmin ≤ σ ≤ σmax. The
function χ(σ,∆, t) is said to be locally well-ordered over the previous neigh-
bourhood of s if its trajectories are strictly on the same side to each other
as ∆ strictly increases over the whole range [σmin − σ, σmax − σ], σ and t
is being kept constant. One may alternatively say that the trajectories are
well-ordered (instead of the function).

Lemma 20. The function χ(σ,∆, t), t > 0, is locally well-ordered for small
enough ∆ except at the zeros of the derivative of the Zeta function. More-
over, it is a local approximate homothety in regard to ∆.

Proof. Note first that the condition t ̸= 0 secludes the Zeta function pole.
We can write then the Taylor series:

χ(σ,∆, t) = −2

n=+∞∑
n=0

∆2n+1

(2n+ 1)!
ζ(2n+1)(σ + i.t).
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Now, for some multiplicative factor r and using s = σ + i.t, we get

ρ(r, σ,∆, t) =
χ(σ, r.∆, t)

χ(σ,∆, t)
= r

ζ ′(s) + r2∆
2

6 ζ
(3)(s) + r4 ∆4

120ζ
(5)(s) + · · ·

ζ ′(s) + ∆2

6 ζ
(3)(s) + ∆4

120ζ
(5)(s) + · · ·

.

Whatever the finite given values of σ and ∆, χ(σ, r.∆, t) is finite (being off
the pole of the Zeta function). For small enough values of ∆ and supposing
ζ ′(s) ̸= 0, ρ(r, σ,∆, t) ≈ r, hence the local approximate homothety (which
means also that the function is well-ordered). □

The homothety is of course approximative. As ∆ is given larger values,
and the first terms in the numerator and denominator are no more the
leading ones, the most likely to become so are then the second terms of
the fraction, thus ρ(r, σ,∆, t) will tend towards r3. One therefore would
expect, taking this time a fixed moderate value of ∆ and varying instead t,
to get for ρ(r, σ,∆, t) values between r and r3, mostly near but superior to
r and experiencing in general peaks of height smaller than r3. Figure 22A
gives an illustration of such evolution of ρ(r, σ,∆, t) choosing σ = 1/2 and
∆ = 1/10. Except close to the origin, we see the systematic values over the
chosen homothety threshold r = 2 and the narrow peaks.
One can of course envision to have the first and second terms negligible
providing even higher ratios. Such occurrences are obviously exceptional.
Now, checking the evolution of ρ(r, σ,∆, t) in regard to σ, let us signal figure
22B in addition to figure 22A. For moderate ∆, on the left hand side of the
critical line, the expression does not vary much. It oscillates mildly above
the ratio r. Heading towards the right hand side of the critical line instead,
the ratio will start to show counterexamples to the interval [r, r3], notably
with values smaller than r. Indeed near a zero of the derivative, with an
arbitrary choice of ∆, one cannot guess in advance which of the numerator

or denominator will be larger in ρ(r,σ,∆,t)
r . However, the reader can always

choose a smaller value of ∆ to re-establish the local homothety.

Figure 22. Evolution of ||ρ(r, σ,∆, t)||2
(a) r = 2, σ = 1/2, ∆ = 1/10 (b) r = 2, σ = 0 and 1, ∆ = 1/10
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Lemma 21. A solution s to ζ(s+∆) = 0 and χ(σ,∆, t) = 0 is necessarily
a double zero of the Zeta function.

Proof. If ζ ′(s) = 0,

χ(σ,∆, t) = −2
∑n=+∞

n=1
∆2n+1

(2n+1)!ζ
(2n+1)(s)

and thus

ρ(r, σ,∆, t) = r3
∆2

6 ζ
(3)(s) + r2 ∆4

120ζ
(5)(s) + · · ·

∆2

6 ζ
(3)(s) + ∆4

120ζ
(5)(s) + · · ·

→ r3.

We may have simplified the fraction by ∆2

6 but we left it here on purpose
to show that, as ∆ tends towards 0, numerator and denominator tend also
towards 0, that is χ(σ,∆, t) → 0. The figures 23A to 23C illustrate in a
concrete way what happens in the case where we choose a sample of small
enough fixed values of ∆ and some interval [t1, t2] and we shift progressively
the parameter σ from an abscissa on the left side of a zero of the derivative
of the Zeta function up to the abscissa of the said zero and then beyond
that same zero. Here we chose the starting abscissa σ = 0.5 as we picked for
our illustration the 168th zero of the derivative characterized by its relative
proximity to the critical line. The following arguments would be the same
if we had to face a zero of the derivative with abscissa lower than 1/2 as the
knowledge of its effective value is not needed to proceed. The first picture,
figure 23A, shows the almost homothetic pattern over the whole range [t1, t2].
In the absence of a particular event, the crossing of the center (0, 0) cannot
start except if ∆ = 0. The second picture, figure 23B, which is brought
with a closer view, shows, because of the evolution towards the degree 3 of
r, an accelerated narrowing of the curves near the position corresponding to
the zero of the derivative. Still being an almost local homothety (but with
larger local ratio near the image coordinate (0,0)), no crossover of the curves
can occur on this stage. That crossover can and will only occur as σ takes
values beyond the derivative’s zero abscissa (see figure 23C). Note before
going further that this is in no way contradictory to the same sides’ pattern
cited for the Zeta function context. Effectively, the function χ(σ,∆, t) is
analytic (away from the pole of the Zeta function), but the conformal map
property does not apply here because we cannot write the function as an
expression of only one variable s (the reader may refer to the note made
next to theorem 2), but we need instead two of them s and ∆ in χ(s,∆) =
ζ(s − ∆) − ζ(s + ∆). Back to the main subject, we get the start of the
crossing of the coordinate(0,0) and the failure of the well-ordered trajectories
by χ(σ,∆, t) at the precise place where simultaneously ζ ′(s) = 0 and ∆ is
taking its limit value 0. This is equivalent to say that ζ ′(s+∆) = 0 at that
peculiar event. Now, seeking to solve the additional event ζ(s + ∆) = 0,
this means that the latest zero is necessarily a double zero. If χ(σ,∆, t) = 0,
the events ζ(s +∆) = 0, ζ ′(s +∆) = 0 are simultaneous events, hence the
lemma. □
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Figure 23. Trajectories χ(σ,∆, t),
t ∈ [415.018810, 415.455215],

ζ ′(0.55129883 + 415.247512i) ≈ 0

(a) σ = 0.5 (b) σ = 0.55129883

(c) σ = 0.56 (d) σ = 0.63

Note. If some event doesn’t exist at all, one can only simulate what would
happen if the said event would occur. Obviously it is impossible to display
it, hence ∆ → 0 necessarily in our presentation when passing to the limit.

Note. In the previous argument, we mentioned the evolution of figures 23A
to 23C with increasing σ. However, we didn’t prove that this evolution is
necessarily in that direction. We may have instead that order of drawings’
patterns with decreasing σ. Indeed, in the vicinity s where ζ ′(s) → 0, and
with r ≈ 1, we recall to have

ρ(r, σ,∆, t) = r
ζ ′(s) + r2∆

2

6 ζ
(3)(s) + · · ·

ζ ′(s) + ∆2

6 ζ
(3)(s) + · · ·

.

The local homothety ratio’s progressive evolution between r and r3 is only
true on one side of the σ0 value such that ζ ′(s0) = 0, this side being ei-
ther on the left or on the right of σ0 according to the local sign of the
ratio ζ(2k+1)(s)/ζ ′(s) where k is the smallest natural number such that
ζ(2k+1)(s0) ̸= 0. Indeed this is the result of the following calculation, where
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we use (1+ ϵ1)/(1+ ϵ2) ≈ 1+ ϵ1 − ϵ2 to evaluate the former ratio (at s ̸= s0
and small enough ∆),

ρ(r, σ,∆, t) ≈ r · (1 + (r2 − 1) ∆2k

2k+1
ζ(2k+1)(s)

ζ′(s) )

≈ r · (1 + (r2 − 1) ∆2k

2k+1(ℜ(
ζ(2k+1)(s)

ζ′(s) ) + i.ℑ( ζ
(2k+1)(s)
ζ′(s) )))

where ℜ(c) et ℑ(c) are respectively the real and imaginary parts of some
complex number c.

Hence, using ∆2k >> ∆4k (|∆| << 1) in the second equality underneath

and (1 + 2ϵ)1/2 ≈ 1 + ϵ in the third one,

||ρ(r, σ,∆, t)||2 ≈ r · {(1 + (r2 − 1) ∆2k

2k+1ℜ(
ζ(2k+1)(s)

ζ′(s) ))2

+ ((r2 − 1) ∆2k

2k+1ℑ(
ζ(2k+1)(s)

ζ′(s) ))2}
1
2

≈ r ·
√
1 + 2(r2 − 1) ∆2k

2k+1ℜ(
ζ(2k+1)(s)

ζ′(s) )

≈ r · (1 + (r2 − 1) ∆2k

2k+1ℜ(
ζ(2k+1)(s)

ζ′(s) ))

It happens that the left case (that is here ∆ > 0) seems to be always the well-
ordered side. It is at least so for the sample up to 0 < t ≤ 1000 for which we

chose to draw the figures 24A and 24B. The ratio ζ(3)(s)
ζ′(s) is not only always

positive but usually greater than 1/∆. In the studied interval, and with
the choice ∆ = 1/1000, only 1 in 100 are lower than the resulting ”1000”

threshold. Note also that ζ(3)(s0) is very likely different from 0, and therefore

the usually adapted value of k is 1 (hence we can rely on the ratio ζ(3)(s)
ζ′(s)

to conduct the calculation of a sample). In order to prove the systematic
left hand side conjecture, one would need for example a precise Weierstrass
factorisation of ζ ′(s), which would allow to get the exact expression of the

ratio ζ(2)(s)
ζ′(s) and then of ζ(3)(s)

ζ′(s) = ( ζ
(2)(s)
ζ′(s) )′ + ( ζ

(2)(s)
ζ′(s) )2 .

Of course, as σ increase further on the right side of the abscissa of the
zero of the derivative, where the homothety fails, there will be nevertheless
usually a progressive return to the near homothety of ratio r as shown in
figure 23D.

Theorem 9. The Riemann hypothesis is true.

Proof. Theorem 6 and lemma 21 are incompatible. Therefore it is impossible
to have ζ(s +∆) = 0 and χ(σ,∆, t) = 0 simultaneously if ∆ ̸= 0, therefore
ζ(s + ∆) = 0 and ζ(s − ∆) = χ(σ,∆, t) + ζ(s + ∆) = 0 in the same time.
Theorem 5 allows us then to conclude. □

Note. To be very precise, following the proof in lemma 21 and the note that
follows it, our full argumentation is not immediately equivalent to say that
ζ(s + ∆) = 0 and ζ(s − ∆) = 0 is impossible if ∆ ̸= 0, but it proves that
ζ(s+∆) = 0 and ζ(s−∆) = 0 if and only if ∆ = 0 which is definitely the
same.
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Figure 24. Evaluation rz = ℜ( ζ
(3)(s)
ζ′(s) )

(a) rz = f(σ) (b) rz = f(t)

Another approach is to consider some initial fixed σ and t values and
varying the parameter ∆. We get that way orthogonal trajectories to the
previous ones. We give then different evolving values to t, this parameter
becoming progressively t+ω. Let start our drawing at some zero of the Zeta
function derivative as illustrated by the figures 25A to 25C, which represent
the same trajectories but at various axes’ scales. At that zero of the said
derivative of Zeta, the function χ(σ,∆, t) is given by the following lines of
equalities

χ(σ,∆, t) = ζ(σ −∆+ i.t)− ζ(σ +∆+ i.t)
= ζ ′(σ + i.t)(−∆) + ζ ′′(σ + i.t)(∆2) + higher orders terms
= ζ ′′(σ + i.t)(∆2) + higher orders terms.

Because the leading term has a factor ∆2, the trajectory is a straight
line outwards and does not allow for a self-crossing of the trajectory near
that initial point (where ∆ = 0). Choosing an initial trajectory, then only
evolving continuously one parameter (the parameter t towards t + ω), the
sum of two analytic functions being an analytic function, the trajectories
do not cross each other locally, therefore forming a star plot, unless a zero
of the derivative of χ(σ,∆, t+ ω) is encountered along their spiralling path.
In the later case, one knot (self-crossing) would form and grow in size with
increasing ω (in order not to cross itself), which is absurd as it would mean
that ζ(σ −∆+ i.t) = ζ(σ +∆+ i.t) for some huge values of ∆.

Note. Instead of varying t only (with the addition of the value ω) as we did
in the figure 25, we may choose rather to vary the position of the initial end
point (at ∆ = 0) by moving to another final point using a straight line in
the complex plane domain (that is σ and ω are evolving together). We get
the exact same type of trajectories as illustrated by the figures 26. This is
a strategy, one can choose to ”link” any final point on the critical line as
the ”result” of the choice of an initial point equal to a zero of the derivative
of the Zeta function. One, of course, would choose the closest zero (of the
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Figure 25. Trajectories χ(σ,∆, t+ ω),
∆ ∈ [0, 1],

σ ≈ 0.994353167, t ≈ 324.468750, ζ ′(σ + t.i) ≈ 0.

(a) Broad view (b) Medium size view

(c) Close view

derivative of the Zeta function) to built the ”experiment”, but any other
may suit likewise. Moreover, one doesn’t have to start with a zero (of the
derivative) but at any point of the complex plane where one observes no knot
on the trajectory (when ∆ increases from 0 to ∞. It is easy to find one such
initial point anywhere in the complex plane, it means that χ(σ,∆, t) = 0 is
impossible whatever the initial choice of σ and t when ∆ increases from 0 to
∞. Note also that instead a straight line in the domain we can also choose
any smooth path). Therefore again confirming the Riemann hypothesis.

Note. One may object the property of no self-crossing at the view of the
contrary when changing only one thing in the previous ”experiment” that
is instead of having ∆ taking increasing real values, it is given imaginary
values as in figure 27. Observe that in this case the crossing occurs because,
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Figure 26. Trajectories χ(σ,∆, t),
σinitial ≈ 0.53428928, tinitial ≈ 564.3344206,

σfinal ≈ 0.5, tfinal ≈ 564,
ζ ′(σinitial + tinitial.i) ≈ 0.

(a) Broad view (b) Medium size view

(c) Close view

one cannot build an initial curve without self-crossing and therefore the
curves will alternate sides one to the other, even if we still have an analytic
function where we choose a unique parameter, the change in directions of the
trajectory corresponding to nearby zeros of the derivative of χ(σ,∆, tinitial+
ω) relative to this parameter (here precisely ω). Note also that even in this
case, one needs to get higher values for ∆ than 1/2.i to get a crossover.

6. An alternative graphical context and proof

Let us consider the trajectories of the function ϖ(s) = − ζ(s)
ζ′(s) , s = σ+ i.t

for different given values of σ within the critical upper band (t > 0). Let us
examine first the case σ = 1/2 as shown in the figures 28A and 28B. After
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Figure 27. Trajectories χ(σ,∆, t+ ec),
σinitial ≈ 0.53428928, tinitial ≈ 564.3344206,

ζ ′(σinitial + tinitial.i) ≈ 0.

(a) ∆ ∈ [0, 1/2.i] (b) ∆ ∈ [0, 4.i]

an initial catch-up with the first zero of the Zeta function, the trajectory is
trending towards circle-like paths with diminishing radii. As shown in the
figure with index B, the almost circular paths are already reached as soon
as the ordinate t = 100, the trajectories Ci being those of the studied curves
and C ′

i being those of the curves r(1 + cos(2π(t− 1
2)) + i. sin(2π(t− 1

2))). It
shows therefore a much more regular picture than the traditional analogous
trajectories delivered by the Zeta function with its constant return to the
coordinate (0, 0) when σ = 1/2 but various erratic in-between distances to
that locus (remember figure 1). Such novel regularity speaks by itself in
favour of the Riemann hypothesis.
Let us however go in deeper considerations, first by pointing at the origin
of the almost circular shapes.

Theorem 10. The ratio of the Zeta derivative to the Zeta function is pro-
vided by the exact formula

ζ ′(s)

ζ(s)
= ln 2π − 1

2
γ − 1− 1

s− 1
− 1

2

Γ′(12s+ 1)

Γ(12s+ 1)
+
∑
ρ

(
1

s− ρ
+

1

ρ
)

where Γ is the well-known gamma function, γ = −Γ′(1)
Γ(1) is the Euler-Mascheroni

constant and ρ are the non-trivial zeros of the Zeta function.

Proof. This theorem is an immediate result of the Hadamard product for
the Zeta function [11]. □

As t increases, 1
s−1 tends towards 0, while

Γ′( 1
2
(σ+i.t)+1)

Γ( 1
2
(σ+i.t)+1)

− Γ′( 1
2
(σ+t)+1)

Γ( 1
2
(σ+t)+1)

,

where we substitute willfully the imaginary ordinate i.t with the real value t,
is heading towards π

2 i− (1+ i)1+σ
t as numerical checks indicate easily. Now,
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for a natural number n, the Digamma function ψ(n) = Γ′(n)
Γ(n) , according to

reference [12], is equal to ψ(1) + Hn−1 where H is the harmonic function
(Hn =

∑n
1

1
n), so that for large enough t, we get

Γ′(12s+ 1)

Γ(12s+ 1)
≈ π

2
i− (1 + i)

1 + σ

t
+ ψ(1) +H⌊(t+σ)/2⌋

=
π

2
i+ ψ(1) +H⌊(t+σ)/2⌋ + o(

1

t
).

Therefore, for t >> 100,

ζ ′(s)

ζ(s)
= ln 2π − 1− 1

2
H⌊(t+σ)/2⌋ −

π

4
i+

∑
ρ

(
1

s− ρ
+

1

ρ
) + o(

1

t
)

This shows that there is no diverging contribution to ζ′(s)
ζ(s) when s tends

towards ρ except the term 1
s−ρ . Hence, when s tends towards ρ− from

beneath values of t, ζ′(s)
ζ(s) will diverge towards−i.∞ and when s tends towards

ρ+ from above, ζ′(s)
ζ(s) will diverge towards +i.∞ in a systematic way. Some

zero ρi and its successor ρi+1 are extremely narrow values compared to ∞
and therefore ζ′

ζ (s), in that interval, is analogous to an almost vertical line

in the complex plane. Then, let us introduce the following lemma.

Lemma 22. The multiplicative inverse of a vertical line in the complex
plane is a circle.

Proof. Let us consider the line 1 + i. tan(u) where u ∈]− π
2 ,

π
2 [ and which is

the vertical line passing through (1, 0) which trajectory is described exactly
one time as the interval ]−∞.i,∞.i[.

Then 1
1+i. tan(u) =

1−i. tan(u)
1+(tan(u))2

= cos2(u)(1−i. tan(u)) = cos2(u)−i. sin(u) cos(u)

= 2 cos2(u)−i.2 sin(u) cos(u)
2 = cos2(u)+1−sin2(u)−i.2 sin(u) cos(u)

2 = (1+cos(2u)+i. sin(2u))
2

which is the circle of center (1/2, 0) and diameter 1/2 in the complex plane.
Its trajectory is described exactly one time except the point (0, 0) which
may be included by continuity.
Therefore the reciprocal of the vertical line 2

r (1 + i. tan(π(t − 1
2))), where

r is some strictly positive real number and t ∈ [0, 1[, is precisely the circle
r(1 + cos(2π(t− 1

2)) + i. sin(2π(t− 1
2))).

Here, while r decreases, the vertical lines are shifted to the right and their re-
ciprocal inverses are circles inside each other with common coordinate (0, 0)
and centre on the real axis. □

The corresponding opposite multiplicative inverse − ζ
ζ′ (s) of the previous

ratio ζ′(s)
ζ(s) will therefore exhibit, according to lemma 22, between two zeros,

more accurate circular trajectory as t is given progressively higher values.
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Moreover, the initial vertical lines shift always in the same direction (in-
creasing t) and therefore the circles i+1 are systematically inscribed in the
circles i (with common coordinate (0, 0)).

Figure 28. Trajectory of ϖ(s) = − ζ(s)
ζ′(s) , σ = 1/2.

(a)
t ∈ [0, 100]

(b)
C1: t ∈ [101.318, 103.726], C’1: r ≈ 0.358

C2: t ∈ [1001.349, 1002.404], C’2: r ≈ 0.197
C3: t ∈ [10000.065, 10000.651], C’3: r ≈ 0.136

C4: t ∈ [100000.744, 100001.181], C’4: r ≈ 0.103

Lemma 23. The function ϖ(s) trajectory in the complex plane, for σ = 1/2
and t > 0 is composed of inscribed circles, with common coordinate (0, 0), if
and only if there are no zeros of ζ ′(s) on the critical line.

Proof. This is an immediate result from the ending argument at the previous

section as we can reverse obviously the initial equation ζ′(s)
ζ(s) if and only if

ζ ′(s) ̸= 0. □

We have proven that there are no double zeros of the Zeta function.
Therefore the remaining problematic cases s, focusing only on the critical
line, are isolate coordinates 1/2+ i.t such that ζ(1/2+ i.t) ̸= 0 and ζ ′(1/2+
i.t) = 0.

Lemma 24. The function ϖ(s) trajectories in the complex plane, for σ <
1/2 and t > 0, remain on the same side one to each other as σ decreases to
abscissa 0.

Proof. The function ϖ(s), as the ratio of two analytic functions, is analytic
everywhere except where its denominator, here ζ ′(s), cancels. The function
is therefore a local bijection, according to theorem 2, that is with no-crossing
trajectories. A single numerical check will tell the side where all the other
respective oriented trajectories will be located. Where ζ ′(s) cancels, is the
place where the curves get the closest to each other without touching however
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(as zeros of none constant analytic functions are isolated in any reference
frame). □

The figures 30A to 30B illustrate the trajectories of ϖ(s) for different
pieces of vertical lines t which are ordinates between two zeros of ζ(s). We
chose equidistant segments on the domain critical band and some additional
abscissa when relevant. We get again two types of configurations (as it was
the case in figures 11 and 12), linked to the same reason that is, the cancel-
lation or not of the derivative (here ϖ′(s)). But there is often an additional
type of event which corresponds to the case where ζ ′(s) = 0 leading then
to the divergence of ϖ(s). Unlike that picture in figure 12D in which the
evolution with increasing σ may seem to have a chance in some other even
”luckier” instance to return to (0, 0) (which is not the case as the actual at-
tractor is the coordinate (1, 0)), here the successive paths will head towards
always smaller inner designs heading to the center of the ”initial” circle (the
one for σ = 1/2) and distancing irremediably away from the original coor-
dinate (0, 0).

Let us note also that the presence of a derivative in the section is not
detrimental to the argument as it has the effect to shorten faster the length
of the pieces of trajectories. In addition to that remark, it is pertinent also
to note the effect of larger t in a faster shrinking of the trajectories with
equal increase of σ, remembering here that there has being established the
absence of non-trivial zeros outside the critical line at least up to t ≈ 1020.

Figure 29. Trajectory of ϖ(s).

(a)
t ∈ [32.9351, 37.5862]

(b)
t ∈ [375.8259, 376.3241]

Theorem 11. The Riemann hypothesis is true.

Proof. From lemma 24, it results that all the trajectories of the function
ϖ(s) are strictly within the area delimited by ϖ(1/2 + i.t), after t ordinate
reaches the first zero of the Zeta function, therefore no intersection with



TWO PROPERTIES OF THE RIEMANN ZETA FUNCTION ZEROS 49

Figure 30. Trajectory of ϖ(s).

(a)
t ∈ [32.9351, 37.5862]

(b)
t ∈ [375.8259, 376.3241]

the coordinate (0, 0) is possible. Hence, no intersection with its numerator
ζ(s) is neither practicable. This is so as long as ζ ′(s) ̸= 0 as we emphasized
in lemma 23. But, if not so, ϖ(1/2 + i.t) is diverging on the left and on
the right side of σ = 1/2 designing some kind of approximative line when
seen from some distance. We know that the multiplicative inverse of that
kind of feature resembles a circle or at least a closed loop according to
lemma 22, where in fact we started with a straight line 1/2 + i.t, hence a
contradiction. □

7. The partial cancellations’ network

The sinusoidal feature, embedded in the Zeta function away from the
critical band, allows the pairings of the partial and total cancellations sets.
The existence of the pairings, by itself, is tempting for confirming the Rie-
mann hypothesis as additional zeros outside the critical line would create
necessarily havoc in these associations. In this section, we will take some
distance from the critical line, to examine the network Re(ζ(s)) = 0 (or
Im(ζ(s)) = 0) and its ”well-behaviour” which any exception to the Rie-
mann hypothesis would have certainly disturb a lot.

We will adopt in this section the convention s = α + i.β in order to
construct another reference where s is also expressed as a function of a and
b and navigate between the two points of view.

The point here is to discover a regularity in the intersections of the Zeta
function with the real axis which would likely not exist in the case of non-
trivial zeros outside the critical line.

7.1. Covering the left half critical band. In order to examine the entire
0 < α < 1/2 domain, we consider the set of circles of radius 1/4 + a and
centre (1/4−a, 0), where a ∈ ]−1/4,∞[. All of these circles are tangent to
point (1/2, 0) on the left side, and continuously increasing a, one will cover
the entire targeted area (and more).
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The parametrized equation of each of these circles, a being fixed, is then
given in complex representation by:

1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt))

where t describes a 1-length interval, for example:

−1/2 < t ⩽ 1/2

For t = 0, we get 1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)) = 1/2 + 0.i.
For t = ±1/2, we get 1/4−a+(a+1/4).(cos(2πt)+ i. sin(2πt)) = −2a+0.i.

If we wish to reduce the points of the initial domain to 0 < α < 1/2, it suf-
fices to restrict the previous domain of t to 0 < 1/4−a+(a+1/4). cos(2πt) <
1/2, that is

−acos((a− 1/4)/(a+ 1/4))/2π < t < 0

to which we may add the symmetric with respect to the α-axis. Doing so,
we get for example the mapping from figure 31a to figure 31b (the left figure
being a piece of a circle).

(a) Initial domain : a = 500,
−0.044714 < 2πt < 0.044714

(b) Image by ζ : ζ(1/4− a+ (a+
1/4).(cos(2πt) + i. sin(2πt)))

Figure 31

However, due to considerations appearing in the context of this article
later on, it is quite more appropriate to take into account the whole domain
−1/2 < t ⩽ 1/2 (or 0 ⩽ t ⩽ 1/2) rather than the above restriction.

Hence, the domains of definition are an infinite set of circles inscribed in
each other. In figure 32, we provide a sample where parameter a takes integer
values between 0 and 8, the intermediate circles not being represented. The
left half critical band is situated on the right side of that figure.

One can then choose to navigate from one set of coordinates (a, t) to the
other set (α, β):

α = 1/4− a+ (a+ 1/4). cos(2πt)
β = (a+ 1/4). sin(2πt)

(1)
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Figure 32.
Domain of definition :
a = 0 to a = 8, a ∈ N

or from the set of coordinates (α, β) to the other set (a, t), using the value
of parameter a found in the first expression for the second one underneath:

a = 1
2
(1/4−α)2+(β−1/4)(β+1/4)

1/2−α

t = 1
2πasin(

β
a+1/4) =

1
2πasin(2(

1
2 − α) β

(1/2−α)2+β2 )
(2)

Note that if in this case α = 1/2 then a is undefined and t = 0.

7.2. Axis intersections. A typical example of the domains and codomains
of the previously mentioned circles, choosing a = 12, gives the mapping from
figure 33a to figure 33b.

(a) Domain : circle
1/4−a+(a+1/4).(cos(2πt)+i. sin(2πt)),

a = 12, −1/2 < t ⩽ 1/2

(b) Codomain by ζ :
ζ(1/4− a+ (a+ 1/4).(cos(2πt) +

i. sin(2πt)))

Figure 33

The symmetry, in respect with the y = 0 axis, of the initial circle, due to
the functional equation, implies the symmetry of the image versus the same
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axis. Making the choice to take only positive values as an initial domain,
the transformation from domain to codomain is as illustrated in figure 34a
and figure 34b.

(a) Domain : circle
1/4−a+(a+1/4).(cos(2πt)+i. sin(2πt)),

a = 12, 0 ⩽ t ⩽ 1/2

(b) Codomain by ζ :
ζ(1/4− a+ (a+ 1/4).(cos(2πt) +

i. sin(2πt)))

Figure 34

Let us consider then the codomain figures. We are going to collect some
data on the set of intersections with the x = 0 and y = 0 axis.

Proposition 1. The number of intersections #I with the x-axis is equal to
a over the domain 0 ⩽ t < 1/2, for any value of a equal to a strictly positive
integer. For a = 0, the number of intersections is equal to 1.

#I = a if a ∈ N∗

#I = 1 if a = 0

The underneath additional note is a direct consequence of the previous
proposition. We provide it in order to make easier the reading (and checking)
of the various graphics using sometimes −π < t ⩽ π and sometimes 0 ⩽ t <
π as domains of definition.

Note. The number of intersections, distinct or not, #I1 with the x-axis is
equal to 2a over the domain −1/2 < t ⩽ 1/2 for any value of a equal to a
strictly positive integer. The number of distinct intersections #I2 with the
x-axis over the same domain is equal to a+ 1 for any value of a equal to a
strictly positive integer.

#I1 = 2a, #I2 = a+ 1, a ∈ N∗

Besides for a = 0, we get

#I1 = 2 and #I2 = 2

Proposition 2. The intersections with the y-axis are all distinct. The
number of intersections #I with the y-axis is equal to a over the domain
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0 ⩽ t ⩽ 1/2 for any value of a = n+ ϵ, where n ∈ N and 0 < ϵ < 1, N the
natural numbers including 0.

#I = n \a = n+ ϵ, 0 < ϵ < 1

Note. If a ∈ N , there are a few cases a < 3 to distinguish from the general
result:

#I = 0 if a = 0

#I = 2 if a = 1
#I = 3 if a = 2
#I = a if a ∈ N ∩ a ≥ 3

Note. The number of intersections (all distinct) #I1 with the y-axis is equal
to 2n over the domain −1/2 < t ⩽ 1/2 for any value of a = n + ϵ, where
n ∈ N and 0 < ϵ < 1. The number of intersections #I2 with the y-axis over
the same domain is equal to 2a − 1 for any value of a equal to a strictly
positive integer except for a = 0 (#I2 = 0) and a = 1 (#I2 = 3).

#I1 = 2n if a = n+ ϵ, 0 < ϵ < 1

#I2 = 0 if a = 0
#I2 = 3 if a = 1
#I2 = 2a− 1 if a ∈ N − {0, 1}

Proposition 3. The value of the mantissa of a, for which an increase of
the number of intersections #I with the x-axis occurs, is strictly increasing
and bounded by 1 excluded when a tends towards infinity.

mantissa(a) = a− ⌊a⌋ → 1−, a→ +∞,#I → #I + 1

Proposition 4. The approximate interpolation of the value of the mantissa,
linked to the intersections’ cardinal #I increase, is given by:

mantissa(a) = 1− 0.615(a+ 0.5)−0.33 (3)

The corresponding data are given in table 3 and figure 35.

Note. To be precise, the depiction of the mantissa is not a continuous func-
tion as it takes actual values only when the number of intersections #I with
the x-axis increases.

Note. The presence of a non-trivial zero would cause havoc to a rule of
thumb for the number of intersections and to the previous mantissa formula’s
smooth match.

Proposition 5. Similarly, but in a much simpler way as for the x-axis, the
number of intersections #I with the y-axis increases with the value of a each
time parameter a reaches an integer value, that is each time the mantissa of
a cancels:

mantissa(a) = 0 (4)
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Table 3. Mantissa values

n a mantissa approx n a mantissa approx
1 1.358632 0.358632 0.353276 20 20.780205 0.780205 0.772207
2 2.468381 0.468381 0.508165 30 30.808699 0.808699 0.800493
3 3.537299 0.537299 0.573760 40 40.825408 0.825408 0.818434
4 4.585247 0.585247 0.613479 50 50.836720 0.836720 0.831246
5 5.620606 0.620606 0.641244 60 60.845044 0.845044 0.841050
6 6.647788 0.647788 0.662248 70 70.851511 0.851511 0.848896
7 7.669365 0.669365 0.678955 80 80.856731 0.856731 0.855384
8 8.686942 0.686942 0.692712 90 90.861066 0.861066 0.860876
9 9.701567 0.701567 0.704334 100 100.864746 0.864746 0.865614
10 10.713951 0.713951 0.714345 110 110.867923 0.867923 0.869762
15 15.755717 0.755717 0.749768 120 120.870705 0.870705 0.873438

Figure 35. Mantissa of a matching an increase of the
number of intersections #I.

Note. The triviality of the mantissa of a, guiding the increase of the number
of intersections with the y-axis, is a mirror indicator of some expected ”triv-
iality” of the mantissa a relative to the x-axis, this latter triviality being the
smooth evolution shown in figure 35. Therefore, we get again a reminder
that non-trivial zeros outside s = 1/2 are not relevant.

In the rest of this article, we will focus on the x-axis intersections. Let
us however note the existence of the same kind of pattern for the y-axis
intersections.

Proposition 6. Let us have the explicit function of two variables ζ(a, t) =
ζ(1/4 − a + (a + 1/4).(cos(2πt) + i. sin(2πt))). We consider the implicit
application t(a) such as Im(ζ(a, t)) = 0. It defines a network of continuous
values t of the variable a with an additional curve for each incrementation
of #I, #I being the term defined in proposition 1.



TWO PROPERTIES OF THE RIEMANN ZETA FUNCTION ZEROS 55

Table 4. Sample of values u = 2πt(a)

a 1 2 3 4 5 6 7 8 9
S0 0 0 0 0 0 0 0 0 0
S1 π 0.4567π 0.3064π 0.2350π 0.1916π 0.1621π 0.1407π 0.1244π 0.1115π
S2 π 0.7124π 0.5769π 0.5117π 0.4749π 0.4545π 0.4454π 0.4449π
S3 π 0.8202π 0.7033π 0.6446π 0.6099π 0.5886π 0.5757π
S4 π 0.8766π 0.7751π 0.7208π 0.6865π 0.6637π
S5 π 0.9096π 0.8216π 0.7713π 0.7380π
S6 π 0.9306π 0.8538π 0.8074π
S7 π 0.9446π 0.8773π
S8 π 0.9545π
S9 π

Table 5. Sample of values u = 2πt(a)

a 6 6.2 6.4 6.6 6.647788 6.8 7
S0 0 0 0 0 0 0 0
S1 0.1621π 0.1573π 0.1528π 0.1485π 0.1476π 0.1445π 0.1407π
S2 0.4749π 0.4697π 0.4651π 0.4610π 0.4602π 0.4575π 0.4545π
S3 0.6446π 0.6363π 0.6287π 0.6218π 0.6203π 0.6156π 0.6099π
S4 0.7751π 0.7619π 0.7501π 0.7393π 0.7369π 0.7296π 0.7208π
S5 0.9096π 0.8864π 0.8669π 0.8499π 0.8461π 0.8349π 0.8216π
S6 π π π π π 0.9556π 0.9306π
S7 π π π

The data t(a), for a sample of integer values of a, are given in table 4.
Each line corresponds to an additional curve.

Following the curves’ trajectories imposed by keeping Im(ζ(1/4−a+(a+
1/4).(cos(2πt) + i. sin(2πt)))) = 0, we get the intermediary values of table 5
for a between 6 and 7, the reader will note the beginning of a new junction
for the mantissa approximative value 6.647788 (as previously mentioned in
table 3). The ordinate t = 1/2 (written twice therefore) splits here into two
values as the abscissa a increases.

The corresponding graphic representation is given by figure 36.
These are the curves which prolongation is linked to the trivial zeros of

the Zeta function. One can observe a void between the first of the curve
(excluding S0 the trivial t = 0 line) and the other ones. The reason of
this empty space is that it’s not the full picture which one is given in figure
37. There, we have been completing it by the curves aiming at the non-
trivial zeros and the partial zeros, something one could check with a careful
tracking.

Note. The Zeta function is a smooth expression. With Occam’s razor prin-
ciple, it is difficult to imagine, in the initial

∑ 1
ns , what would change the
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Figure 36. Network of curves t(a) such that
Im(ζ(1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)))) = 0

Figure 37. Network of curves t(a) such that
Im(ζ(1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)))) = 0

regular evolution of the network of curves shown in figure 37 on its way to
infinity (a increasing). Of course, any non-trivial zero, outside Re(s) = 1/2,
would create quite some havoc in this pattern.

Note. One can also represent the network of curves Im(ζ(1/4 − a + (a +
1/4).(cos(2πt) + i. sin(2πt)))) = 0 within the system of coordinates (α, β)
where α and β is defined by the equations labelled (1). The corresponding
network is displayed in figure 38. This representation is however less ap-
pealing as the two patterns intermingle with confusing intersections while
figure 37 allows to avoid that kind of phenomena. The diagonal pattern
corresponds to the curves heading to the trivial zeros, the ”partially hori-
zontal” pattern heading towards the non-trivial zeros and their pairings in
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an totally ordered manner. One can trace the link from one figure to the
another by the corresponding colors of the curves.

Figure 38. Network of curves (α, β) such that
Im(ζ(1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)))) = 0
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