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Number Theory / Théorie des nombres 

 

Asymptotic diophantian counting. 

Hypervolumes method. Summarized version. 
 

Hubert Schaetzel 
 

Abstract  We develop a method to get enumeration of diophantine equations asymptotic solutions that we call hyper-

volumes method by analogy to the famous Hardy-Littlewood circle method. The estimates are based on 

integral calculus of volumes associated with a corrective evaluation on the surface of the volumes with an 

“asymptotic sieve”. Matrices with remarkable properties are produced, which are an essential contribution of 

our study. Their usefulness is obvious with recurring terms like Waring sums without limitation to these 

cases. 

 

 Dénombrements asymptotiques d’équations diophantines. 

 Méthode des hypervolumes. Version courte. 

 

Résumé  Nous développons une méthode de dénombrement des solutions d’équations diophantines à branches 

asymptotiques dite des hypervolumes par analogie à la célèbre méthode du cercle de Hardy-Littlewood. Elle 

repose sur le calcul de volumes par intégrations multiples associé à des corrections en surface des volumes 

par un « crible asymptotique ». Les matrices mises en œuvre pour le calcul de ces corrections ont des 

propriétés remarquables et sont une contribution essentielle de notre étude. Leur utilité est manifeste en 

abordant aussi bien des équations à termes récurrents, telles les sommes de Waring, que d’autres à termes 

non récurrents.  
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1. Preamble 
 

Let us have a diophantine equation whose number of solutions diverges : 

 

 R(xi, yj, zk…) = c         (1) 

 

The number c is here a constant factor that we call the target and xi, yj, zk… are variables, describing either all natural 

integer numbers (incidentally all relative numbers), or prime numbers (incidentally of the two signs). We seek the number 

of n-uplets (xi, yj, zk…) in the form of a mathematical formula. Usually (formulas of De Polignac, of Vinogradov, of Hardy 

- Littlewood, ...), this type of formulas resembles a product involving the previous variables with assigned integer or 

fractional exponents, the logarithms of these same variables with appropriate exponents and a constant based on an Euler 

infinite product [2]. Specifically, to solve (and therefore enumerate) R(xi, yj, zk…) = c is equivalent to solve (and therefore 

enumerate) : 

R(xi, yj, zk…) = c mod 2k2.3k3…pi
ki…       (2) 

 

Here, pi describes the set of prime numbers, and the ki tend towards infinity.   

We will note in this text the number of solutions by the cardinal sign : 

 

#(xi, yj, zk…)                   (3) 

 

From the chinese theorem, it follows immediately : 

 

#{(x, y, z …) / R(x, y, z…) = c modulo 2i2.3i3 … pk
ik} =  ∏ #{(x, y, z…) / R(x, y, z…) = c modulo pm

im}       (4) 

 m = 2 to k 

 

This relationship is the basis of what follows. To use it, we will specify how to pass from #{(x, y, z…) / R(x, y, z…) = c 

modulo p} to #{(x, y, z…) / R(x, y, z…) = c modulo pδ}. Then we make tend δ towards infinity if necessary. Meanwhile, 

we will ensure normalizing (the meaning of the word is given underneath) of the expressions.  

In practice, it suffices to form multidimensional arrays whose axis are the values of x, y, z... respectively and collect the 

number of occurrences of given c according to the R(x, y, z…) = c mod pδ formula. For given c, the collected number is 

called the (non-normalized) abundance factor at step p. At c, the enumeration from m = 2 to k is proportional to the product 

of these factors and the searched proportions are obtained when k tends towards infinity. 

Subsequently, we will call p the sequence and g will appoint one (among other) primitive root of the prime number p. 

 

2. Asymptotic representatives 
 

Asymptotic representatives are the axis of the above mentioned multidimensional arrays. The asymptotic representative  of 

the variable z is written simply {{z}}. This is an equivalent of z, in the asymptotic enumeration framework, obtained by 

enumerating all relevant modulo classes of x, y.... If the variable is a variable concerning integers, the modulo pδ 

representative is trivially the series of integers 0, 1, 2,..., pδ-1 (with a weighting of 1 for each of these numbers). When the 

variable represents the prime numbers, the equivalent is more difficult to clarify. Thus, let us have the table : 

 
p \ yj 0 1 2 3 4 5 6 7 8 9 10 11 … ∞ 

2 ε0 1-ε1 ε 1 ε2 1 ε 1 ε3 1 ε 1 … … 

3 ε0 1-ε1 1 ε 1 1 ε 1 1 ε2 1 1 … … 

5 ε0 1-ε1 1 1 1 ε 1 1 1 1 ε 1 … … 

7 ε0 1-ε1 1 1 1 1 1 ε 1 1 1 1 … … 

11 ε0 1-ε1 1 1 1 1 1 1 1 1 1 ε … … 

… … … … … … … … … … … … … … … 

p ε0 1-ε1 1 1 1 1 1 1 1 1 1 1 … … 
               

Π ε0
t (1-ε1)t ε ε ε2 ε ε2 ε ε3 ε2 ε2 ε … … 

Π/ε ε0
t/ε (1-ε1)t/ε 1 1 ε 1 ε 1 ε2 ε ε 1 … … 

 

We can choose ε0 , ε1 , ε as infinitesimals such as ε, ε0
t/ε, (1-ε1)t/ε simultaneously tend to 0. So we actually find all of the 

searched prime numbers (weighting 1 for prime numbers  and 0 otherwise). Hence, the asymptotic representatives table, φ 

being the Euler function : 

 

Variable of integers {{x}} p^δ = [0,1,2,…,pδ-1] 

Variable of prime numbers {{y}}p^δ = [g0,g1,g2,…,gφ(p^δ)-1] 

 

The use of a primitive root allows, in a very simple way, to push aside the multiples of p which is necessary to forge the 

representative of a variable of prime numbers at the sequence p.  

Then, more simply modulo p, the asymptotic representative is written as :  
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Variable of integers {{x}}p = [0,1,2,…,p-1] 

Variable of prime numbers {{y}}p = [1,2,…,p-1] 

 

An alternative entry is to also represent weights : 

 

{{x}}p ≡ 
0 1 2 … p-1  
1 1 1 … 1  

 

{{y}}p ≡ 
1 2 3 … p-1  
1 1 1 … 1  

 

These weightings are going to grow with the introduction of a new variable by crossing with the old ones. The way to avoid 

this increase of the weightings is to give a global unit weight to additional representatives (two or more variables). Thus : 

 

{{xi
*}}p ≡ 

0 1 2 … p-1  

1/p 1/p 1/p 1/p 1/p (so that ∑ = 1) 

 

{{yi
*}}p ≡ 

1 2 3 … p-1  

1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) (so that ∑ = 1) 

 

This operation, called normalization, extends without difficulty modulo pδ.   
 

- for a variable of integers, obtained cardinal must be divided by pδ at sequence p 

- for a variable of prime numbers, obtained cardinal must be divided by pδ-1(p-1) at sequence p  

 

These ratios apply for each variable input : k variables of integers → ratio 1/(pδ)k, m variables of prime numbers → ratio 

1/(pδ.(p-1))m. To restore the sum to pi
δ, it is necessary and sufficient to carry out a final multiplication of the ratios by pδ 

Hence the rules : 
 

k variables of integers   → ratio 1/(pδ)(k-1) 

m variables of prime numbers → ratio pδ/((pδ-1(p-1))m) 

k variables of integers and m variables of prime numbers → ratio 1/(pδ)(k-1)/((pδ-1(p-1))m) 

  

In these conditions, the average weighting of all the targets c in the interval ]-∞,+∞[ is equal to 1. This remains so if one 

chooses an interval ]-∞,a] or [a,+∞[. We get then the normalized abundance factor of target c using these ratios : 

 

                                                                        fan(c,p) = #(c).r                       (5) 

and 

fan(c) =  ∏ fan(c,p)              (6) 

  p = 2 to +∞  

 

The establishment of these factors are thus based on arithmetic considerations with a passage to the limit (required within 

asymptotic census and compatible with it at the same time). The use of this method gives immediately asymptotic 

proportions between different targets. 

 

3. Monomial study  
 

The monomials xn are the elementary bricks of a diophantine equation. Their asymptotic behaviour supports all the rest. 

The equation xn = c, for finite given c, is not an equation with asymptotic character, but we can extract results of it that 

fully serve when new variables and operations are added to this basic structure. 

 

3.1. Solutions of the modulo pδ equation  

 

Case p odd 

 

Let us have xn = c mod pδ, p an odd prime number. Let us have di = (n,Ф(δ-i)) where Ф(δ-i) = pδ-i-1.(p-1) and δn = int((δ-

1)/n) the integer part of (δ-1)/n. We can draw the following table : 
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row x xn = c mod pδ #{c} 

δn+1 0 

pδ-1.{g0, g1, … , gΦ(1)-1} 

pδ-2.{g0, g1, … , gΦ(2)-1} 

… 

pδn+1.{g0, g1, … , gΦ(δ-(δn+1))-1} 

0 pδ-δn-1 

δn pδn.{g0, g1, … , gΦ(δ-δn)-1} pδn.n.{g0.d[δn.n], g1.d[δn.n], … , g(Φ(δ-δn.n)/d[δn.n]-1).d[δn.n]} dδn.n.pδn.(n-1) 

… … … … 

i pi.{g0, g1, … , gΦ(δ-i)-1} pi.n.{g0.d[i.n], g1.d[i.n], … , g(Φ(δ-i.n)/d[i.n]-1).d[i.n]} di.n.pi.(n-1) 

… …  … 

1 p1.{g0, g1, … , gΦ(δ-1)-1} pn.{g0.d[n], g1.d[n], … , g(Φ(δ-n)/d[n]-1).d[n]} dn.p(n-1) 

0 p0.{g0, g1, … , gΦ(δ)-1} p0.{g0.d[0], g1.d[0], … , g(Φ(δ)/d[0]-1).d[0]} d0 

 

We can check by simple substitution in the modulo equation that the proposed solutions are correct and verify that we have 

all of the solutions by a simple enumeration. We have adopted above the writing convention vi or v[i] which means vi 

integer values vary between 0 and Φ(δ-i)/di-1 where di = (n, Φ(δ-i)). Thus, equation xn = c mod pδ admits di.n.pi.(n-1) solutions 

for c likewise pi.n.gi.d[i.n] and i ≤ δn, admits pδ-δn-1 solutions for c = 0, otherwise there is no solution. 

This general case simplifies if n has no p factor : 

p ∤ n         (7) 

Then : 

di = (n,Ф(δ-i)) = (n,pδ-1-i.(p-1)) = (n,p-1) = d0  = d        (8) 

So that : 

{g0.n, g1.n, g2.n, …, g(Φ(δ-j)-1).n} ≡ 

Ud.(p^j.(n-1))  times {g0.d, g1.d, g2.d, …, g(Φ(δ-j.n)/d-1).d} mod pδ-j.n 

 

                   (9)  

Finally : 

#{pδ} = #{0}  pδ-δn-1  

#{pδn.n.g0}  d.pδn.(n-1)  

#{pδn.n.g1}  0  

…  …  

#{pδn.n.gd-1}  0  

...  …  

#{pj.n.g0}  d.pj.(n-1)  

#{pj.n.g1} = 0           (10) 

…  …  

#{pj.n.gd-1}  0  

…  …  

#{p0.g0}  d = #{1}  

#{p0.g1}  0  

…  …  

#{p0.gd-1}  0  

 

For each of the lines, it is assumed that the cardinal of pj.n.gi is also that of pj.n.gi.gu.d.  

Let us note that if d = 1, then the d-1 exponent is 0 and rows corresponding to the cardinals #{pj.n.g1.gv[j.n].d[j.n]} to #{pj.n.gd[j.n]-

1.gv[j.n].d[j.n]} do not exist. We have then #{pj.n.g0} = #{pj.n.g1} = … = #{pj.n.gu(j.n)-1} = pj.(n-1). 

 

Case p even (p=2) 

 

Here, there is no primitive root but we can take the generating couple (5, -5).  

Let us have di = (n,Ф(δ-i)/2) where Ф(δ-i) = 2δ-i-1 and δn = int((δ-1)/n). We can draw again the table of residues cardinals as 

in the case of odd sequences. This detail is however providing nothing substantial to the article. We therefore restrict us to 

the following : 
 

Equation xn = c mod 2δ admits di.n.2i.(n-1) solutions for c likewise 2i.n.5i.d[i.n] and i ≤ δn, admits 2δ-δn-1 solutions for c = 0, admits 

2δ-δn-1 solutions for c = 2δn.n, otherwise there is no solution.  

If dj.n = 1, we have : 

2 ∤ n         (11) 

 

Let us note then #{1} the cardinal of the solutions of xn = 1 mod 2δ : 

 

#{1} = #{x / xn = 1 mod 2δ, x = 0,1, …, 2δ-1}       (12) 

 

Let us have c a residue mod 2δ and m the multiplicity of 2 in n. We then have the following summary table (the column x 

values can be verified by substitution in xn = c mod 2δ) : 
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x conditions on k, i et n c #{c} #{kinds of c} 

2δn.(2k) k = 0, 1, …, 2δ-δn-1-1 0 2δ-δn-1 1 

2δn.(1+2k) k = 0, 1, …, 2δ-δn-1-1 2δn.n 2δ-δn-1 1 

2i.(1+2.(#{1}).k)1/n 

+2δ-i.(.n-1)/(#{1})k’ 

k = 0, 1, …, 2δ-1-i.n/(#{1})-1 

i = 0 à δn-1 

k’ = 0 à 2i.(n-1).(#{1})-1 

2i.n (1+2.#{1}.k) 

 

2i.(n-1).(#{1}) 2δ-1-i.n/(#{1}) 

 

Then forming the sum ∑ #{c}.#{kinds of c}, we find it equal to 2δ, which proves that all solutions are described. The 

particularity of the case p = 2 shows at the second row of data in the preceding table (#{2δn.n} = 2δ-δn-1) which does not exist 

in the case p is odd. 
 

In summary, said in a slightly different way as above, equation xn = c mod 2δ admits 2i.(n-1).(#{1}) solutions for c different 

from 0 and 2δn.n, admits 2δ-δn-1 solutions for c = 0 and c = 2δn.n, otherwise there is no solution 

 

3.2. Matrix formatting 

 

3.2.1. Case of variables of integers modulo p 

 

Let us solve :  

x1
n+x2

n+…+xk
n = c mod p         (13) 

 

Each variable of integers xi
n is replaced by its representative [0n, 1n, 2n, …, (p-1)n]. Thus we get a table of k dimensions and 

size p along each axis. The elements of this array are obtained by modulo p sums according to operators +. One should 

count the number of occurrences of each number between 0 and p-1 in the table.  
 

First, we deal with the peculiar case p = 2. This is equivalent to form multidimensional tables with a generator {0,1} on 

each axis. The reader will easily check that we obtain : 

 

#{0} = 2k-1    et    #{1} = 2k-1    if   p = 2    (14) 

 

For p ≠ 2, again forming a table with k dimensions, we observe the limited number of distinct cardinals. Different values 

are no more than d+1 where d = (n, p-1). To achieve this result, we count first the residues of xn mod p which enables us to 

get straightforward the following table summarizing the different cardinals in the “k = 1” cases. There are here three cases 

to be considered : 

 

Target c Cardinal (for k = 1) 

{0} 1 

{gd, g2d, g3d, …, g(p-1)} mod p d = (n, p-1) 

Other among {0, 1, 2, …, (p-1)} 0 

 

Then the iteration for k > 1 gives the following table (table 1) : 

 

  card0 card1 card2 … cardd-1 

  0 g0.gd g0.g2d … g0.g(p-1) g1.gd g1.g2d … g1.g(p-1)  gd-1.gd gd-1.g2d … gd-1.g(p-1) 

card 

= 1 

0               

 

card 

= d 

gd               

g2d               

…               

g(p-1)               

 

Our recurrence hypothesis, implicit in the table above, is that a set of type gr.{gd, g2d, g3d, …, g(p-1)} = {gr.gd, gr.g2d, gr.g3d, 

…, gr.g(p-1)} has the same value for cardinals cardr+1. It is necessary then to check the property passing from k to k+1 by 

noting that it is actually true for k = 1 (trivial case).   

 

We observe that the table is formed of the following parts : the first line, the first column except the element of the first 

line, the first square (under card1) and the other squares (under card2 to cardd-1). We are thus brought to consider the cases 

corresponding to each part of the table, in order to get corresponding contributions for given target c, contributions which 

we must then add.  

We call generating vector of table 1 following x, respectively y, the elements 0 and gu.d located on the left first column of 

this table and the elements 0 and gy.gv.d located above the first line of this table : 
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Case 1 : First line of table 1. 

This line, where we add 0, simply reproduces, with cardinal 1, each element of the generating vector following y. The 

contribution to the cardinals is the identity :  

card’r = cardr        (15) 

 

Case 2 : First column of table 1, except line 1, already mentioned above. 

The contribution is d.card0 for each target of the form gu.d and is 0 for each target of the form gx.gu.d with x ≠ 0. With 

adopted rule on cardinal’s indexes, we act on card’1, each target gu.d being concerned in an identical way, as : 

 

card’1 = d.card0  

card’i = 0, i ≠ 1 

 

         (16) 

 

Case 3 : First square of table 1 right of the first column and following squares. 

Here a target is written c = gu.d + gy.gv.d mod p and we seek, for y given, the couples (u,v) answering that equation. That is 

to say s(c) = #{(u,v)}. Then, for the target c.gd, we have c.gd = g(u+1).d + gy.g(v+1).d mod p and the number of couples (u,v) 

solutions is identical to the number of preceding couples and this with the same contributions by each square of the table. 

Thus, it suffices to solve respectively each case, possibly distinct, of type c = gr, r = 0 to d-1, to get respectively the 

identical cases c = gr.gd, c = gr.g2d, …, gr.g((p-1)/d-1).d mod p, with cardinal (p-1)/d (the case c = gr included). Hence the 

contribution : 
 

                    d-1 

card’r+1 =     ∑       d.(#{(u,v) / gr = gu.d + gy.gv.d mod p }.cardy+1)         (17) 

                  y = 0 

 

The argument is identical for c = 0 with multiplicity equal to (p-1)/d to be multiplied by d, that is p-1 what imposes the 

existence of only one non-null component on the first line of the matrix. We verify this point on the example. The equation 

of problem is gu.d + gy.gv.d = 0, u and v varying independently from 1 to (p-1) /d, that is also gy.gv.d = -gu.d, then gy+(v-u).d = -1 

mod p. However as g is a primitive root of the sequence p, we have necessarily g(p-1)/2  = -1 mod p. It follows y+(v-u).d = 

(p-1)/2 mod p-1, then y = (p-1)/2+(v-u).d mod p-1. However d divides p-1. We deduce immediately y = (p-1)/2 mod d. 

This means that matrix column n° y+2 carries on the first line all the solutions and the cardinal is worth p-1 at indicated 

position y+2. Hence the contribution : 

 

card’0 = (p-1).card(p+1)/2           (18) 

 

Addition of contributions 1, 2 and 3 gives the following matrix. This one, noted [A], is written in a shorter way as (relation 

19) : 

 

[A(x,y)] = [if((x,y) = (2,1), d, if((x,y) = (1,(p+1)/2 mod d), p-1, if((x,y)>(1,1), #(u,v).d / gx-2 = gu.d + gy-2.gv.d mod p, 0)))]+[I]  

 

where 

x is index of row 1 to d+1, y is index of column 1 to d+1,  

{u,v} integers describing [0,(p-1)/d-1]2, d = (n, p-1), 

[I] is identity matrix dimension d+1. 

x axis is directed to the bottom, y axis to the right. 

By convention also, (x,y) > (1,1) means x > 1 and y > 1. 

 

Then  

   k   

#(0)    1  

#(g0.gu.d)    0 
   

    (20) 
#(g1.gu.d) = A  0 

…    …  

#(gd-1.gu.d)    0  

 

With d+1 size matrix, one concludes that d+1 is the maximum number of distinct cardinals. The first column of A is the 

column vector generator of A. This is consistent with the first step of the recurrence hypothesis.  
 

Returning back, we focus the reader’s attention, for its theoretical importance, on the equation that follows and that will 

receive the name of equation of primitive roots : 

 

gr = gu.d + gy.gv.d mod p     (21) 

 

3.2.2. Case of variables of prime numbers modulo p 

 

y1
n + y2

n + … + ym
n = c mod p          (22) 
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Here the yi are positive primes. The case is very similar to the previous one. The representative is no longer [0n, 1n, 2n, …, 

(p-1)n] but [1n, 2n, …, (p-1)n]. The absence of target {0} makes that the first column of the preceding table disappears 

(column corresponds to card0).   

Thus  

{B] = [A]-[I]             (23) 

 

where [A] is the matrix obtained previously, [B] the matrix which concerns us here and the identity matrix [I] of size d+1. 
 

The cardinals of order m are : 
 

   m   

#(0)    1  

#(g0.gu.d)    0 
   

    (24) 
#(g1.gu.d) = B  0 

…    …  

#(gd-1.gu.d)    0  

 

3.2.3. Case of variables of the two types 

 

One can compose cases of variables of both types, with equal exponents, resulting then to simple multiplications of 

matrices. 

 

3.2.4. Eigenvalues and eigenvectors of cardinal matrices 

 

Below, the conjugate of an imaginary number or a set of those is noted *. The transposed matrix of A is tA. 

 

For the p = 2 sequence, the calculation is carried out directly. When the sequence is odd, in a general way, the cardinal 

matrix [C] associated with xn at sequence p is built from a circular matrix [CI] : 

 

card’(i) =  ∑ #(i-j mod p).card(j)                                                               (25)       

 j = 0 à p-1  

 

Here #(i-j) are the components at (i,j) of the matrix [CI] which is a right circular matrix as #(i-j) = #(i+t-(j+t)).   

The eigenvalues of such a matrix [CId(c0,c1, …, cp-1)] is : 

 

σv = ∑ct.e
-2πi.t.v/p

  

 t = 0 to p-1  

 

One will recognize here a discrete Fourier transform (DFT). 

To clarify later writing, we use ct = c(t). We have c(t) = #(t), that is :  

 

c(0) = #(0) = if(variable of integers = ve, 1, 0) 

c(gk.gu.d) = #(gk.gu.d) = if(k = 0, d, 0) 

Hence  

σv = if(ve,1,0)+ d.∑e
-2πi.(g^(r.d)).v/p

           (26)       

     r = 0 to (p-1)/d-1  

 

We observe the repetition of the eigenvalues related to the ct coefficients patterns. When v’ = v.gu.d, u an integer, we have 

actually σv’ = σv. 

Furthermore, for [P] a change of base matrix, [CI] = [P].[σ].[P-1], we choose the unitary matrix  

 

[P(r,s)] = [tP*(r,s)] = (1/p1/2).[e
(2πi/p).r.s

] 

 

We proceed then to a rearrangement of the generating elements different from 0 modulo p (first row and first column 

outside the table) starting with gu.d, u = 0 to (p-1)/d-1, then gu.d+1, then gu.d+2, etc. 

This gives a new matrix with the same rearrangement on [P] (and [P-1]). Hence it follows : 

 

[CI’] = [P’].[σ’].[P’-1] 

with :       
 

[P’(r,s)] = (1/p1/2).[e
(2πi/p).if(r=0,0,(g^int((r-1)/((p-1)/d))).(g^d.((r-1) mod (p-1)/d))).if(s=0,0,(g^int((s-1)/((p-1)/d))).(g^d.((s-1) mod (p-1)/d)))

] 

[P’-1(r,s)] = (1/p1/2).[(e
(-2πi/p).if(r=0,0,(g^int((r-1)/((p-1)/d))).(g^d.((r-1) mod (p-1)/d))).if(s=0,0,(g^int((s-1)/((p-1)/d))).(gd.^((s-1) mod (p-1)/d)))

] 

[σ’(r,s)] = [if(r≠s,0,σif(r=0,0,(g^int((r-1)/((p-1)/d))).(g^d.((r-1) mod (p-1)/d)))] 

 

Progression of the indexes is here of the form : 
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{{0}, {g
0.d

, g
1.d

, …, g
((p-1)/d-1).d

}, {g.g
0.d

, g.g
1.d

, …, g.g
((p-1)/d-1).d

}, …, {gd-1.g
0.d

, gd-1.g
1.d

, …, gd-1.g
((p-1)/d-1).d

}} 

 

We proceed then to the “merger” per blocks of the matrices. The line sums of cardinal matrix must remain unchanged at 

value p. The first line, out of first column, is merged by summation of (p-1)/d components (without division of the result). 

The first column, out of first line, is merged by summation of (p-1)/d component and division by (p-1)/d. The square blocks 

size ((p-1)/d,(p-1)/d) of the matrices are merged by summation and division by (p-1)/d (no division versus lines but versus 

columns). Indexes u and v are selected to locate the blocks of size ((p-1)/d,(p-1)/d). These indexes vary from 0 to d. 

Thus : 

[CI’’] = [P’’].[σ’’].[P’’-1] 

Inside a block (d,d), we get : 

[P’(r+1 mod d, s+1 mod d)] = [P’(r mod d, s mod d)] 

[P’-1(r+1 mod d, s+1 mod d)] = [P’-1(r mod d, s mod d)] 

 

The sum of a block ((p-1)/d, (p-1)/d) divided by (p-1)/d is therefore the sum of a line (1, (p-1)/d).  

Thus, the sum bearing on r = 0 to (p-1)/d-1 : 

[P’’(u,v)] 

= 

[if(v = 0, 1,  

if(u = 0, (p-1)/d,  

(1/p1/2).∑e
(2πi/p).(g^(u-1)).(g^(r.d))

] 

 

[P’’  

-1(u,v)] 

= 

[if(v = 0, 1,  

if(u = 0, (p-1)/d,  

(1/p1/2).∑e
(-2πi/p).(g^(u-1)).(g^(r.d))

] 

 

[σ’’(u,v)] = [if(u≠v,0, if(ve,1,0)+d.∑e
(-2πi/p).(g^(u-1)).(g^(r.d))

] 

 

We have for u > 0 and v > 0 (in a block ((p-1)/d, (p-1)/d) :  

 

P’’(u,v) = P’’(u-1,v+1) 

P’’ 

-1(u,v) = P’’  

-1(u-1,v+1) 

 

The inner part (that is out of the first line and first column) of these matrices is left circular.  

This then translates as follows (the σ’’i shall be replaced by σi for readability) : 

 

Theorem : Decomposition of cardinal matrices 
 

The cardinal matrix [C], relative to the operation xn (with ve = 1), respectively yn (with ve = 0),  at sequence p, of size d+1 

where d = (n, p-1), is diagonalisable and : 

 

  1 λ0*/d λ0*/d … λ0*/d σ0 0 0 … 0 1 λ0/d λ0/d … λ0/d  

  1 λ1*/d λ2*/d … λd*/d 0 σ1 0 … 0 1 λ1/d λ2/d … λd/d  

[C] = (1/p) 1 λ2*/d λ3*/d … λ1*/d 0 0 σ2 … 0 1 λ2/d λ3/d … λ1/d     (27) 

  … … … … … … … … … … … … … … …  

  1 λd*/d λ1*/d … λd-1*/d 0 0 0 … σd 1 λd/d λ1/d … λd-1/d  

with  

λu = d.  ∑e
(-2πi/p).g^(u-1+r.d)

           (28)       

 r = 0 to (p-1)/d-1  

and  

σu = if(ve,1,0)+d. ∑e
(-2πi/p).g^(u-1+r.d)

           (29)       

 r = 0 to (p-1)/d-1  

 

A variety of permutations of indexes is permissible, in particular, we can write: 

 

  1 λ0*/d λ0*/d … λ0*/d σ0 0 0 … 0 1 λ0/d λ0/d … λ0/d  

  1 λ1*/d λ2*/d … λd*/d 0 σ1 0 … 0 1 λ1/d λd/d … λ2/d  

[C] = (1/p) 1 λd*/d λ1*/d … λd-1*/d 0 0 σ2 … 0 1 λ2/d λ1/d … λ3/d         (30) 

  … … … … … … … … … … … … … … …  

  1 λ2*/d λ3*/d … λ1*/d 0 0 0 … σd 1 λd/d λd-1/d … λ1/d  

 

We note that the eigenvalues are imaginary or real according to the following cases: 
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d = (n, p-1) odd p = 1 mod 2d real eigenvalues 

d = (n, p-1) even p = 1 mod 2d real eigenvalues 

d = (n, p-1) even p = 1+d mod 2d imaginary eigenvalues  

 

3.2.5. Case modulo pδ 

  

The principle of the multidimensional arrays is identical. The wording is more space consuming because of the different 

combinations of terms like pk.gi.gu.d (instead of gi.gu.d) and 0. Because of the primitive roots equations, the blocks inside the 

matrix, except first row and column concerning target 0 do repeat following the direction of the main diagonal with a 

multiplicative factor p (the value of the sequence) likewise the relevant targets. The change of base matrix and its inverse 

deriving of a left circular matrix observe this rearrangement but on opposite diagonal. The eigenvalues thus follow the 

same multiplicative scheme : 
 

pδ[σ0], pδ-1[σ1], pδ-1[σ2], …, pδ-1[σd], pδ-2[σ1], pδ-2[σ2], …, pδ-2[σd]… 

 

where σ0, σ1, σ2, …, σd are the eigenvalues of the modulo p cardinal matrix. 

 

4. Aggregation modulo p   
 

4.1. Concept of environment 

 

All diophantine equations are not of homogeneous degrees. We may consider the behaviour of xn appearing other variables 

R(x1, x2…). This again means to compose a two-dimensional table. 

 

  card0 R(x1, x2…) cardi R(x1, x2…) 

  0 gi.gd’ gi.g2d’ … gi.g(p-1) 

card0 (xn) = 1 0 

c 
cardg^i (xn)= d 

gd 

g2d 

… 

g(p-1) 

 

To proceed as above, it is necessary and it suffices to have d = d’. Here d = (n, p-1) and d’ is necessarily a divisor of p-1 

(possibly 1). It is therefore necessary to break into new classes gi in such a way to have a "common factor" to d and d’. The 

smallest suitable value is the lowest common multiple to d and d’ taking account of p-1. Hence the adequate value is cm = 

(lcm(d,d'), p-1).   

 

Thus, if we consider the diophantine equations like : 

 

x1
(a1) + x2

(a2) +…+ xk
(ak) + y1

(b1) + y2
(b2) +…+ ym

(bm) = c        (31) 

 

where (a1), (a2), …, (ak) respectively (b1), (b2), …, (bm) are any positive integers and xi and respectively yi are variables of 

integers and prime numbers. At sequence p, we have di = (p-1,(ai)) and dj = (p-1,(bj)), then : 

 

cm = (p-1, lcm((a1), (a2), …, (ak), (b1), (b2), …, (bm))        (32) 

 

We will call cm the environment of xn in the presence of other variables. 

 

4.2. Equations of the primitive roots 

 

We seek the contribution of the monomial xi
(ai) with d =(p-1, ai) in the environment cm. Thanks to a two-dimensional table, 

we get immediately the equations involving primitive roots of p, then the matrices whose first row and first column are 

distinguished from the other components. The difference between this case and the homogeneous exponents’ case is simply 

on the exponentiation of one of the terms (gu.d instead of gu.cm).  

The matrix components c(x,y) are indexed in rows and columns, respectively. For a reduced matrix (corresponding to the 

withdrawal of the first row and first column), the coordinates x and y will start at 2. 

 

First row of matrix 

c(1,y) = #{(u,v) \ 0 = gu.d + gy-2.gv.cm mod p}     (33) 
 

First column of matrix 

c(x,1) = #{(u,v) \ gx-2 = gu.d mod p}      (34) 
 

Reduced matrix blocks 

c(x,y) = d . #{(u,v) \ gx-2 = gu.d + gy-2.gv.cm mod p}     (35) 

 

The domain of definition of (u,v) is u = 0 to (p-1)/d-1, v = 0 to (p-1)/cm-1. 
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4.3. General form of cardinal matrices 

 

We consider the case of the matrices of monomial xd (matrix [A]) or yd (matrix [B]) in an environment cm. The matrices 

are square of size cm+1. These matrices, like standard cardinal matrices show a peculiar first row and first column. The rest 

of the matrix is composed by repetition (cm/d times) parallel to the main diagonal of cm/d block of size d.     

 

The general form of [A] matrices is : 
 

 1 [L1] [L1] [L1] [L1] [L1] [L1] [L1] [L1] 

       (36) 

 [C1] [A(1)] [A(2)] [A(3)] … [A(cm/d-3)] [A(cm/d-2)] [A(cm/d-1)] [A(cm/d)] 

 [C1] [A(cm/d)] [A(1)] [A(2)] [A(3)] … [A(cm/d-3)] [A(cm/d-2)] [A(cm/d-1)] 

 [C1] [A(cm/d-1)] [A(cm/d)] [A(1)] [A(2)] [A(3)] … [A(cm/d-3)] [A(cm/d-2)] 

[A]d,cm =  [C1] [A(cm/d-2)] [A(cm/d-1)] [A(cm/d)] [A(1)] [A(2)] [A(3)] … [A(cm/d-3)] 

 [C1] … [A(cm/d-2)] [A(cm/d-1)] [A(cm/d)] [A(1)] [A(2)] [A(3)] … 

 [C1] [A(4)] … [A(cm/d-2)] [A(cm/d-1)] [A(cm/d)] [A(1)] [A(2)] [A(3)] 

 [C1] [A(3)] [A(4)] … [A(cm/d-2)] [A(cm/d-1)] [A(cm/d)] [A(1)] [A(2)] 

 [C1] [A(2)] [A(3)] [A(4)] … [A(cm/d-2)] [A(cm/d-1)] [A(cm/d)] [A(1)] 
 

And we have : 
              

             [B]d,cm = [A]d,cm - [I]                                                                                                                                (37) 

 

[C1] is a matrix column of size (1,d) whose first component is d and other components are 0.   

[L1] is a row matrix of size (d,1) whose first component (if p = 1 mod 2d) or the d/2+1 component (if p = 1+d mod 2d) is 

(p-1)/(cm/d) and the other components are 0.   

[A(i)] and [B(i)] are square matrices of size d. 

 

Proof 

 

First line of matrix 
 

By division, we get for the characteristic equation of the first line : 

 

c(1,y) = #{(u,v) \ -1 = g(p-1)/2 = gy-2.g(v.cm/d-u).d mod p} 

 

It follows y-2+(v.cm/d-u).d = (p-1)/2 mod p-1, then y = 2+(p-1)/2 + (v.cm/d-u).d mod p-1. As d divides p-1, we deduce 

immediately y = 2+(p-1)/2 mod d and (v.cm/d-u) = 0 mod (p-1)/d. This last equation has an equal number of solutions 

whatever y (because independent of y) and thus (p-1)/d solutions (u,v), hence : 

 

c(1,2+(p-1)/2 mod d) = (p-1)/d 

c(1,y≠2+(p-1)/2 mod d) = 0 

First column of matrix 
 

From c(x,1) = #{(u,v) / gx-2 = gu.d mod p}, it follows x = 2+u.d mod p-1. The equation has only one solution at x = 2 +k.d 

with d choice for k (k = 0 mod (p-1)/d). So that : 
 

c(x,1) = if(x=2 mod d, d, 0) 
 

Matrix blocks 
 

Reduced matrix characteristic equation is c(x,y) = d.#{(u,v) \ gx-2 = gu.d + gy-2.gv.cm mod p} = d.#{(u,v) \ gd.gx+d-2 = gd.(gu.d + 

gy-2.gv.cm) mod p} = d.#{(u,v) \ gx+d-2 = gu.d+d + gy-2+d.gv.cm mod p} which is the required principal diagonal property mod d.   

 

The addition of {0} in two-dimensional table involves, as in standard cardinal matrix case, the following relations: 

 

[A(i)] = [B(i)] if i ≠ 1 

[A(1)] = [B(1)] + [I] 
 

Property of components average  

 

Let us have [A]d,cm the cardinal matrix of monomial xd in environment cm and let us have [A]cm,cm the cardinal matrix of 

monomial xcm in environment cm for integers variable, [B]d,cm and [B]cm,cm being our matrices for prime numbers variables 

cases. The components of the first matrices ([A]d,cm and [B]d,cm) result from the seconds ([B]cm,cm and [B]cm,cm) by an 

average operation : 

c[A](d,cm)(i,j) =  (d/cm).∑ c[A](cm,cm)(i+n.d,j+n.d) 

  (38) 
 

n = 0 to cm/d-1 

i>1, j>1 
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c[A](d,cm)(1,j) =  (d/cm).∑ c[A](cm,cm)(1,j+n.d) 

  (39) 
 

n = 0 to cm/d-1 

j>1 

 

c[A](d,cm)(i,1) =  (d/cm).∑ c[A](cm,cm)(i+n.d,1) 

  (40) 
 

n = 0 to cm/d-1 

i>1 

 

This is an immediate consequence of the equations of primitive roots and we get thus easily the cardinal matrix of 

monomial xn  in the environment cm from the cardinal matrix of monomial xcm (in the environment cm). 

 

4.4. Diagonalisation of cardinal matrices  

 

We use the theorem of decomposition of the cardinal matrices to get the expression of the change of base matrix and its 

eigenvalues for : 

-      xn in environment n (d = (n,p1)) : [C]d,d = [PB]d,d.[σ]d,d.[PB
-1]d,d 

-      xn in environment cm : [C]d,cm = [PB]d,cm.[σ]d,cm.[PB
-1]d,cm 

-      xcm in environment cm : [C]cm,cm = [PB]cm,cm.[σ]cm,cm.[PB
-1]cm,cm 

 

[C] is either [A] or [B] depending on the type of variables. The first index refers to the exponent of the monomial (which 

gives d for xn) and the second is index refers to the environment. The dimension of the square matrix is equal to the second 

index plus one.   

The evaluation of matrices [PB]d,cm and [PB]cm,cm by the cardinal matrix decomposition theorem is the same. We thus have : 

 

[PB]d,cm = [PB]cm,cm      (41) 

 

The property of the average of the components immediately causes :          
 

- the eigenvalues of  [σ]d,cm are those of [σ]d,d 

- the repetition, with step d, except row of #(0), of the eigenvalues of [σ]d,cm   

- the eigenvalues of [σ]d,cm are the average at index modulo cm/d of the eigenvalues of [σ]cm,cm 

 

We will call the common change of base matrix [PB]cm,cm the environment matrix. 

 

4.5. The example of environment 4. Matrices of Iwaniec and Friedlander  

 

Friedlander and Iwaniec proved in 1996 the infinite number of primes of the type x1
2+x2

4. We produces here our own way 

this result and some more. Instead, let us study more generally (c is a constant relative integer not reduced to 0 only, x1 et x2 

are variables of integers and y a variable of prime numbers) : 

 

x1
2+x2

4 = y+c 

 

We have three principal cases to consider for environment and two lower cases : 

 

p 
(p-1,d) 

variable x2 

(p-1,d) 

variable x4 

(p-1,d) 

variable -y 
cm lower cases 

2 1 1 1 1 / 

1 mod 4 2 4 1 4 p = or(1,5) mod 8 

3 mod 4 2 2 1 2 / 

 

To perform the multiplication of matrices, we move variable y towards the left member of the proposed equation. Let us 

seek the cardinal matrix of -y in the environments 1, 2 and 4 respectively. To do this, we consider first the variables of 

integers x and -x modulo p whose representatives are [0, 1, 2,..., p-1] and [-0, -1, -2,...,-p+1] and are thus identical. Passing 

to y and -y, it suffices to remove 0 and representatives modulo p of y and -y are therefore also identical. The cardinals of 

the cardinal matrices x and -x in the environments 1, 2 and 4 matrices are equally distributed. We have thus : 

 

 Var x or -x  [A]     Var y or -y  [B] = [A]-[I]   

#{0} 
 :  

1 p-1     #{0} 
 :  [M0] = 

0 p-1    

#{gu} 1 p-1     #{gu} 1 p-2    

               

#{0} 

 : 

1 (p-1)/2 (p-1)/2    #{0} 

 :  [M0] = 

0 (p-1)/2 (p-1)/2   

#{g2u} 1 (p-1)/2 (p-1)/2    #{g2u} 1 (p-3)/2 (p-1)/2   

#{g.g2u} 1 (p-1)/2 (p-1)/2    #{g.g2u} 1 (p-1)/2 (p-3)/2   
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#{0} 

 : 

1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{0} 

 :  [M0] = 

0 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4 

#{g4u} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g4u} 1 (p-5)/4 (p-1)/4 (p-1)/4 (p-1)/4 

#{g.g4u} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g.g4u} 1 (p-1)/4 (p-5)/4 (p-1)/4 (p-1)/4 

#{g2.g4u} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g2.g4u} 1 (p-1)/4 (p-1)/4 (p-5)/4 (p-1)/4 

#{g3.g4u} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g3.g4u} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-5)/4 

 

Cardinal matrices in larger environments are obtained by equal subdivisions of components in the case of variables x and -x 

(the sum of each line is always p) cases. For variables y and -y, one simply subtract 1 on the diagonal of the matrix as 

described previously. Then we have : 
 

For p = 2 

The case p = 2 is solved easily showing immediately the same abundance factors : 
 

      2    

#{0} 
= 

0 1 1 1  1 
= 

2 

#{gu} 1 0 1 1  0 2 
 

For p = 3 mod 4 

We have to find the cardinal matrix of x² in the environment 2. Thanks to primitive roots equations and thanks to the fact 

that the sum of each row of the matrix equals p, we can write (the reader will be careful to distinguish between variables 

(here x1 and x2) and matrix components (x1, x2, x3, etc.)) : 
 

 1 0 p-1  1 0 p-1 

[M1] = 2 x2+1 x2 = 2 (p-1)/2 (p-3)/2 

 0 x1 x2+1  0 (p+1)/2 (p-1)/2 
 

It follows the expression of [M1] and of the abundance factors : 
 

       

#{0}  1  1  p2-1 

#{g2u} = [M0].[M1]². 0 = [M0] p+1 = p2-p-1 

#{g.g2u}  0  p+1  p2-p-1 
 

For p = 1 mod 8 

We must consider two matrices. The first one corresponding to the monomial x4 is : 

 

 1 p-1 0 0 0 

 4 x1-3 x2 x3 x4 

[M1] = 0 x2 x4+1 x5 x5 

 0 x3 x5 x3+1 x5 

 0 x4 x5 x5 x2+1 

where 

x1  (p+5)/4+(-1)(β+1)/2.(3/2).β  

x2  (p-3)/4+2α.if(x4>x2,-1,1)-(-1)(β+1)/2.(1/2).β  

x3 = (p-3)/4-(-1)(β+1)/2.(1/2).β       

x4  (p-3)/4-2α.if(x4>x2,-1,1)-(-1)(β+1)/2.(1/2).β  

x5  (p+1)/4+(-1)(β+1)/2.(1/2).β  

 

with the decomposition into integers of p 

p = (2α)2+β2   α > 0, β > 0 

 

 

The general form of matrix [M1] is still easily obtained from primitive roots equations. Values of x1, x2, x3, x4 and x5 are 

however conjectural (but can in principle be obtained by the primitive roots equations). The condition concerning x2 and x4 

(that is x4>x2 or x2>x4) simply depends on the choice of g. The second matrix corresponding to the monomial x2 when cm = 

4. All calculations made, using the method of the average of the components, we have : 

 

 1 (p-1)/2 0 (p-1)/2 0 

 2 y1+1 y2 y3 y4 

[M2] = 0 y2 y3+1 y4 y1+2 

 2 y3 y4 y1+1 y2 

 0 y4 y1+2 y2 y3+1 

where 

y1 

= 

(x1+x3)/2-2 

= 

(p-7)/4+(-1)(β+1)/2.(1/2).β 

 
y2 (x2+x5)/2 (p-1)/4+α.if(x4>x2,-1,1) 

y3 x3 (p-3)/4-(-1)(β+1)/2.(1/2).β 

y4 (x4+x5)/2 (p-1)/4-α.if(x4>x2,-1,1) 

 

For the evaluation of the coefficients of abundance, we have (in practice, order of multiplication of matrices is not 

important as they commute) : 
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#{0}  1 

#{g4u}  0 

#{g.g4u} = [M0].[M1].[M2]. 0 

#{g2.g4u}  0 

#{g3.g4u}  0 

So that : 

#{0}  2p-1  2p-1  (p-1)2 

#{g4u}  2(x1+x3-1)  p-1+2.(-1)(β+1)/2.β  p2-p+1-2.(-1)(β+1)/2.β 

#{g.g4u} = [M0] 2(x2+x5) = [M0] p-1+4α.if(x4>x2,-1,1) = p2-p+1-4α.if(x4>x2,-1,1) 

#{g2.g4u}  2(2x3+1)  p-1-2.(-1)(β+1)/2.β  p2-p+1+2.(-1)(β+1)/2.β 

#{g3.g4u}  2(x4+x5)  p-1-4α.if(x4>x2,-1,1)  p2-p+1+4α.if(x4>x2,-1,1) 

 

For p = 5 mod 8 

We must consider two matrices. The first one corresponding to the monomial x4  which one gets in the same way as for p = 

1 mod 8: 

 1 0 0 p-1 0 

 4 x3+1 x5 x3 x5 

[M1] = 0 x4 x5+1 x5 x2 

 0 x1 x2 x3+1 x4 

 0 x2 x4 x5 x5+1 

where 

x1  (p+1)/4+(-1)(β+1)/2.(3/2).β  

x2  (p+1)/4+2α.if(x4>x2,-1,1)-(-1)(β+1)/2.(1/2).β  

x3 = (p-7)/4-(-1)(β+1)/2.(1/2).β       

x4  (p+1)/4-2α.if(x4>x2,-1,1)-(-1)(β+1)/2.(1/2).β  

x5  (p-3)/4+(-1)(β+1)/2.(1/2).β  

 

with still the decomposition into integers of p : 

p = (2α)2+β2   α > 0, β > 0 

 

The second matrix corresponding to the monomial x2 when cm = 4. All calculations made, with again application of 

average method, we have : 

 1 (p-1)/2 0 (p-1)/2 0 

 2 y3+1 y4 y1 y2 

[M2] = 0 y4 y1+1 y2 y3+2 

 2 y1 y2 y3+1 y4 

 0 y2 y3+2 y4 y1+1 

where 

y1 

= 

(x1+x3)/2 

= 

(p-3)/4+(-1)(β+1)/2.(1/2).β 

 
y2 (x2+x5)/2 (p-1)/4+α.if(x4>x2,-1,1) 

y3 x3-1 (p-7)/4-(-1)(β+1)/2.(1/2).β 

y4 (x4+x5)/2 (p-1)/4-α.if(x4>x2,-1,1) 

 

For the evaluation of the coefficients of abundance, we have then :   

 

#{0}  1  2p-1  2p-1  (p-1)2 

#{g4u}  0  2(2x3+3)  p-1-2.(-1)(β+1)/2.β  p2-p+1+2.(-1)(β+1)/2.β 

#{g.g4u} = [M0].[M1].[M2]. 0 = [M0] [2(x4+x5) = [M0] p-1-4α.if(x4>x2,-1,1) = p2-p+1+4α.if(x4>x2,-1,1) 

#{g2.g4u}  0  2(x1+x3+1)  p-1+2.(-1)(β+1)/2.β  p2-p+1-2.(-1)(β+1)/2.β 

#{g3.g4u}  0  2(x2+x5)  p-1+4α.if(x4>x2,-1,1)  p2-p+1-4α.if(x4>x2,-1,1) 

  

We observe that the passage of the expression x2
4+x1

2 = c to x2
4+x1

2 = y+c, by multiplication by [M0], is equivalent to 

subtract to p2 the previously obtained cardinals.  

Normalization is done by dividing the cardinals by p2-1(p-1)1 = p(p-1). 

 

For p = 2 

Fan{c, 2} = 1 

 

For p = 3 mod 4 

Fan{0, p} 
= 

(p+1)/p 

Fan{gu, p} (p2-p-1)/(p.(p-1)) 

 



P 14/30                                                    

For p = 1 mod 8 

Fan{0, p}  (p-1)/p 

Fan{g4u, p}  (p2-p+1-2.(-1)(β+1)/2.β) /(p.(p-1)) 

Fan{g.g4u, p} = (p2-p+1-4α.if(x4>x2,-1,1)) /(p.(p-1)) 

Fan{g2.g4u, p}  (p2-p+1+2.(-1)(β+1)/2.β) /(p.(p-1)) 

Fan{g3.g4u, p}  (p2-p+1+4α.if(x4>x2,-1,1)) /(p.(p-1)) 

 

For p = 5 mod 8 

Fan{0,p}  (p-1)/p 

Fan{g4u, p}  (p2-p+1+2.(-1)(β+1)/2.β) /(p.(p-1)) 

Fan{g.g4u, p} = (p2-p+1+4α.if(x4>x2,-1,1)) /(p.(p-1)) 

Fan{g2.g4u, p}  (p2-p+1-2.(-1)(β+1)/2.β) /(p.(p-1)) 

Fan{g3.g4u, p}  (p2-p+1-4α.if(x4>x2,-1,1)) /(p.(p-1)) 

 

The changeover of cardinals for p = 1 mod 8 to those for p = 5 mod 8 depends on some changes of signs which have a 

subtle origin in i² = - 1.   

Thus : 

Fan(0) = П (1-1/p)  
p = 1 mod 4 

П (1+1/p)  
p = 3 mod 4 

and 
 

Fan(c ≠ 0) = 

 

П  1-(-1)(p-1)/2/p . П (1- 
   1 

). П (1+ 
1+2a 

)  
 p \ c p.(p-1) p.(p-1) 

  p ∤ c 

p = 3 mod 4 

 

 

p ∤ c  

p = 1 mod 4 

c  = gi.g4u 

 

 

where a = (-1)(p+3)/4+int(i/2).if(i mod 2 = 0, (-1)(β+1)/2.β, 2α.if(x4>x2,-1,1)) and p = (2α)2+β2   α > 0, β > 0. 

 

We can explicit, thanks to the above relations, the abundance factors of a more general diophantine equation :  
 

x1
4+x2

4… xi
4+xi+1

2+xi+2
2…xi+j

2 +y1
4+y2

4… yk
4+yk+1

2+yk+2
2…yk+m

2 = y+c 
 

We have immediately : 

For p = 2 

#{c} = 2i+j-1 
 

For p = 1 mod 4 

#{0}  pi+j.(p-1)k+m  1 

#{g4u}  pi+j.(p-1)k+m  0 

#{g.g4u} = pi+j.(p-1)k+m - [M1]i.[M2]j.([M1]-[I])k.([M2]-[I])m. 0 

#{g2.g4u}  pi+j.(p-1)k+m  0 

#{g3.g4u}  pi+j.(p-1)k+m  0 
 

For p = 3 mod 4 

#{0}  pi+j.(p-1)k+m  1 

#{g2u} = pi+j.(p-1)k+m - [M1]i.[M2]j.([M1]-[I])k.([M2]-[I])m. 0 

#{g.g2u}  pi+j.(p-1)k+m  0 

 

Here [M1] and [M2] are respectively the matrix applying to the monomials x4 and x2 when cm = 4 that we got by taking 

account of the p modulo 8 congruencies. [I] is the identity matrix of size cm+1. It can be shown, in a general way, that 

adding the variable y in a diophantine equation is equivalent to subtract to pi+j.(p-1)k+m the initially found cardinals with i, j, 

k and m the number of variables (overlapping or not) of the original equation. We used this result above. The use of the 

eigenvalues and eigenvectors of the matrices [M1], [M2], [M1]-[I] and [M2]-[I] of course simplifies the literal evaluation 

of this case which is left to the initiative of the reader.   

To finish with, one ought to normalize the cardinals by a division by pi+j-1.(p-1)k+m. 

 

4.6. The example of twin and cousin prime numbers   

 

This corresponds simply to the equation  

y1-y2 = c 

 

We can use the preceding matrix [M0], which is the same for the variables y and -y. Thus : 

 

#{0} 
= [M0]2 

1 
= 

0 p-1 2 
. 

1 
= 

p-1 (p-1).(p-2) 1 
= 

p-1 

#{gu} 0 1 p-2  0 p-2 p2-3p+3 0 p-2 

 

Then (with δ = 1) after normalization by p/(p-1)2, we get   
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Fan{c = 0 mod p, p} 
= 

p/(p-1) 

Fan{c ≠ 0 mod p, p} p.(p-2)/(p-1)2 

 

That is also under the usual Euler product form : 

 
 

Fan(c) = 
 

П (1- 
   1 

 

) 
 

П (1+ 
   1 

 

) 
(p-1)2 (p-1) 

p ∤ c   p ∖ c   

 

The usual formula holds only because the degree of stability, concept that we develop underneath, of the given diophantine 

equation is 1 (which is also the case with the Friedlander  and Iwaniec equation).   

 

5. Aggregation modulo pδ 
 

5.1. Degree of stability  

 

Let us have R(x, y, …) = c a given diophantine equation. Let us calculate the (normalized) abundance factors of targets c 

modulo pδ and modulo pδ+1 by forming multidimensional arrays whose axis are {{x}}, {{y}}... and collecting the cardinals 

for each c throughout the set [0, 1,..., pδ-1] on the one hand and [0, 1,..., pδ+1-1] on the other hand.  

If, for any target c, 

fan(δ+1) (c mod pδ, p) = fan(δ) (c, p)        (42) 

 

that is, if the normalized abundance factors of target c do not evolve starting from rank δ, then rank δ is called the degree of 

stability of R(x, y, …). We will write it : 

δs = δs(p)        (43) 

 

The degrees of stability depend on the sequences. If they are finite for all sequences p, the calculation of (normalized) 

abundance factor is obviously facilitated. If some or all are infinite, then often (if it is not possible to identify recurrent 

behaviour), the calculation of factor abundance may be impossible (this may also mean that asymptotic oscillation prevail 

and that a normalized factor does not exist). 

 

The concept can be used for an independent group of variables within a diophantine equation. To each independent group 

will correspond its set of degrees of stability relative to the sequences). Put together (sums or differences, but not products), 

we seek at a given sequence the greatest common divisor of the degrees of stability of the existing independent groups. The 

new set of degrees of stability is thus composed by examining one by one all sequences (or rather sets of peculiar 

congruencies of the sequences). 

 

An application of interest is the enumeration of an equation like 

 

R(…) = p+c        (44) 

 

where R(…) is any diophantine expression which does not contain variable p, p is a variable of prime numbers and c is a 

given constant (the target). The degree of stability of p is 1 and therefore the degree of stability of the whole equation c = 

R(…)-p is 1. It is then easy to do an approximate evaluation of the proportions between the numbers of solutions for 

different targets c on the bases of the first sequences.  

 

Example 
  

We choose here an example with overlapping variables on one hand sufficiently complicated so that the asymptotic 

behaviour cannot be guessed heuristically and on the other hand with relatively different results from a target to another 

(ratio of 1 to 2.35 here) so that we do not observe systematically only an average behaviour. 

Let us thus have the diophantine expression x2+xy+y2+u3+2u2v+uv2+3v3 = p+c. 

The factors of abundance are obtained by the composition of a multi-dimensional table which axes are x = [0,1,…,pi], y = 

[0,1,…,pi], u = [0,1,…,pi], v = [0,1,…,pi], -p = -[1,…,pi] = [1,…,pi]. We collect the occurrences of c = x2+xy+y2+ 

u3+2u2v+uv2+3v3-p modulo pi.  

 

seq \ c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10 

3 54 45 63 54 45 63 54 45 63 54 45 63 54 45 63 54 

5 480 505 505 505 505 480 505 505 505 505 480 505 505 505 505 480 

7 2016 2065 2065 2065 2065 2065 2065 2016 2065 2065 2065 2065 2065 2065 2016 2065 

…                 

 

In this case, the pi = 2 sequence shows the most decisive action on the asymptotic behaviour with a deficit of solutions for 

even targets and an excess for odd targets. Normalization to a given sequence pi is obtained by dividing by pi
4-1.(pi-1)1. The 

normalized abundance factors (modulo pi) converge quite rapidly as we can see on the numerical evaluation up to sequence 

31 : 
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seq \ c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

≤ 2 0,75 1,25 0,75 1,25 0,75 1,25 0,75 1,25 0,75 1,25 0,75 1,25 0,75 1,25 0,75 1,25 

≤ 3 0,75 1,0417 0,875 1,25 0,625 1,4583 0,75 1,0417 0,875 1,25 0,625 1,4583 0,75 1,0417 0,875 1,25 

≤ 5 0,72 1,0521 0,8838 1,2625 0,6313 1,4 0,7575 1,0521 0,8838 1,2625 0,6 1,4729 0,7575 1,0521 0,8838 1,2 

≤ 7 0,7053 1,0557 0,8868 1,2668 0,6334 1,4048 0,7601 1,0306 0,8868 1,2668 0,602 1,4779 0,7601 1,0557 0,8657 1,2041 

≤ 11 0,7111 1,0548 0,886 1,2657 0,6329 1,4036 0,7594 1,0298 0,886 1,2657 0,6015 1,4901 0,7594 1,0548 0,865 1,2031 

≤ 13 0,7153 1,0506 0,8878 1,2682 0,6332 1,3981 0,7598 1,0303 0,8825 1,2664 0,6027 1,4931 0,7565 1,061 0,8616 1,2055 

≤ 17 0,7153 1,0506 0,8878 1,2682 0,6332 1,3981 0,7598 1,0303 0,8825 1,2664 0,6027 1,4931 0,7565 1,061 0,8616 1,2055 

≤ 19 0,7173 1,0503 0,8867 1,2667 0,6339 1,3963 0,7606 1,03 0,8823 1,2677 0,6034 1,4926 0,7562 1,0622 0,8605 1,2068 

≤ 23 0,7173 1,0503 0,8867 1,2667 0,6339 1,3963 0,7606 1,03 0,8823 1,2677 0,6034 1,4926 0,7562 1,0622 0,8605 1,2068 

≤ 29 0,7165 1,0503 0,8867 1,2667 0,6339 1,3964 0,7607 1,03 0,8823 1,2678 0,6034 1,4927 0,7563 1,0622 0,8606 1,2068 

≤ 31 0,7165 1,0499 0,8864 1,2669 0,6337 1,3967 0,7608 1,0301 0,882 1,2681 0,6036 1,493 0,7564 1,0625 0,8607 1,2063 

 

These factors will change little when one will go further towards infinite. 

Let us find then the effective number of solutions (in the first quadrant) for the proposed equation varying the range of the 

values taken by p. 

 
c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

p < 100 125 135 172 196 127 211 151 131 178 207 131 239 153 148 194 209 

p < 300 550 620 696 819 518 884 569 622 696 855 505 961 574 642 714 826 

p < 1000 2730 3412 3447 4365 2364 4758 2861 3342 3475 4468 2386 5019 2898 3510 3490 4339 

p < 3000 13120 17222 16597 21742 11390 23658 13715 16923 16329 21707 11475 25131 13813 17639 16179 20871 

p < 10000 78995 105677 96758 132925 68311 142761 82684 103290 96177 133207 66608 151487 82192 105836 94639 127254 

p < 30000 410448 569761 507787 701271 359916 763551 431915 556091 504246 703569 346990 812793 429549 571233 494318 671832 

 

To finish with, let us draw down the ratio of the number of solutions by the abundance factor for each target : 
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We observe when p increases that we tend towards a horizontal line, which is the awaited result. 

Of course, the exact calculation needs whole evaluation of the Euler products which is also the subject of this article.  

 

5.2. Cardinal matrix  

 

As we saw earlier, in a general way, the cardinal matrix [C] of an independent group, (with k variables of integers and m 

variables of prime numbers), originates in the equation : 

 

card’(i) =  ∑ #(i-j).card(j)                                                                          (45) 

 j = 0 à n-1 = pδ.(p-1)-1 

 

Here #(i-j) are the components at (i,j) of a matrix with leads to the cardinal matrix.  

Under this "non-contracted" form, the matrix is right circular :  

 

 c0 cn … c1  

[C] = [C(c0,c1, …, cn-1)] = 
c1 c0 … c2 

           (46) 
… … … … 

 cn c3 … c0  

 

The melting of the targets with identical cardinals, the sorting of the #(pw.gv.gu.cm) with ascending v and decreasing w 

supplies then the expected cardinal matrix. 

 

5.3. Environment matrix       

 

The determinant of matrix [C] is given by : 
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 n-1 n-1  

Det([C]) =  ∏  ∑ ct.e
-2πi.t.v/n

                       (47)  

 v = 0 t = 0  

 

with eigenvalues, when taking [CIt] = [C(c0 = 0, …, ct-1 = 0, ct = 1, ct+1 = 0, …, cn-1 = 0)], the components of the trace 

matrix (v = 0 to n-1) : 

∑ct.[e
-2πi.t.v/n

]             (48) 

 

and with eigenvectors matrix (change of base matrix), the special unitary complex group of dimension n (SUn()) : 

 

 1 1 1 ... 1  

 1 (e
2πi/n).1

 (e
2πi/n).1.2

 ... (e
2πi/n).1.(n-1)

  

[P] = (1/n1/2). 1 (e
2πi/n).2

 (e
2πi/n).2.2

 ... (e
2πi/n).2.(n-1)

          (49) 

 ... ... ... ... ...  

 1 (e
2πi/n).(n-1)

 (e
2πi/n).(n-1).2

 ... (e
2πi/n).(n-1).(n-1)

  

 

This matrix or equivalent matrix can be used as common change of base matrix. The identical cardinals targets grouping, 

the sorting of the #(pw.gv.gu.cm) with ascending v and decreasing w (or another order) causes the rearrangement of this 

matrix and of its inverse exactly in the same way (for a given order) for a given environment cm. Hence the existence of a 

common environment matrix. 

 

5.4. Eigenvalues  

 

Eigenvalues obey a scheme requiring only to research cm values : 

 

pδ, pδ-1[σ1], pδ-1[σ2], …, pδ-1[σcm], pδ-2[σ1], pδ-2[σ2], …, pδ-2[σcm]… 

 

where σ1, σ2, …, σcm are the eigenvalues of the modulo p cardinal matrix that are obtained by the products of the 

independent variables groups eigenvalues, since when forming operations like ∏ [P].[σ].[P-1] the products [P-1].[P] vanish.    

 

6. Multiplication by an integer constant 
 

The introduction of negative constants shapes effectively asymptotic character to a diophantine equation with a finite target 

c. We are concerned for example with enumerations in the case of the equations a1x1
n + a2x2

n + … + akxk
n = c mod p or 

a1y1
n + a2y2

n + … + amym
n = c mod p. 

 

Let us have d = (n, p-1). We start with following remarks. If a divides p, then a = 0 mod  p and a.xn =  0 mod p. The 

abundance factors are then all null except for c = 0 with #{0} = p (or p-1 in the case a.yn = 0 mod p). If a does not divide p, 

then there is i (i < d) and j such as a = gi.gj.d, thus a.xn = gi.gj.d.xn mod p. This enables us then to proceed to the usual method 

of two-dimensional tables with an, below illustrated, adequate correction.  

For the first line, the incidence of a = gi.gj.d is null (a.0 = 0). For the other lines, if c = gu.d + gj.gv.d, then gi.c = gi.gu.d + 

gi.gj.gv.d, which means exactly preceding example result. Let us have thus for a variable of integers (respectively a variable 

of prime numbers), u varying in the usual field of definition 0 to (p-1)/d-1 : 

 

card’0   card0  

card’{gi.gu.d}   card {gi.gu.d}  

card’{gi+1.gu.d} = [A] (or [B]) card {gi+1.gu.d}    

…   …  

card’{gi+d-1.gu.d}   card {gi+d-1.gu.d}  

 

In addition, by a trace vector of [I] shift of i columns, except for the first component, we have 

 

card0  1 0  … …  0 card0 

card {gi.gu.d}  0 0  1    card {g0.gu.d} 

card {gi+1.gu.d}    0  1   card {g1.gu.d} 

card {gi+2.gu.d} = …   0  …  card {g2.gu.d} 

card {gi+3.gu.d}  …    0  1 card {g3.gu.d} 

…       …  … 

card {gi+d-1.gu.d}  0  1    0 card {gd-1.gu.d} 

 

In the same way, by a shift of -i columns, we have 
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card'0  1 0  … …  0 card’0 

card’ {g0.gu.d}  0 0    1  card’ {gi.gu.d} 

card’ {g1.gu.d}    0     card’ {gi+1.gu.d} 

card’ {g2.gu.d} = … 1  0    card’ {gi+2.gu.d} 

card’ {g3.gu.d}  …  1  0   card’ {gi+3.gu.d} 

…     …  …  … 

card’ {gd-1.gu.d}  0    1  0 card’ {gi+d-1.gu.d} 

Thus : 

card'0  1 0  … …  0  1 0  … …  0 card0  

card’ {g0.gu.d}  0 0    1   0 0  1    card {g0.gu.d}  

card’ {g1.gu.d}    0        0  1   card {g1.gu.d}  

card’ {g2.gu.d} = … 1  0    [A] (or [B]) …   0  …  card {g2.gu.d}    (50) 

card’ {g3.gu.d}  …  1  0    …    0  1 card {g3.gu.d}  

…     …  …        …  …  

card’ {gd-1.gu.d}  0    1  0  0  1    0 card {gd-1.gu.d}  

 

The product of three matrices gives the desired transformation. 

 

  1 0  … …  0  1 0  … …  0 

  0 0    1   0 0  1    

    0        0  1   

[A’] (or [B’]) = … 1  0    [A] (or [B]) …   0  …  

  …  1  0    …    0  1 

     …  …        …  

  0    1  0  0  1    0 

 

For a1x1
n + a2x2

n + … + akxk
n = c mod p, respectively a1y1

n + a2y2
n + … + amym

n = c mod p, we determine abundance factors 

by matrices products :  

[A’] = [A1’].[A2’]…[Ak’] 

and 

[B’] = [B1’].[B2’]…[Bm’] 
 

Let us notice that these matrices commute. 

In addition, combinations of integers and prime numbers variables are welcome. 

 

The permutation matrices commute also with the change of base matrices of the cardinal matrices. This means that the 

multiplication by a constant will translate to a permutation of the eigenvalues (in the matrix of the eigenvalues). Finally, the 

transition from a.zn à -azn is equivalent to a permutation of the eigenvalues (outside of the one corresponding to 0 which 

stays at its place) by translating indexes by a modulo (p-1)/2 step (since - 1 = g(p-1)/2 mod cm). 

 

7. Equations with overlapping variables 
 

To solve a diophantine equation with more complex groups involved (for example u.x2+v.x.y+w.y2), it is necessary to 

determine the corresponding specific matrices and find the common environment. Specific rules governing these 

aggregates, although already addressed (see degrees of stability), are still to be bettered. When the sums of degrees are 

homogeneous for each independent group (as here the degree 2 respectively for x2, xy and y2), the situation can usually be 

adressed modulo pδ, with finite δ, and δ the lowest common multiple of the degrees of the whole equation.  

As an example, we have for the cardinal matrices of u.x1
2+v.x1.x2+w.x2

2 and its eigenvalues (the proof will be left aside 

here) in the case of Δ = v²-4uw a non-square modulo p (Δ ≠ 0 mod p) : 
 

δ = 1  
1 (p-1)(p+1)  μq 0 

= 
p2 

p+1 p2-p-1  μq 1 -p 
 

δ = 2  
p2 0 (p-1).p.p.(p+1)  μq 0 

= 

p4 

0 p.(p) (p-1).p.p.(p+1)  μq 1 -p3 
p.(p+1) (p-1).p.(p-1) p2.(p2-p-1)  μq 2 p2 

 

δ = 3  
p2 (p-1).p2.(p+1) 0 (p-1).p2.p2.(p+1)  μq 0 

= 

p6 

p2.(p+1) p2.(p2-p-1) 0 (p-1).p2.p2.(p+1)  μq 1 -p5 

0 0 P3.(p) (p-1).p2.p2.(p+1)  μq 2 p4 
p2.(p+1) (p-1).p2.(p+1) (p-1).p.p2.(p+1) p4.(p2-p-1)  μq 3 -p3 
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δ = 4  
p4 0 (p-1).p.p3.(p+1) 0 (p-1).p3.p3.(p+1)  μq 0 

= 

p8 
0 p3.(p) (p-1).p.p3.(p+1) 0 (p-1).p3.p3.(p+1)  μq 1 -p7 

p3.(p+1) (p-1).p3.(p+1) p4.(p2-p-1) 0 (p-1).p3.p3.(p+1)  μq 2 p6 

0 0 0 p5.(p) (p-1).p3.p3.(p+1)  μq 3 -p5 
p3.(p+1) (p-1).p3.(p+1) (p-1).p.p3.(p+1) (p-1).p2.p3.(p+1) p6.(p2-p-1)  μq 4 p4 

 

δ = 5  
p4 (p-1).p4.(p+1) 0 (p-1). p2.p4.(p+1) 0 (p-1).p4.p4.(p+1)  μq 0 

= 

p8 
p4.(p+1) p4.(p2-p-1) 0 (p-1). p2.p4.(p+1) 0 (p-1).p4.p4.(p+1)  μq 1 -p7 

0 0 p5.(p) (p-1). p2.p4.(p+1) 0 (p-1).p4.p4.(p+1)  μq 2 p6 

p4.(p+1) (p-1).p4.(p+1) (p-1).p.p4.(p+1) p6.(p2-p-1) 0 (p-1).p4.p4.(p+1)  μq 3 -p5 
0 0 0 0 p7.(p) (p-1).p4.p4.(p+1)  μq 4 p4 

p4.(p+1) (p-1).p4.(p+1) (p-1).p.p4.(p+1) (p-1).p2.p4.(p+1) (p-1).p3.p4.(p+1) p8.(p2-p-1)  μq 5 -p3 

 

It is easy to anticipate (jumping one step δ → δ+2) the general form of the matrices and especially that of the eigenvalues 

when δ increases in these examples. When Δ is a square modulo p, but Δ ≠ 0 mod p, eigenvalues remain identical except 

signs which are always positive. The Δ = 0 mod p case is more fancy.   

According to the value cm, one needs to choose one or the other of these matrices and sets of eigenvalues. 

 

8. Intégration et dérivation 
 

8.1. Enumeration in a volume  

 

So far, we had attention only for what we called in the preamble the constant based on an Euler infinite product. Thanks to 

that factor, we can compare the number of solutions of R(x, y, …) = c and R(x, y, …) = c-1 and step by step those in the 

R(x, y, …) ≤ c volume. Surfaces (for the equalities) and volume (for the inequality) are always infinite in our (asymptotic) 

cases and we will note that c may take any positive, null or negative value. The step by step will not meet any exception. In 

peculiar, the target c = 0 case is not a limit case but one among the other ones. 

We must now consider the rest of the formula that we will get by multiple integrations [4]. The ability to effectively 

conduct such integrations seriously limits the field of literal formulas one can get. Generally, the first condition will be 

having an equation with separated or separable variables (for quadratic equations, variables are not separated but are 

separable). Furthermore, we use the fact that asymptotically a polynomial is equivalent to its dominant term. 
 

Note that if no literal formula is found, we may just look on the divergence or not of the solutions. This point is not studied 

here.   
 

Let us have a set of polynomials all crescents, such as: 

 

    i                   j                          k                 m      

   Σ   Pn(xn) +  Σ   Qn(yn)  ≤ c +  Σ  Rn(zn) +  Σ   Sn(tn)        (51) 

 n = 1            n = 1                   n = 1            n = 1   

 

The number of meshes (solutions) in the non-limited volume can be written then, xn and zn being variables of integers and 

yn et tn variables of prime numbers, as : 

 
                                                                           k             m                        k              m             i              j-1    

       (52) 
  z1   zk   t1   tm   x1 = P1

-1(c+Σ Rn(zn)+Σ Sn(tn))  yj = Qj
-1(c-2+Σ Rn(zn)+Σ Sn(tn))-Σ Pn(xn)-Σ  Qn(yn))) 

∫…     ∫     ∫…     ∫     ∫                          … ∫ 
      dy1 …dyj.dt1…dtm . dx1…dxi.dz1…dzk 
Ln(y1)…Ln(yj).Ln(t1)...Ln(tm) 

  0   0   2   2   0  2    

 

We thus get a volume in the form V(c, z1, …, zk, t1, …, tm), instead of V(c), including only the variables on the right 

inequality. We will make tend the variables z1, …, zk, t1, …, tm towards infinite for the asymptotic enumerations.  Of 

course, as we said earlier, we should replace the polynomials in the integral by the dominant terms (that is when P(x) ≡ a.xn 

by P-1(x) ≡ (x/a)1/n). 

 

8.2. Average enumeration on the surface of a volume 

 

Let us rewrite the inequality as R(x1, …, xk, y1, …, yj, z1, …, zk, t1, …, tm) ≤ c with corresponding volume V(c, z1, …, zk, t1, 

…, tm). In the enumeration point of view, expression R(…) and variables xi, yi, zi, ti being given initially, the only parameter 

of the problem is c. Let us have then :  
 

R(x1, …, xk, y1, …, yj, z1, …, zk, t1, …, tm) = c 

 

The number of potential solutions of this equality is : 

 

V(c, z1, …, zk, t1, …, tm) - V(c-1, z1, …, zk, t1, …, tm) 
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This operation must be carried out with constant variables z1, …, zk, t1, …, tm and leads at first approximation to the partial 

derivative with respect to c : 

V’(c, z1, …, zk, t1, …, tm)  

 

The asymptotic solution is obtained afterwards while tending the variables z1, …, zk, t1, …, tm towards infinite (what often 

makes c negligible in the literal formula we get).    

 

8.3. Balanced enumeration  

 

To finish with, the preceding enumeration has to be corrected with adapted weightings so that the sum of all the 

enumerations for successive targets in interval ]-∞, c] will give back volume V(c). The average weighting in interval ]-∞,c] 

must thus be 1. We realised that in paragraph 2 and we called the resulting weighting factor the normalized abundance 

factor Fan(c). Thus : 

#{R(…) = c} ≡ Fan(c).(V’(c)+O(c)) ≈ Fan(c).V’(c) 

 

8.4. The logarithmic wall-through   

 

We carry out the development by integral parts (u = F(t) where F is the primitive of the function f, an integrable function 

(in general a polynomial), v = Lnn(t), u’ = f(t), v’ = n.Lnn-1(t)/t ) :  

 

∫ f(t).Lnn(t)dt  = [F(t).Lnn(t)] -  n.∫ f(t)Ln(n-1)(t)dt    
 

Then, we can write the succession of equalities : 

 

∫ f(t).Lnn-1(t)dt  = [F(t).Lnn-1(t)] -  (n-1).∫ f(t)Ln(n-1)(t)dt    
 

∫ f(t).Lnn-2(t)dt  = [F(t).Lnn-2(t)] - (n-2).∫ f(t)Ln(n-2)(t)dt          and so on …    
 

By successive eliminations between the last term of these expressions and the first term of the following expression 

multiplied by the adequate factor, it follows : 

 

∫ f(t).Lnn(t)dt  = [F(t).Lnn(t)] (1-   n  

Ln(t) 
 

 

+ 
 n(n-1)  

Ln2(t) 
 

 

- 
n(n-1)(n-2)  

     Ln3(t) 
 

 

... ) 

 

If n is null, the expression does not include logarithms and does not interest us here. If n is a positive integer, the 

development admits a finite or infinite number of terms, pending on f(t). In these two cases however : 

 

∫  f(t).Lnn(t)dt  = [F(t).Lnn(t)] (1+o(1)) 
So that : 

   c 

∫  f(t).Lnn(t)dt  = [F(t).Lnn(t)]
t=c

.(1+o(1))            (53) 
 

We get while tending c towards infinite : 

 

    c     

 lim ∫  f(t).Lnn(t)dt =  lim 
 

Lnn(c) .  lim 
 

F(c)            (54) 
 c → ∞        c → ∞         c → ∞        

Thus : 
    c       c 

 Lim ∫  f(t).Lnn(t)dt =  lim 
 

Lnn(c)  lim ∫  f(t)dt            (55) 
 c → ∞        c → ∞         c → ∞        

 

This expression shows again that logarithms can be extracted from integrals taking value of the divergent upper boundary 

of this integral. In the practical use of the previous result, there should be no singular points neither for f(t), nor for ln(t) in 

the interval of integration. In particular, the replacement of the indefinite boundary by a definite boundary c0 should not 

involve a divergence (hence c0 = 2 in general). 
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9. Applications to enumerations 
 

9.1. Monomial with unit coefficients, in a limited volume   

 

We will first discuss the problem of diophantine equation solutions enumeration in the case of variables of positive integers 

for a given target c : 

x1
(1) + x2

(2) +…+ xk
(k) = c         (56) 

 

Here the exponent of xi is not equal to i but a positive integer noted (i). The above equation has asymptotic character when 

c tends towards infinity. We do write first  

x1
(1) + x2

(2) +…+ xk
(k) ≤ c          (57) 

 

whose enumeration is given by: 

 
  x1 = c(1/(1))   x2 = (c-x1

(1))(1/(2))  x3 = (c-x1
(1)-x2

(2))(1/(3))  xk =  (c-x1
(1)-x2

(2)-…-xk-1
(k-1))(1/(k)) 

V(c) =  ∫   ∫   ∫                ....... ∫   1.dxkdxk-1…dx1 
   0   0   0   0 

 

This integral is with separable variables and can be solved into a product of simple integrals. To get the expression of this 

integral, we study first the following one : 
   xi =  (c+r(x)-xi-1

(i-1))(1/(i)) 
 

I = ∫  (c+r(x)-xi-1
(i-1)-xi

(i))(m) dxi      (58)    
  0 

 

The variable of this expression is xi and r(x) do not depend on this variable (all xi‘s are independent variables) and can be 

seen briefly as a constant. Adopting the change of variable z = xi/(c+r(x)-xi-1
(i-1))(1/(i)), we get dz = dxi/(c+r(x)-xi-1

(i-1))(1/(i)), so that 

dxi =  (xi/z)dz. Moreover (c+r(x)-xi-1
(i-1)-xi

(i))(m)  =  ((xi/z)(i)-xi
(i))(m)  = ((xi/z)(i)(m)(1-z(i))(m). 

Then  
   z = 1   z = 1    z = 1 
 

I = ∫ (xi/z) ((xi/z)(i)(m)(1-z(i))(m) dz = (xi/z)((i)(m)+1) ∫ (1-z(i))(m) dz = 
 

(c+r(x)-xi-1
(i-1))((m)+1/(i))    ∫ (1-z(i))(m) dz  

  z = 0  z = 0   z = 0 

 

It is clear that the successive use of this relationship in the multiple integral will give, step by step, a product of simple 

integrals as follows : 

 

Step 1 2 3 … k 

(i) (k) (k-1) (k-2)  (1) 

(m) 0 1/(k) 1/(k) + 1/(k-1)  1/(k) + 1/(k-1) +…+1/(2) 

 

Thus : 
   1   1   1   1  
 

 V(c) = c(1/(k)+1/(k-1)+…+1/(2)+1/(1)) ∫(1-t(1))(1/(k)+1/(k-1)+…+1/(2)) dt    … ∫(1-t(k-2))(1/(k)+1/(k-1)) dt ∫ (1-t(k-1))(1/(k)) dt            ∫ (1-t(k))(0/(k)) dt         
 

(59) 

   0   0   0   0  

 

The derivative results easily : 
   1   1   1  
 

V’(c) = (1/(k)+…+1/(2)+1/(1))c1/(k)+…+1/(2)+1/(1)-1 ∫(1-t(1))(1/(k)+…+1/(2))dt … ∫(1-t(k-2))(1/(k)+1/(k-1))dt ∫ (1-t(k-1))(1/(k))dt       (60)             
   0   0   0  

 

The divergence condition for V’(c) is : 

 

1/(k)+1/(k-1)+…+1/(2)+1/(1) >1                  (61) 

 

The preceding expressions can be also written as Г functions. For that, let us proceed first to the change of variable z = t (i), 

so that dz = (i).t(i)-1dt, then : 
 

   1                                                               1 

∫ (1-t(i))(1/(k)+1/(k-1)+…+1/(i+1))dt = 1/(i)  ∫   z(1/(i)-1).(1-z)(1/(k)+1/(k-1)+…+1/(i+1)) dz 
  0                                                              0 

 

Let us recall the identities for beta and gamma functions : 
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 1                    

∫ (z)b-1.(1-z)a-1 dz = B(a,b) = Γ(a).Γ(b)/Γ(a+b)        (62) 
0                    

 

Identification of couples (a, b) gives : 

(a,b) = (1/(k)+1/(k-1)+…+1/(i+1)+1,1/(i)) 

Then 
 k                    k                                                                

П    I(n,i) = П  (1/(i)).B(1/(k)+1/(k-1)+…+1/(i+1)+1,1/(i))           (63) 
i=1               i=1                                                             

 

After mutual elimination of Γ expressions in numerator and denominator, we will get : 

 
 k                          k                   k                                             

П    I(n,i) =    (П  (1/(i))).(П Γ(1/(i))) / Γ(1/(k)+1/(k-1)+…+1/(1)+1)           (64) 
i=1                     i=1               i = 1                                             

 

Thus using gamma function factorisation property Г(x+1) = x.Г(x), we get (here (i) describes all the values (1) to (k)) : 

 

 
 

 

 

П Γ(1+ 
 (i)  

 1 
 

)  
 
 

c 

 

∑( 
 (i) 

 1 
 

) 
 

 

V(c) =  
(i) (i) 

 

          (65) 
 

 

Γ(1+∑ 

                (i) 

 1 
 

) 
  

  (i)     

and : 

  

1 

  

П Γ(1+ 
 (i) 

 1 
 

)  
 
 

c 

 

-1+∑( 
            (i) 

 1 
 

) 
 

 

V’(c) = ∑( 
                               (i) 

). 
(i) (i) 

 

      (66) 
(i) 

 

     Γ(∑ 

                 (i) 

 1 
 

) 
  

   (i)     

 

In the interest of simplification of entries, we write down : 

 

 
 

 

 

П Γ(1+ 
 (i)  

 1 
 

)  
 
 

 

 

 

cti =  
(i) 

 

          (67) 
 

 

Γ(1+∑ 

                (i) 

 1 
 

) 
  (i)  

and 
 

sti = ∑( 
                  (i) 

 1 
 

) 
 

          (68) 

(i) 

 

9.2. Monomial with unit coefficients, in an unlimited volume   

 

We now address the problem of diophantine equations solutions enumeration (xi positive integers) of 

 

x1
(1) + x2

(2) +…+ xk
(k) = c + xk+1

(k+1)          (69) 

and of 

x1
(1) + x2

(2) +…+ xk
(k) ≤ c + xk+1

(k+1)           (70) 

 

The enumeration of the inequality satisfies to the integral : 
 

  xk+1  
 

V(c) = ∫   Vk(c).dxk+1         (71) 
   0 

 

where according with previous study 
 

   1   1   1   1 
 

Vk(c) = (c+xk+1
(k+1))(1/(k)+1/(k-1)+…+1/(2)+1/(1)) ∫(1-t(1))(1/(k)+1/(k-1)+…+1/(2)) dt    … ∫(1-t(k-2))(1/(k)+1/(k-1)) dt ∫ (1-t(k-1))(1/(k)) dt            ∫ (1-t(k))(0/(k)) dt         

   0   0   0   0 
 

So that simply : 

Vk(c) = cti.(c+xk+1
(k+1))sti 

Then : 

  xk+1  
 

V(c) = cti. ∫  (c+xk+1
(k+1))sti .dxk+1 

0 
 

and deriving inside the integral with respect of c : 
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  xk+1  
 

V’(c) = cti.sti. ∫  (c+ xk+1
(k+1))sti-1.dxk+1 

0 
Asymptotically, c is negligible, thus: 

  xk+1  
 

V(c) = cti. ∫  xk+1
(k+1).sti .dxk+1 

0 
and : 

  xk+1  
 

V’(c) = cti.sti. ∫  xk+1
(k+1).(sti-1).dxk+1 

0 
Then : 

V(c) = (cti/((k+1).sti+1)).xk+1
(k+1).sti+1 

and 

(k+1).(sti-1) ≠ -1 V’(c) = (cti.sti/((k+1).(sti-1)+1)).xk+1
(k+1).(sti-1)+1 

(k+1).(sti-1) = -1 V’(c) = cti.sti.ln(xk+1) 

 

9.3. Affine monomials  

 

We focus now on the enumeration of relatively general diophantine equation, namely :  

 

ax1.x1
(x1) + ax2.x2

(x2) +…+ axk.xk
(xk) + ay1.y1

(y1) + ay2.y2
(y2) +…+ aym.ym

(ym) = c + azr.zr
(zr)         (72) 

 

We simply use the following techniques :  

- We divide by azr the two members of the equation.  

- We make the changes of variables Xk
(xk) = (axk/azr).xk

(xk), so that xk = (axk/azr)(1/(xk).Xk for each variable except zr.  

- We pose : 

ak+m = Π ( 
azr 

)1/(xi). Π ( 
azr 

)1/(yj) 
 

axi ayj    (73) 

            i            j    

and 

 
 

 

 

П                  Γ(1+ 
i describes (xi) et (yj) 

1 
 

)  
 
 
 

 

 

ctxy =  
i 

 

          (74) 
 

 

Γ(1+∑ 

                i describes (xi) et (yj) 

1 
 

) 
  i  

and 
 

stxy = ∑ 
                i describes (xi) et (yj) 

1 
 

 
 

                          (75) 

i 

 

In addition, for variables of prime numbers, we must handle integral of the type 

 
   Yi =  (c/azr+zr

(zr)-r(X,Y))(1/(yi))  
 

I =  ∫  ((c/azr+zr
(zr)-r(X,Y)-Yi

(yi))(m))/Ln((c/azr+zr
(zr)-r(X,Y))(1/(yi))).dYi     (76) 

  2  

 

The logarithm extraction, when Yi tends towards infinite, give using the wall-trough remark : 

 
   Yi =  (c+azr.zr

(zr)-r(X,Y))(1/(yi))  
 

I ≡ (1/Ln(e.(c/azr+zr
(zr))(1/(yi))) ∫  (c/azr+zr

(zr)-r(X,Y)-Yi
(yi))(m) dYi     (77) 

  2  

with  

(1/Ln(e.(c/azr+zr
(zr))(1/(yi))) = <a>/Ln((c/azr+zr

(zr))(1/(yi))) ≈ <a>/Ln((zr
(zr))(1/(yi))) = <a>/(((zr)/(yi)).Ln(zr)) 

 

where e is comprised in interval ]0,1[, <a> tends towards 1 when zr tends towards infinite (c finite and (zr) and (yi) are the 

exponents of the variables zr and yi). 

We pose thus in addition  : 

clny = Π ( 
(zr) 

) = (zr)m.Π ( 
1 

) 
 

(yi) (yi)         (78) 

            i               i    

and it follows two cases. 
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Case zr is a variable of integers  

  zr  
 

V(c) = (ak+m.ctxy/(clny.lnm(zr))). ∫  (c/azr+zr
(zr))stxy.dzr 

0 
 

So that (by neglecting c in front of zr which tends to ∞) : 

 

V(c) =  
ak+m.ctxy. 

. 
zr

((zr).stxy+1) 
           (79) 

((zr).stxy+1)).clny lnm(zr) 
 

Moreover, by derivation inside the integral: 

  zr  
 

V’(c) = (ak+m.ctxy/(clny.lnm(zr))). ∫  ((c/azr+zr
(zr))stxy)’.dzr 

0 
So that : 

  zr  
 

V’(c) = (ak+m/azr).(stxy.ctxy/(clny.lnm(zr))). ∫  (c/azr+zr
(zr))stxy-1.dzr 

0 
Then by neglecting c asymptotically : 

  zr  
 

V’(c) = (ak+m/azr).(stxy.ctxy/lnm(zr)). ∫  zr
(zr).(stxy-1).dzr 

0 
So that : 

 if(zr).(stxy-1) ≠  -1 
 

V’(c) = 
ak+m.stxy.ctxy 

. 
zr

(zr).(stxy-1)+1 
        (80) 

 azr.((zr).(stxy-1)+1).clny lnm(zr) 
 

 

 if(zr).(stxy-1) =  -1 
 

V’(c) = 
ak+m.stxy.ctxy 

. 
1 

        (81) 
 azr.clny lnm-1(zr) 

 

 

The divergence condition is here : 

if m ≥ 1 (zr).(stxy-1) >  -1 
     (82) 

if m = 0 (zr).(stxy-1) ≥  -1 

 

Case zr is a variable of prime numbers  
 

  zr  
 

V(c) = (ak+m.ctxy/(clny.lnm(zr))). ∫  (c/azr+zr
(zr))stxy/ln(zr).dzr 

2 
Extracting the logarithm and neglecting c : 

 

V(c) =  
ak+m.ctxy. 

. 
zr

((zr).stxy+1) 
           (83) 

((zr).stxy+1)).clny lnm+1(zr) 
 

In addition, by derivation inside the integral : 

  zr  
 

V’(c) = (ak+m.ctxy/(clny.lnm(zr))). ∫  (((c/azr+zr
(zr))stxy)/ln(zr))’.dzr 

2 
 

So that, after asymptotic extraction of the logarithm and other elementary operations : 
 

  zr  
 

V’(c) = (ak+m/azr).(stxy.ctxy/(clny.lnm+1(zr))). ∫  (c/azr+zr
(zr))stxy-1.dzr 

2 
Then by neglecting c asymptotically : 

  zr  
 

V’(c) = (ak+m/azr).(stxy.ctxy/(clny.lnm+1(zr))). ∫  zr
(zr).(stxy-1).dzr 

2 
So that : 

 if(zr).(stxy-1) ≠  -1 
 

V’(c) = 
ak+m.stxy.ctxy 

. 
zr

(zr).(stxy-1)+1 
        (84) 

 azr.((zr).(stxy-1)+1).clny lnm+1(zr) 
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 if(zr).(stxy-1) =  -1 
 

V’(c) = 
ak+m.stxy.ctxy 

. 
1 

        (85) 
 azr.clny lnm(zr) 

 

 

The divergence condition is here  

(zr).(stxy-1) >  -1      (86) 

 

Application : Iwaniec and Friedlander equation  

 

We have k = 2, m = 0, ax1 = 1, (x1) = 2, ax2 = 1, (x2) = 4, ak+m = 1, azr = 1, clny = 1, stxy = 1/2+1/4 = 3/4, (zr).(stxy-1)+1 = 

stxy = 3/4 ≠ 0. We use Γ(1+x) = x.Γ(x), Γ(1/2) = π1/2 and duplication formula Γ(s).Γ(s+1/2) = 21-2s.π1/2.Γ(2s) giving Γ(3/4) = 

21/2π/Γ(1/4), hence ctxy = Γ(1+1/2).Γ(1+1/4)/Γ(1+1/2+1/4) = (1/6).Γ(1/2).Γ(1/4)/Γ(3/4) =  (1/(6.21/2π1/2)).(Γ(1/4))2. 

Then : 

lim #{ x1
2+x2

4 = p+c} = (1/(6.21/2π1/2)).(Γ(1/4))2.Fan(c).p3/4 /ln(p)  

p →∞ 

 

The theory of the numbers of classes of quadratic forms implies : 

 

П 1-1/p . П 1+1/p = 4/π     
p = 1 mod 4   p = 3 mod 4  

which here is also Fan(0). 

Thus : 

lim #{x1
2+x2

4 = p} = 21/2.(Γ(1/4))2/(3.π3/2).p3/4/Ln(p) ≈ 0,874.p3/4/Ln(p)          
p → ∞  

 

The method of Bombieri asymptotic sieve [1] implemented by Iwaniec and Friedlander gives the same result. We get, in 

addition, the enumeration for any relative integer c provided we go back to our earlier paragraph on #(c) and fan(c) for 

equation x1
2+x2

4 = p+c. Euler products for c ≠ 0 are quite more complex than for c = 0 and certainly difficult to get with 

some other method. 

 

9.4. Generation of prime numbers by a polynomial 

 

Let us have k and a respectively the degree and the dominant coefficient of P. Then asymptotically P(x) → a.xk and P-1(x) 

→ (x/a)(1/k). Thus : 

lim     #{(n,p) / P(n) - p = c} = lim       Fan(c). (p/a)(1/k)/Ln(p)           (87) 

p → ∞                                     p → ∞ 

 

9.5. Quadratic forms 

 

9.5.1. Discriminant et equations of volume 

 

We focus first on equation  

 u.x1
2+v.x1.x2+w.x2

2 = c    (88) 

whose discriminant is 

Δ = v2-4u.w    (89) 

Let us write  

[X] =     
x1  

x2 

Let us write in matrix form : 
 

u.x1
2+v.x1.x2+w.x2

2 = [x1 x2] [U] 
x1  

x2 
 = [x1 x2] 

u  

v/2 

v/2 

w 

x1  

x2 

 

For symmetrical [U], the theorem of the principal axis [3] applies. Let us have λ1 and λ2 the eigenvalues of [U]. The 

orthogonal matrix [Q] which diagonalizes [U] allows the change of co-ordinates :      

 

y1  

y2 
 = [tQ] 

x1  

x2 

Hence we have : 

[λ] = 
λ1 

0 

0 

λ2 
 = [tQ].[U].[Q]    (90) 

and 

u.x1
2+v.x1.x2+w.x2

2 = λ1.y1
2+λ2.y2

2 

Let us write  

[Q] =  
cos(θ)  

sin(θ) 

-sin(θ) 

cos(θ) 

Then : 



P 26/30                                                    

λ1 =  cos2(θ).u-sin(θ).cos(θ).v+sin2(θ).w 

λ2 =  sin2(θ).u+sin(θ).cos(θ).v+cos2(θ).w 

0 =  sin(θ).cos(θ).(u-w)+(cos2(θ)-sin2(θ)).v/2 

Hence for last equation : 

tan(2θ) = -v/(u-w) 

So that 

θ = -(1/2).atan(v/(u-w))+k.π/2       (91) 

 

Using some elementary trigonometric identities and by choosing k = 0, it follows :  

 

cos(θ) = ((1+1/(1+(v/(u-w))2)1/2)/2)1/2  

sin(θ) = ((1-1/(1+(v/(u-w))2)1/2)/2)1/2  

Then : 

λ1 = (1/2).((1+1/(1+(v/(u-w))2)1/2).u-1/(1+(v/(u-w))2)1/2.v+(1-1/(1+(v/(u-w))2)1/2).w) 
  (92) 

λ2 = (1/2).((1-1/(1+(v/(u-w))2)1/2).u+1/(1+(v/(u-w))2)1/2.v+(1+1/(1+(v/(u-w))2)1/2).w) 

and 

y1 = ((1+1/(1+(v/(u-w))2)1/2)/2)1/2.x1+((1-1/(1+(v/(u-w))2)1/2)/2)1/2.x2 
  (93)  

y2 = -((1-1/(1+(v/(u-w))2)1/2)/2)1/2.x1+((1+1/(1+(v/(u-w))2)1/2)/2)1/2.x2 

 

These last equations give the conics principal axis. 

As [λ] = [tQ].[U].[Q] and det([tQ]) = det([Q]) = 1, we get det([λ]) = det([U]), thus : 

  

λ1.λ2 = -Δ/4      (94)  

 

Equation λ1.y1
2+λ2.y2

2 = c, c a constant, is of elliptic type when λ1 and λ2 are of same sign (Δ < 0) and of hyperbolic type 

when λ1 and λ2 are opposite signs (Δ > 0). Thus, Δ = 0 is the borderline between these two types of curves. The conditions 

v = 0 and u.w = 0 form other borderlines involving on principal axis orientation.  

To limit the complexity of further integral evaluation, we are interested only in cases Δ ≠ 0, u ≥ 0, v ≥ 0 and w ≥ 0. We 

begin with the evaluation of “volume” V(c) delimited by the target c such us : 

 

u.x1
2+v.x1.x2+w.x2

2 ≤ c    (95) 
 

Here x1 and x2 are variables, u, v and w parameters.  

The domain of definition of the variables is the first quadrant x1 ≥ 0 and x2 ≥ 0. 

 

   x1 = (c/u)1/2   x2 = (-v.x1+(4w.c+Δ.x1
2)1/2)/2w    

V(c) =  ∫   ∫                     dx2.dx1     (96)  
   x1 = 0   x2 = 0   

Thus : 

   x1 = (c/u)1/2    

V(c) =  ∫    (-v.x1+(4w.c+Δ.x1
2)1/2)/2w.dx1    

   x1 = 0   

 

The integration of this expression requires distinguishing positive and negative cases for Δ. 

 

Case Δ < 0 
 

The change of variable x1 = (4w.c/(4u.w-v2))1/2.sin(θ) gives after some elementary transformations : 

 

V(c) =  
arcsin((-Δ/(4u.w))1/2) 

.c        (97) 
(-Δ)1/2 

 

Case Δ > 0 
 

In the same way, the change of variables x1 = (4w.c/(4u.w-v2))1/2.sh(θ) leads to : 

 

V(c) =  
arcsh((Δ/(4u.w))1/2) 

.c        (98) 
(Δ)1/2 

Let us pose (with Δ ≠ 0) : 
 

f  = if(Δ < 0,  
arcsin((-Δ/(4u.w)) 1/2) 

, 
arcsh((Δ/(4u.w)) 1/2) 

)   (99) 
(-Δ)1/2 (Δ)1/2 

 

In the case u = 1, v = 0, w = 1 (v2-4u.w < 0), we have V(c) = (Arcsine(1)/2).c = (π/4).c. 
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9.5.2. Generation of prime numbers  

 

A quadratic equation of the preceding type (positive u, v and w) has only a finite number of solutions. This type of problem 

does not interest us (except if c → ∞). However, using V(c) expression, we can tackle with an equation of the following 

type where x and y are integers variables and p a prime number variable :  

 

u.x1
2+v.x.x2+w.x2

2 ≤ p+c    (100) 

 

Then, boundless volume is given thanks to integral :  

 

   p    x1 = ((c+p)/u)1/2   x2 = (-v.x1+(4w.(c+p)+(v2-4u.w).x1
2)1/2)/2w    

V(c) =  ∫   ∫   ∫                     dx2.dx1.dp/ln(p)  (101)  
   p = 2   x1 = 0   x2 = 0   

 

Thus : 

   p     

V(c) = f.  ∫  ((p+c)/ln(p)).dp  (102)  
   p = 2   

 

At this step, c being negligible in front of p, asymptotic evaluation gives :  

 

V(c) = (f/2).(p2/ln(p))     

 

and (by deriving first p+c inside the integral) : 

V’(c) = f.p/ln(p)      

So that : 

lim #{u.x1
2+v.x1.x2+w.x2

2 ≤ p+c} = (f/2).p2/Ln(p)  (103) 
p →∞   

and 

lim #{u.x1
2+v.x1.x2+w.x2

2 = p+c} = f.Fan(c).p/Ln(p)   (104)  
p →∞   

 

In the same way, we can get the enumeration with y1 et y2 variables of prime numbers : 

 

u.y1
2+v.y1.y2+w.y2

2 ≤ p+c    (105) 

 

Then, with the same conditions on Δ, u, v and w that previously, the volume is given by the triple integral : 

 

   p    y1 = ((c+p)/u)1/2   y2 = (-v.y1+(4w.(c+p)+Δ.y1
2)1/2)/2w    

V(c) =  ∫   ∫   ∫                     (dy2/Ln(y2)).(dy1/Ln(y1)).(dp/ln(p))  (106)  
   p = 2   y1 = 2   y2 = 2   

 

Logarithms can be extracted from integrals when the upper boundary diverges. By u.y1
2+v.y1.y2+w.y2

2 < p+c, y1 is bounded 

to y1 < (p/u)1/2,  that is ln(y1) ≈< (1/2).ln(p). In the same way, ln(y2) ≈< (1/2).ln(p).      

Hence : 

   p     

V(c) ≡ (1/ln(p)).((1/2)/ln(p)).((1/2)/ln(p)).f ∫ (p+c).dp  (107)  
  p = 2   

It follows simply : 

lim #{u.y1
2+v.y1.y2+w.y2

2 ≤ p+c} = 2.f.p2/Ln3(p)   
p →∞   

and 

lim #{u.y1
2+v.y1.y2+w.y2

2 = p+c} = 4.f.Fan(c).p/Ln3(p)   
p →∞   

 

Numerical application 

 

For u = 1, v = 1, w = 1, we get f = π/(3√3). Thus (the values of a are distinct in each equation, but all tend asymptotically  

towards 1) : 

lim #{x1
2+x1.x2+x2

2 ≤ p+c} = (a.π/(6√3)).q2/Ln(q)   
p ≤ q   

and 
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lim #{x1
2+x1.x2+x2

2 = p+c} = (a.π/(3√3)).Fan(c).q/Ln(q)   
p ≤ q   

and 

lim #{y1
2+y1.y2+y2

2 ≤ p+c} = (2a3.π/(3√3)).q2/Ln3(q)   
p ≤ q   

and 

lim #{y1
2+y1.y2+y2

2 = p+c} = (4a3.π/(3√3)).Fan(c).q/Ln3(q)   
p ≤ q   

 

The discriminant of the quadratic groups is here -3 and is a square for the 1 modulo 6 sequences and a non-square for the 5 

modulo 6 sequences (the modulo 6 distinction results from a more thorough study that the reader will find on the author 

website).  

The degree of stability of the proposed equations is δs = 1 or 2. One will use relevant cardinal matrices accordingly to these 

degrees of stability. We gave the cardinal matrix for x1
2+x1.x2+x2

2 for a non-square discriminant previously (page 18) and 

gave also the cardinal matrix corresponding to the variable –p (page 11), thus for x1
2+x1.x2+x2

2 = p+c and sequences 1 

modulo 6 : 
 

#(0) 
= 

1 (p-1).(p+1) 0 p-1 1 
= 

(p-1).(p+1) 

#(gi) (p+1) (p2-p-1) 1 p-2 0 (p2-p-1) 

 

Normalisation results by a division by p2-1.(p-1). 

The other abundance factors are drawn in the same way, thus the table : 

 

Variables (x,y) of 

integer integers 

c = 0 mod p c = g0.g2u mod p c = g1.g2u mod p 

p = 2 3/2 1/2  

p = 3 1 1/2 3/2 

p = 1 mod 6 (p-1)/p (p2-p+1)/((p-1).p) (p2-p+1)/((p-1).p) 

p = 5 mod 6 (p+1)/p (p2-p-1)/((p-1).p) (p2-p-1)/((p-1).p) 

 

Variables (x,y) of 

prime numbers 

c = 0 mod p c = g0.g2u mod p c = g1.g2u mod p 

p = 2 2 0  

p = 3 3/4 3/4 3/2 

p = 1 mod 6 p.(p-3) /(p-1)2 p.(p2-3p+6)/(p-1)3 p.(p2-3p+2)/(p-1)3 

p = 5 mod 6 p/(p-1) p.(p2-3p+4)/(p-1)3 p2.(p-3)/(p-1)3 

 

The numerical application then gives for variables of integers : 

 

  Exact number of solutions Calculated number of solutions Variation 

c Fan(c) 
p <  

100 

p <  

1000 

p <  

10000 

p <  

100000 

p < 

1000000 

p < 

10000000 

p <  

100 

p <  

1000 

p <  

10000 

p <  

100000 

p <  

1000000 

p <  

10000000 p <  

100 

p <  

1000 

p <  

10000 

p <  

100000 

p < 

1000000 

p < 

10000000 a =   

1,39556 

a =  

1,19388 

a =  

1,16128 

a = 

 1,11339 

a =  

1,08694 

a =  

1,07236 

0 1,65328 23 161 1223 9569 78463 664389 30,29 172,76 1260,30 9666,66 78641,81 665027,66 31,70% 7,30% 3,05% 1,02% 0,23% 0,10% 

1 0,24178 7 28 183 1412 11511 96763 4,43 25,26 184,31 1413,68 11500,78 97255,39 -36,72% -9,77% 0,72% 0,12% -0,09% 0,51% 

2 2,17601 37 239 1631 12638 103612 874283 39,87 227,38 1658,78 12723,04 103506,59 875294,47 7,75% -4,86% 1,70% 0,67% -0,10% 0,12% 

3 0,48356 8 34 354 2800 22816 194082 8,86 50,53 368,62 2827,35 23001,57 194510,78 10,75% 48,62% 4,13% 0,98% 0,81% 0,22% 

4 0,72534 14 76 542 4211 34744 291816 13,29 75,79 552,93 4241,03 34502,35 291766,16 -5,07% -0,27% 2,02% 0,71% -0,70% -0,02% 

5 0,91621 18 104 709 5362 43753 368739 16,79 95,74 698,43 5357,04 43581,50 368543,13 -6,74% -7,94% -1,49% -0,09% -0,39% -0,05% 

6 1,45067 22 150 1074 8538 68960 584132 26,58 151,59 1105,85 8482,00 69004,23 583528,31 20,81% 1,06% 2,97% -0,66% 0,06% -0,10% 

7 0,20242 6 29 167 1203 9609 81672 3,71 21,15 154,31 1183,54 9628,54 81422,93 -38,19% -27,06% -7,60% -1,62% 0,20% -0,30% 

8 2,17601 34 225 1647 12718 103749 875896 39,87 227,38 1658,78 12723,04 103506,59 875294,47 17,26% 1,06% 0,72% 0,04% -0,23% -0,07% 

9 0,48356 9 55 393 2861 22955 195281 8,86 50,53 368,62 2827,35 23001,57 194510,78 -1,56% -8,13% -6,20% -1,18% 0,20% -0,39% 

10 0,91621 16 102 689 5419 43536 369315 16,79 95,74 698,43 5357,04 43581,50 368543,13 4,92% -6,14% 1,37% -1,14% 0,10% -0,21% 

Mean 

value 
             0% 0% 0% 0% 0% 0% 

Standard 

deviation 
                          21,94% 18,53% 3,79% 0,93% 0,39% 0,25% 

 

We have adjusted here arbitrarily the parameter “a” such that the average value of mean values for selected the targets will 

equal 0. This setting does gradually converge to 1. At the same time, the standard deviation of the variations gradually run 

towards 0 also. 
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The numerical application then gives for variables of integers : 

 
  Exact number of solutions Calculated number of solutions Variation 

c Fan(c) 
p <  

1 000 

p <  

10 000 

p <  

100 

000 

p <  

1 000 

000 

p < 

10 000 

000 

p <  

100 000 

000 

p <  

1 000 

p <  

10 000 

p <  

100 000 

p < 1 

000 000 

p < 

10 000 

000 

p <  

100 000 

000 
p <  

1 000 

p <  

10 000 

p <  

100 000 

p < 

1 000 

000 

p < 

10 000 

000 

p <  

100 000 

000 a = 

1,21519 

a =  

1,23971 

a = 

1,21153 

a = 

1,18934 

a = 

1,16599 

a =  

1,1456 

0 1,51898 28 104 468 2454 14262 89072 20,00 89,58 428,09 2343,68 13906,53 88361,03 -28,58% -13,87% -8,53% -4,50% -2,49% -0,80% 

2 2,4854 35 146 701 3835 22378 142833 32,72 146,57 700,45 3834,81 22754,27 144578,93 -6,51% 0,39% -0,08% -0,01% 1,68% 1,22% 

4 1,93725 11 75 468 2790 17302 110952 25,51 114,25 545,96 2989,05 17735,86 112692,34 131,87% 52,33% 16,66% 7,13% 2,51% 1,57% 

6 1,53172 32 112 424 2398 14188 89748 20,17 90,33 431,68 2363,34 14023,16 89102,13 -36,98% -19,35% 1,81% -1,45% -1,16% -0,72% 

8 2,4855 43 179 773 4042 23161 146147 32,72 146,58 700,47 3834,96 22755,19 144584,75 -23,90% -18,11% -9,38% -5,12% -1,75% -1,07% 

10 1,77095 21 103 531 2708 16132 102567 23,32 104,44 499,10 2732,46 16213,36 103018,45 11,03% 1,40% -6,01% 0,90% 0,50% 0,44% 

12 1,1589 16 66 322 1760 10212 66858 15,26 68,34 326,61 1788,11 10609,93 67414,71 -4,64% 3,55% 1,43% 1,60% 3,90% 0,83% 

14 2,57835 30 156 695 3930 23470 149722 33,95 152,06 726,64 3978,22 23605,24 149985,95 13,15% -2,53% 4,55% 1,23% 0,58% 0,18% 

16 1,93725 27 94 480 2850 17533 112448 25,51 114,25 545,96 2989,05 17735,86 112692,34 -5,53% 21,54% 13,74% 4,88% 1,16% 0,22% 

18 1,24275 26 88 398 2040 11726 73122 16,36 73,29 350,24 1917,48 11377,59 72292,37 -37,07% -16,72% -12,00% -6,01% -2,97% -1,13% 

20 3,64042 55 235 1049 5543 33990 213338 47,93 214,69 1025,96 5616,92 33328,68 211767,94 -12,86% -8,64% -2,20% 1,33% -1,95% -0,74% 

Mena 

value 
                          0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

Standard 

deviation 
                          44,80% 21,15% 9,16% 4,07% 2,22% 0,95% 

 

Le même principe que précédemment a été retenu ici pour valoriser le paramètre « a ». 

Nous observons dans ce tableau que le nombre de solutions près de l’origine peut être très éloigné de la tendance 

asymptotique. Pour autant, le nombre de solutions attendu s’affiche progressivement sans écart notable par rapport aux 

autres cibles (remarquable pour c = 4 notamment).  

The same principle that previously was held here to evaluate the parameter “a”. We see in this table that the number of 

solutions near the origin can be very distant from the asymptotic tendency. However, the expected number of solutions 

finds his way gradually without significant deviation from other targets (especially remarkable for c = 4). 

 

We get what we expect : the reduction of standard deviation when q increases and adjustment coefficients a tending slowly 

towards 1. 

 

10. Singularities 
 

The study of the quadratic equation u.x2+v.x.y+w.y2 shows the existence of several conditions relative to variables 

coefficients and discriminant of the expression giving domains where abundance factors have same literal formulas (same 

literal functions of parameter “sequence”).  The limits between these domains are called boundaries.  

These boundaries, where the studied equations are not irreducible (modulo p), are likely sources of trouble and can break 

down a beautiful construction with results not complying with expectations. Target 0 is often involved within a boundary. 

 

11. A conclusion that is not one 
 

The expression of the eigenvalues of cardinal matrices is given in this text in a fully literal way. Thus, in principle, we can 

compute Euler products (and the abundance factors) within any accuracy. In fact, the calculation should be conducted for 

each sequence and this until a high enough ranking. Thus things are not always so practical. However, properties deriving 

from the primitive roots equations give a simpler framework for 1, 2, 3 and 4 environments. The comprehensive study of 

the eigenvalues of non prime environments gives also rise to interesting constructions based on prime environments and 

highlights some matrix decompositions of the said primes. These points are the subject of an upcoming article. 

 

SIGNS ET ABBREVIATIONS 

 

#{(x1, …, xn)} : Cardinal (number of, multiplicity…) of n-uplets (x1, …, xn), also noted #(x1, …, xn).  

( , ) : Greatest common divisor of ( , ) 

lcm : Lowest common multiple 

Fan(c, p) : Normalized abundance factor of target c for sequence p 

Fan(c) : Normalized abundance factor of target c (Euler product) 

If(x, y, z) : If x true then y if not z. The condition can be overlapping : if (x, if (y, z, t)…) 

^ : Sign of exponentiation (x^n = xn) 
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PROGRAM CODE PARI/GP 

 

Findinng of the exact number of solutions of x1
2+x1.x2+x2

2 = p+c with parameter q = 100 (to change). 

{q = 100; limit = floor(q^(1/2)); 

for(c = 0 , 10,  

s = 0 ;  

for(x = 0 , limit,  

for(y = 0, limit, t = x^2+x*y+y^2-c; 

if(isprime(t), 

if(t < q, 

s++))));  

print(s))} 

 

Findinng of the exact number of solutions of y1
2+y1.y2+y2

2 = p+c with parameter q = 1000 (to change). 

{q = 1000; limit = floor(q^(1/2)); 

for(i = 1,10^1000, 

if(primes(i)[i] >= limit, ii = i;break)); 

for(c = 0 , 10, cc = 2*c; 

s = 0 ;  

for(x = 1 , ii,  

for(y = 1, ii,  t = (primes(ii)[x])^2+(primes(ii)[x])* (primes(ii)[y])+ (primes(ii)[y])^2-cc; 

if(isprime(t), 

if(t < q, 

s++))));  

print(s))} 

 

Finding the abundance factors of equation with integers’ variables x1
2+x1.x2+x2

2 = p+c. 

{limit = 500;  

for(c = 0,10, 

if(Mod(c,2) == 0, x = 1.5, x = 0.5); 

if(Mod(c,3) == 1, x = 1/2*x);  

if(Mod(c,3) == 2, x = 3/2*x);  

for(i = 3, limit-1, p = primes(limit)[i]; g = znprimroot(p); gg = g*g;  

if(Mod(c,p) == 0,  

if(Mod(p,6)== 1, x = x*(p-1)/p, x = x*(p+1)/p), 

if(Mod(p,6)== 1, x = x*(p*p-p+1)/((p-1)*p), x = x*(p*p-p-1)/((p-1)*p)))); 

print(x))} 

 

Finding the abundance factors of equation with primes’ variables y1
2+y1.y2+y2

2 = p+c. 

{limit = 500;  

for(cc = 0,10,c =2*cc; 

x = 2.0; 

if(Mod(c,3) == 2, x = 3/2*x, x = 3/4*x); 

for(i = 3, limit-1, p = primes(limit)[i]; g = znprimroot(p); gg = g*g;  

if(Mod(c,p) == 0,  

if(Mod(p,6)== 1, x = x*p*(p-3)/((p-1)^2), x = x*p/(p-1)), 

for(j = 1, (p-1)/2, if(Mod(c,p) == gg^j, if(Mod(p,6)== 1, x = x*p*(p*p-3*p+6)/((p-1)^3), x = x*p*(p*p-3*p+4)/((p-1)^3)); 

break, if(Mod(c,p) == g*gg^j, if(Mod(p,6)== 1, x = x*p*(p*p-3*p+2)/((p-1)^3), x = x*p^2*(p-3)/((p-1)^3)); break))))); 

print(x))} 
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