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Number Theory / Théorie des Nombres 

 

Asymptotic Diophantine counting with John Friedlander and 

Henryk Iwaniec equation common thread.  
 

Hubert Schaetzel 
 

Abstract  John Friedlander and Henryk Iwaniec showed in 1997 the infinity of primes being written as x1
2
+x2

4
, where 

x1 and x2 are integers. Their results included an asymptotic expression of the enumeration of solutions. Here 

we give a method to find such result jointly to its generalization. 
 

 Dénombrements asymptotiques d’équations diophantines avec le fil conducteur de l’équation de John 

Friedlander et Henryk Iwaniec. 
 

Résumé  John Friedlander et Henryk Iwaniec ont démontré en 1997 l’infinité des nombres premiers s’écrivant x1
2
+x2

4
, 

les variables x1 et x2 étant des entiers. Leur résultat incluait une expression asymptotique du dénombrement 

des solutions. Nous donnons ici une méthode pour trouver un tel résultat conjointement à sa généralisation.  
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1. Preamble 

 

This article includes many shortcuts. 

For the courageous reader, another article online enables one to have a much more complete overview (some 400 pages to 

this day). [2] 

 

In order to get asymptotically the number of solutions for a given Diophantine equation, the idea here is to form an 

asymptotic equivalent of each variable within the proposed equation and then assemble emerging results. This presupposes 

the independence of each brick of this construction (in the spirit of the operations one wishes to execute here). This is the 

case, for example, but another example could have been chosen aswell, for the Friedlander and Iwaniec equation y = 

x1
2
+x2

4
, where we can distinguish y, x1

2
 and x2

4
. In that Diophantine equation, y is a variable that takes values in the set of 

prime numbers P and x1 and x2 are variables that take values in the set of the nonnegative integers N. 

 

We adopt in this text the following writing convention : 

- xi (or x) for a variable of integers,  

- yi (or y) for a variable of prime numbers, 

- zi (or z) for a variable one or the other type. 

 

The initial idea here is not new, but further use is innovative technique in our view, having not found such thing in other 

texts. We start by saying that the assessment of the number of solutions of y = x1
2
+x2

4
 should be accessible in one way or 

another by evaluating first   

 

y = x1
2
+x2

4
 modulo 2

m2
.3

m3
.5

m5
.7

m7
.11

m11
…pi

mpi
          (1) 

 

while mi and pi will tend towards infinity. 

 

Our method is then to analyse the “potential to provide solutions” of each part of the chosen equation through their local 

contribution, that is modulo pi, and then modulo pi
ki
 where we extend ki to infinity. The following will show how to 
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assemble these experiments to provide modulo 2
m2

.3
m3

.5
m5

.7
m7

.11
m11

…pi
mp

 results. Of course, there is a basis to this 

building saga, which lies in particular in the Chinese theorem (if m1, m2, …, mi are coprime integers, m = m1.m2…mi, then 

the ring Z/m1Z x Z/m2Z x … x Z/miZ is isomorphic to the ring Z/mZ), point which is not developed here. 

 

We will deduce, at the same time for our example (but this can be achieved in a similar way with any other example), the 

number of asymptotic solutions of y+c = x1
2
+x2

4
, c being a given constant. More specifically, c will be used as a parameter. 

 

We want to solve y+c = x1
2
+x2

4
. To do this, it is appropriate to write primarily in a quite trivial way : 

 

c = x1
2
+x2

4
-y           (2) 

 

Although trivial, this is not innocuous. Indeed, the goal here is to register onto c, entity which we will call the target, the 

result of some local operations, namely a number of occurrences corresponding to the event “I got the value c”. 

 

This approach gives way to the constitution of two new entries that are equivalent for the counting purpose of the proposed 

equation.   

The first is: 

c ≡ {{x1
2
}}+{{x2

4
}}+{{-y}}            (3) 

The second is : 

c ≡ [x1
2
].[x2

4
].[-y]           (4) 

 

In fact, the first step will be processed here in a direct way as c ≡ {{x1
2
+x2

4
-y}} without recourse to basic bricks, but the 

second, which is based on matrix manipulations, is always built brick by brick. It enables asymptotical enumeration of a 

whole range of other Diophantine equations, namely those containing yi, xj
2
 and xk

4
 blocks, and is conceptually much more 

important.   

It turns out that the manipulation of matrices’ product is possible whenever blocks of variables within these matrices are 

independent from each other. 

 

The way one is writing c to the left of the previous equalities has no importance. Place hooks such as {{c}} and [c], or not, 

doesn't change anything. The reality of the calculation is not an immediate conversion. It is not a gradual transformation of 

one equation into another, but rather a way to rethink the problem. The writing is symbolic. 

 

2. Asymptotic representatives  
 

Our investigations are of asymptotic nature. We can then assume that it suffices to get a probabilistic representation of a 

variable to identify its potential to create solutions.    

 

Entities created on this occasion will be called asymptotic representatives and indicated within brackets {{}}. We will 

describe below how they are formed distinguishing the case of variables of integers from the case of variables of prime 

numbers. 

 

2.1. Case of variables of prime numbers 

 

Let us start with a variable of prime numbers {{y}} and observe its local potential :  

We project, to do this, the whole set P of prime numbers y on the congruence classes modulo pi. 

 

 mod pi     

P  → {0, 1, 2, …, pi-1}   

y  y mod pi   

 

This application sends a unique number y on 0. This is pi. Other classes are images in same density (equidensity) of all 

other primes, which is a well-known result. By assigning a probability density to the quantities of numbers projected on 

each of the congruence 0, 1, 2,..., pi-1 and arbitrarily summing all densities to pi (i.e. getting an average density of 1 per 

class), we get the correspondence : 

 

Congruencies 0 1 2 … pi-1 

Normalized densities of probability → 0 → pi/( pi-1) → pi/(pi-1) … → pi/(pi-1) 

 

This means that locally, that is modulo pi, (or at the sequence pi), omitting equiprobable weighting, the set of prime 

numbers is equivalent to the following classes :  

 

{1, 2, …, pi-1} ≈ {{P}} ≡ {{y}}            (5) 

 

Indeed, the density of probability of 0 being 0, we can ignore this value 0 and we can then ignore weightings since weights 

are of equal values. 
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However we used the sign ≈ instead of ≡ because we have neglected temporarily pi/(pi-1) weighting which is essential 

elsewhere and to which we will return at the chapter "normalization". Variable of type yi (or y) and P are otherwise the 

same in our use and need (thus the sign ≡). 

 

The set {1, 2,..., pi-1} is the Galois Group (Z/piZ)*. This group is generated by some root primitive gi of pi : 

 

{gi
0
, gi

1
, …, gi

pi-2
}            (6) 

 

We can make similar projections on any set of congruencies modulo pi
ki
. 

 

 mod   

P  → {0, 1, 2, …, pi
ki
-1}  

y  y mod pi
ki

  

 

Then, the table will be (with always an average weighting value of 1 per class) : 

 

Congruencies 0 mod pi ≠ 0 mod pi           (7) 
Densities → 0 → pi/(pi-1) 

 

Let us have φ(pi) = pi
(ki-1)

(pi-1), φ the Euler totient. 

The corresponding group will be : 

{gi
0
, gi

1
, …, gi

φ(pi)-1
}            (8) 

 

Of course, for pi = 2, there is no unique primitive gi and the case is more complex, but the spirit of the approach remains 

exactly the same. The detail is not included in this article which is intended to be synthetic. 

 

2.2. Case of variables of integers  

 

The set of nonnegative integers N will project in an equiprobable way modulo pi
ki
 : 

 

 mod   

N  → {0, 1, 2, …, pi
ki
-1}  

x  x mod pi
ki

  

 

We have the following congruencies mapping table densities with trivial average density of 1 per class : 

 

Congruencies 0 mod pi ≠ 0 mod pi               (9) 
Densities → 1 → 1 

 

For pi = 2, there is no unique primitive root, but there is still equiprobability. 

 

The following remark is important. We mentioned probabilities. It is wise to do so when we consider a sufficiently large 

part of P. But when all of P is on the line, the concept is more than a simple probability : there is rather identity (or 

equivalence) strictly speaking. 

 

The case of the previous variable of integers x is trivial, but that of x
2
 or more generally those like x

m
 would not (we will 

see that for x
2
 and x

4
 below). Similarly, buildings are more developed for a variable of prime numbers y

2
 and more 

generally y
m

.  

But the projection method is the same for these examples as for all Diophantine equations. 

 

2.3. Case of a multifaceted expression  

 

Let us see this with the equation of Iwaniec and Friedlander.  

We can simply write (instead of c ≡ {{x1
2
}}+{{x2

4
}}+{{-y}}) the expression : 

 

c ≡ {{x1
2
+x2

4
-y}}            (10) 

 

Locally, that is modulo pi
ki
, looking for occurrences of the target c, means just to write a set of nested loops where the three 

variables y, x1 and x2 are incremented on a discrete domain (thus integers) :  

The previous equation (10), applied locally, is to be simply the following sequence of operations :  
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From y = 0 to pi
ki

-1 

If y = 0 mod pi goto next y otherwise 

From x1 = 0 to pi
ki

-1 

From x2 = 0 to pi
ki

-1 

c = x1
2
+x2

4
-y mod pi

ki
 

#(c) = #(c)+1 

Next x2  

Next x1  

Next y  

            (11) 

 

Let us give a few details fur these operations.   

- What interests us here is the evaluation of the expression #(c).   

- The order of the loops has no impact on results #(c). He is indifferent to start with y, x1 or x2 and continue in any order.   

- A local exploration is, for a given variable to test modulo pi
ki
 all values of the variable from 0 to pi

ki
-1. Of course an 

exploration from 1 to pi
ki
 would be a quite equivalent choice and giving the same result. 

- We find a conditional line after variable y that we do not find after variables x1 and x2. Indeed, y is a variable representing 

the set of prime numbers P. Thus, we have seen in paragraph 2.1 that the probability of a number of P to reach a value that 

is a multiple of pi is 0. We endorse this fact by jumping this instance each time that we face a multiple of pi. On the other 

hand, in paragraph 2.2, we have seen that a variable of integers xi is trivially equiprobable. There are therefore no additional 

conditions to be provided after such variables in nested loops.  

- As we look at a problem of enumeration of solutions, when the result of the operation x1
2
+x2

4
-y mod pi

ki
 provides a given 

value c, we store the number of occurrences in the counting variable #(c), thus the incremental operation #(c) = #(c)+1. 

 

The comparison of all values #(c), in reviewing c from 0 to pi
ki
-1, gives access to a local “probability” (here #(c)/(pi

3ki
.(pi-

1)) with two variables xi and one variable yj) of events.   

We will call #(c) = Fa(c) the factors of abundance of the target c. 

 

Performing the calculations for our example gives the following table limiting results to range pi between 2 and 29 and for 

ki = 1. 

 

pi ki c 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  #(c) = Fa(c) 

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 1 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 

5 1 16 19 17 25 23 16 19 17 25 23 16 19 17 25 23 16 

7 1 48 41 41 41 41 41 41 48 41 41 41 41 41 41 48 41 

11 1 120 109 109 109 109 109 109 109 109 109 109 120 109 109 109 109 

13 1 144 163 153 163 151 153 153 161 161 163 151 161 151 144 163 153 

17 1 256 275 271 265 275 265 281 281 271 271 281 281 265 275 265 271 

19 1 360 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 

23 1 528 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 

29 1 784 803 809 809 823 823 823 803 817 823 817 809 817 823 809 817 

 

It should be noted that during the execution of calculation, numbers in red font are not displayed. They must be added 

modulo pi
ki
 (so modulo pi here). 

 

It is useful, at this stage, to highlight a key point from the practical (and theoretical) point of view. 

 

3. Degree of stability  
 

Let us suppose that we evaluate from ki = 1 up to k, the local “probabilities” modulo pi
ki

 (mentioned above), and that the 

said relative probabilities are stabilizing from k on. We will then call k the local degree of stability (at the sequence pi). For 

some given problem, the degree of stability may vary from one sequence pi to another. We will call its maximum the 

degree of stability of the Diophantine equation. This degree may be finite or infinite, locally and/or for the maximum. 

 

If the degree is finite, the asymptotic enumeration is easier to achieve.  

If it is infinite, there may be still some way to identify a convergence of the different probabilities when ki tends towards 

infinity by a careful study. 

 

The degree of stability is finite (and equal to 1) for the monomials y1
m
, i.e. variables of prime numbers, but also for 

sufficiently symmetrical expressions like for example y1
4
+y1

3
.y2+y1

2
.y2

2
+y1.y2

3
+y2

4
 placed inside Diophantine equations (in 

this case equal to 1 locally except for pi = 2 and pi = 5 which degree is 2). 

 



P 5/20                                                    

This is not the case for monomials of variables of integers or for polynomials (therefore generating likely difficult problems 

for elliptic equations and more complex equations) for which sole remedy is to understand how relative occurrences evolve 

at infinity (of ki) and this for each pi as there is no formal reason for families (modulo some values) with similar behaviours 

to exist. 

 

In the example chosen for this article, it turns out that the degree of stability is equal to 1 for all p i (thus the systematic 

selection of ki = 1 made in the table of the previous paragraph). The presence of monomials of variables of integers is not 

an obstacle here because there is also a monomial of prime numbers which imposes its stability to the whole. 

 

4. Normalization of occurrences 

 

With the nested loops such as those numbered (11), we get occurrences of the target c. According to the number of 

variables, it is necessary to submit quantities to the right “probability”. The goal is to get an average per class, after 

calculation, weighted at 1. We call this normalization. 

 

Modulo p, we have for the variables of integers x and for a variable of prime numbers y : 

 

{{x}}p ≡ 
0 1 2 … p-1  

1 1 1 … 1  
 

{{y}}p ≡ 
1 2 3 … p-1  

1 1 1 … 1  

 

Note that c = 0 is absent in the second expression.  

  

For an additional variable : 

 

{{xi}}p ≡ 
0 1 2 … p-1  

1/p 1/p 1/p 1/p 1/p (i.e. ∑ = 1) 

 

{{yi}}p ≡ 
1 2 3 … p-1  

1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) (i.e. ∑ = 1) 

 

This operation is prolonged modulo p
δ
.   

 

- for a variable of integers, the cardinal obtained should be divided by p
δ
 at the sequence p, 

- for a variable of prime numbers, the cardinal obtained should be divided by p
δ-1

(p-1) at the sequence p.  

 

These ratios apply to each new entry of variables : k variable of integers → ratio 1/(p
δ
)

k
, m variables of prime numbers → 

ratio 1/(p
δ
.(p-1))

m
.    

To bring back the sum to p
δ
, we then perform a multiplication of the coefficients by p

δ
.  

Hence the rules : 

 

k variables of integers   → ratio r = 1/(p
δ
)

(k-1)
 

m variables of prime numbers  → ratio r = p
δ
/((p

δ-1
(p-1))

m
) 

k variables of integers and m variables of prime numbers  → ratio r = 1/(p
δ
)

(k-1)
/((p

δ-1
(p-1))

m
) 

 

This normalization results for our example in the following table : 

 

pi ki c 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  #(c) 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 1 1,333 0,833 0,833 1,333 0,833 0,833 1,333 0,833 0,833 1,333 0,833 0,833 1,333 0,833 0,833 1,333 

5 1 0,8 0,95 0,85 1,25 1,15 0,8 0,95 0,85 1,25 1,15 0,8 0,95 0,85 1,25 1,15 0,8 

7 1 1,143 0,976 0,976 0,976 0,976 0,976 0,976 1,143 0,976 0,976 0,976 0,976 0,976 0,976 1,143 0,976 

11 1 1,091 0,991 0,991 0,991 0,991 0,991 0,991 0,991 0,991 0,991 0,991 1,091 0,991 0,991 0,991 0,991 

13 1 0,923 1,045 0,981 1,045 0,968 0,981 0,981 1,032 1,032 1,045 0,968 1,032 0,968 0,923 1,045 0,981 

17 1 0,941 1,011 0,996 0,974 1,011 0,974 1,033 1,033 0,996 0,996 1,033 1,033 0,974 1,011 0,974 0,996 

19 1 1,053 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 

23 1 1,043 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 

29 1 0,966 0,989 0,996 0,996 1,014 1,014 1,014 0,989 1,006 1,014 1,006 0,996 1,006 1,014 0,996 1,006 

… … … … … … … … … … … … … … … … … … 

Fan(c)  1,225 0,796 0,664 1,627 0,915 0,621 1,252 0,842 1,037 1,557 0,646 0,891 1,035 0,948 1,095 1,009 
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We have here k = 2 variables of integers and m = 1 variable of prime numbers, with δ = ki = 1, i.e. a ratio ri = 1/(pi
δ
)

(k-

1)
/((pi

δ-1
(pi-1))

m
) = 1/(pi.(pi-1)) that was used for each of the lines.  

As the average of the values is adjusted to 1 on each line (modulo pi
ki
), the product by column Fan(c) indicates, depending 

on whether it is higher or lower than 1, the potential of the target c to give an excess or lack of solutions from the average. 

Here the solutions corresponding to c = 3 (Fan(3) = 1,627) are a priori 2,5 times more abundant than those of c = 2 (Fan(2) 

= 0.621). 

Of course, to get a more precise result the product must be realized for pi describing all of the set P.  

Let us notice that having big gaps of populations between targets will be welcome when we test our method numerically. 

 

It should be noted also that if all of the lines were adjusted to an average strictly greater than 1, respectively strictly lower 

than 1, infinite products would generally diverge (if not null), respectively would tend towards 0. This would be unusable 

in an asymptotic formula for counting. If such a formula exists, it can be derived with our method only after normalization.  

We will find these infinite products further. We call them normalized abundances factors. They have also in the literature 

the names of singular series or Euler products. However, to our knowledge, they are not obtained by a systematic method, 

such as the one proposed here.   

 

We now do much better. 

 

5. Construction of cardinal matrices  

 

We have shown so far how to get numerically what we called the factors of abundance. However, this is so far 

experimental work and we want a comprehensive calculation of these items. In the example, the pattern of the occurrences 

looks very simple for pi equal to 3, 7, 11, 19 or 23, but is more complicated for other values. 

 

In addition, when the degree of stability is not 1 and with a greater number of variables, the amount of calculations 

increases exponentially. So, it is essential to find a parry to the digital explosion.    

 

The solution is then, since the variables are independent from each other, to use the calculation loops of the elementary 

building blocks : 

 From y = 0 to pi
ki

-1 

If y = 0 mod pi goto next y otherwise 

c = (-y) mod pi
ki

 

#(c) = #(c)+1 

Next y 

       (12) 

 

 From x1 = 0 to pi
ki

-1 

c = x1
2
 mod pi

ki
 

#(c) = #(c)+1 

Next x1 

       (13) 

 

 From x2 = 0 to pi
ki

-1 

c = x2
4
 mod pi

ki
 

#(c) = #(c)+1 

Next x2 

       (14) 

 

There is no degree of stability for variables of integers due to one exception, namely c = 0 (but not for pi and multiples). 

Thus, we propose an alternative to this peculiar obstacle by avoiding it : we first calculate simulating a variable of prime 

numbers (which does not contain 0), which then allows effectively to establish a degree of stability, then we return to the 

case of the integers’ variable by using an extremely precious property which is given further : 

 

 From x1 = 0 to pi
ki

-1 

If x1 = 0 mod pi goto next x1 otherwise  

c = x1
2
 mod pi

ki
 

#(c) = #(c)+1 

Next x1 

       (15) 

 

 From x2 = 0 to pi
ki

-1 

If x2 = 0 mod pi goto next x2 otherwise  

c = x2
4
 mod pi

ki
 

#(c) = #(c)+1 

Next x2 

       (16) 

 

The degree of stability of each loop is then 1 (and for each pi) in our case.   

 

In fact, the proposed methodology requires, to make it the most effective possible, an essential and absolute rule of work : 

Always start considering all variables as variables of prime numbers.  
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Solving the proper problem is done in a second time. 

 

For each of the variables, one can build a square matrix that is representative of its individual action within a Waring sum, 

i.e. a sum of monomials of identical degree j (y
j
 or x

j
). A problem of counting involving t nested loops and thus t variables 

then translates in a result deriving from a matrix to the power t. This matrix, which we call cardinal matrix, (because it is 

used to count) is obtained through what we call a primitive root equation.   

It is, in general terms, the following expression : 

 

m(r,s) = {#(r,s) / or(0,gi
r-1

) = or(0,gi
u.d

)+ or(0,gi
s-1

.gi
v.d

) mod pi
ki
}              (17) 

 

Indeed, we seek the effect of the introduction of a new monomial zn+1
j
 in a Waring sum c = z1

j
+ z2

j
+…+ zn

j
 on #(c). This 

research is done by crossing classes of equal size, if they exist, which is the case when a primitive root is used to create 

these classes. Of course, integer 0 is to be taken into account also as it cannot be generated by a root primitive gi. 

 

Here m(r, s) is the component of the matrix on the r line and s column, and d = gcd(j,φ(pi
ki
). The parameters u and v are 

integers and are incremented from 0 to pi
ki

-1. During this incrementing, for each occurrence of gi
r-1

 = gi
u.d

+gi
s-1

.gi
v.d

 mod pi
ki
, 

and taking also into account 0, the operation #(r,s) = #(r,s)+1 is performed and m(r, s) are the end results of all the #(r,s) 

thus obtained. 

 

Initially, cardinal matrices have rank pi
ki
, but due to targets with identical number of occurrences (the patterns mentioned at 

the beginning of this paragraph), they can contract into smaller entities. Expression (17) already takes account of these 

associations with factor d = gcd(j,φ(pi
ki
)) playing a central role. 

 

The collection of occurrences #(c = gi
w
.gi

u.d
) is done by considering the classes of equal occurrences (u is generic in a class, 

and in our case we have either d = env = 1, d = 2, or d = 4). These classes present generic form based on a primitive root gi 

of pi (for pi > 2), any choice of primitive root providing the same classes within eventually a permutation. Matric results are 

collected in a column vector : 

 

#{0} 

#{gi
0
.gi

u.d
} 

#{gi
1
.gi

u.d
} 

… 

#{gi
d-1

.gi
u.d

} 

 

where #{gi
j
.gi

u.d
} ≡ #{gi

j
} for any u (as one can verify).  

 

Let us return to the case of the Iwaniec and Friedlander equation, with basic bricks -y, x1
2
 et x2

4
 already mentioned, whose 

representative matrices are noted [M0], [M1] and [M2] respectively.    

 

For a variable of integers x, the original square matrix [MI0] is rank pi (the degree of stability is 1) with all components 

equal to 1.    

 

The passage of a variable of integers to a variable of primes always results in the withdrawal of identity [I] to the initial 

matrix (the precious property referred to above). 

 

[M0] = [MI0]-[I]                (18) 

 

To simplify writings, we refrain from indexing i within pi and gi.   

According to the degree of potential contraction (linked directly to d), matrices for x (variable of integers) and y (variable 

of prime numbers) are as follows : 

 

 Var x  

or –x 
 [A]     

Var y  

or -y 
 [B] = [A]-[I]   

#{0} 
:  [MI0] =  

1 p-1     #{0} 
 :  [M0] = 

0 p-1    

#{g
u
} 1 p-1     #{g

u
} 1 p-2    

               

#{0} 

:  [MI0] =  

1 (p-1)/2 (p-1)/2    #{0} 

 :  [M0] = 

0 (p-1)/2 (p-1)/2   

#{g
2u

} 1 (p-1)/2 (p-1)/2    #{g
2u

} 1 (p-3)/2 (p-1)/2   

#{g.g
2u

} 1 (p-1)/2 (p-1)/2    #{g.g
2u

} 1 (p-1)/2 (p-3)/2   

               

#{0} 

 :  [MI0] =: 

1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{0} 

 :  [M0] = 

0 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4 

#{g
4u

} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g
4u

} 1 (p-5)/4 (p-1)/4 (p-1)/4 (p-1)/4 

#{g.g
4u

} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g.g
4u

} 1 (p-1)/4 (p-5)/4 (p-1)/4 (p-1)/4 

#{g
2
.g

4u
} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g

2
.g

4u
} 1 (p-1)/4 (p-1)/4 (p-5)/4 (p-1)/4 

#{g
3
.g

4u
} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-1)/4  #{g

3
.g

4u
} 1 (p-1)/4 (p-1)/4 (p-1)/4 (p-5)/4 
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For [M1] corresponding to x
2
, we have four useful formulations : 

 

For d = 1 

[M1] = 
1 p-1 

1 p-1 

 

For d = 2 and p = 3 mod 4 : 

 1 0 p-1 

[M1] = 2 (p-1)/2 (p-3)/2 

 0 (p+1)/2 (p-1)/2 

 

For env = 4 (d = 2) and p = 1 mod 8 : 

 

 1 (p-1)/2 0 (p-1)/2 0 

 2 x1+1 x2 x3 x4 

[M1] = 0 x2 x3+1 x4 x1+2 

 2 x3 x4 x1+1 x2 

 0 x4 x1+2 x2 x3+1 

where 

x1 

= 

(p-7)/4+(-1)
(β+1)/2

.(1/2).β 

 
x2 (p-1)/4+α.if(x4>x2,-1,1) 

x3 (p-3)/4-(-1)
(β+1)/2

.(1/2).β 

x4 (p-1)/4-α.if(x4>x2,-1,1) 

 

For env = 4 (d = 2) and p = 5 mod 8 : 

 

 1 (p-1)/2 0 (p-1)/2 0 

 2 x3+1 x4 x1 x2 

[M1] = 0 x4 x1+1 x2 x3+2 

 2 x1 x2 x3+1 x4 

 0 x2 x3+2 x4 x1+1 

where 

x1 

= 

(p-3)/4+(-1)
(β+1)/2

.(1/2).β 

 
x2 (p-1)/4+α.if(x4>x2,-1,1) 

x3 (p-7)/4-(-1)
(β+1)/2

.(1/2).β 

x4 (p-1)/4-α.if(x4>x2,-1,1) 

 

We will come back on the “env” later on.   

 

For [M2] corresponding to x
4
, we have again four other useful formulations: 

 

For d = 1 

[M2] = 
1 p-1 

1 p-1 

 

For d = 2 and p = 3 mod 4, the matrix is identical to the case x
2
 : 

 

 1 0 p-1 

[M2] = 2 (p-1)/2 (p-3)/2 

 0 (p+1)/2 (p-1)/2 

 

For p = 1 mod 8, we have d = 4 and : 

 

 1 p-1 0 0 0 

 4 x1-3 x2 x3 x4 

[M2] = 0 x2 x4+1 x5 x5 

 0 x3 x5 x3+1 x5 

 0 x4 x5 x5 x2+1 

where 

x1  (p+5)/4+(-1)
(β+1)/2

.(3/2).β  

x2  (p-3)/4+2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  

x3 = (p-3)/4-(-1)
(β+1)/2

.(1/2).β       

x4  (p-3)/4-2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  

x5  (p+1)/4+(-1)
(β+1)/2

.(1/2).β  

 

with integers’ decomposition of p 
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p = (2α)
2
+β

2
 

 

For p = 5 mod 8, we have also d = 4 and : 

 

 1 0 0 p-1 0 

 4 x3+1 x5 x3 x5 

[M2] = 0 x4 x5+1 x5 x2 

 0 x1 x2 x3+1 x4 

 0 x2 x4 x5 x5+1 

where 

x1  (p+1)/4+(-1)
(β+1)/2

.(3/2).β  

x2  (p+1)/4+2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  

x3 = (p-7)/4-(-1)
(β+1)/2

.(1/2).β       

x4  (p+1)/4-2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  

x5  (p-3)/4+(-1)
(β+1)/2

.(1/2).β  

 

with still same integers’ decomposition of p 

p = (2α)
2
+β

2
 

 

Each of these results here derives from a primitive root equation and its comprehensive study. In appendix 1, we provide 

some examples of numerical calculations using some general constructive rules of cardinal matrices. Each of these matrices 

displays by construction a sum equal to respectively p or p-1 per line depending on whether it represents a variable 

respectively of integers or of prime numbers (when the degree of stability is 1). 

 

The reader can see here the complexity of the literal formulas for simple monomials. To get an expression directly, without 

decomposition in independent terms, is hence quite illusory (and thus probably inaccessible to another approach than the 

one proposed here). 

 

We have three main situations (and two lower cases) to examine when the nested loops given in (11) are decrypted. Each of 

the variables, with assigned power, gives rise to a particular “environment” (9 environments here by the crossing of cases, 

plus 3 environments due to the subcase pi = 5 mod 8, which is in addition to pi = 1 mod 8). 

 

pi variable x
2
 variable x

4
 

variable -p Common 

multiple 
lower case 

2 1 1 1 1 / 

1 mod 4 2 4 1 4 pi = or(1,5) mod 8 

3 mod 4 2 2 1 2 / 

 

What we call environment is linked to the size (rank) of the matrix which gives an account of occurrences for a given basic 

brick rated generically {{z}}. The environment is equal to the rank of the matrix minus one unit.  

Thus : 

env{{z}} = rang{{z}}-1            (19) 

 

It turns out that any assembly of basic bricks can be treated by adopting a common environment which is the lowest 

common multiple (lcm) of the environments of each brick. 

 

The difference of 1 between rank and environment stems from the specific and systematic behaviour of target c = 0 in the 

assessment of occurrences, behaviour that we mentioned above and which extends into the matrix treatment.  

Any matrix of environment “env” can be transformed into a matrix of multiple environment k.env. These matrices can be 

multiplied after adjustment to the same environment (being of identical rank). The object is not to show in a short text the 

mechanism to get multiple environment matrix from another, nor to expand on the many properties of these matrices 

(“semi-hermicity”, common basis change matrices, formal writing as p functions of eigenvalues and eigenvectors, moving 

to a multiple environment by the rules attached to the eigenvalues, relationship with the Gauss sums, etc.). 

We just give away them. 

 

It should be noted that the asymptotic representatives (and the matrices) of y and y are identical as {1, 2, ..., pi-1} and {-1, -

2, ..., -pi+1} are the same modulo pi.     

 

Then, we get : 

 



P 10/20                                                    

For p = 2 

The case p = 2 resolves directly immediately showing the equality of occurrences : 

 

        2    

#{0} 
= [M0].[M1].[M2]. 

1 
= 

0 1 1 1  1 
= 

2 

#{g
u
} 0 1 0 1 1  0 2 

 

For p = 3 mod 4 

#{0}  1  1  p
2
-1 

#{g
2u

} = [M0].[M1].[M2]. 0 = [M0] p+1 = p
2
-p-1 

#{g.g
2u

}  0  p+1  p
2
-p-1 

 

For p = 1 mod 8 

 

#{0}  1  2p-1  2p-1  (p-1)
2
 

#{g
4u

}  0  4x1+6  p-1+2.(-1)
(β+1)/2

.β  p
2
-p+1-2.(-1)

(β+1)/2
.β 

#{g.g
4u

} = [M0].[M1].[M2]. 0 = [M0] 4x2 = [M0] p-1+4α.if(x4>x2,-1,1) = p
2
-p+1-4α.if(x4>x2,-1,1) 

#{g
2
.g

4u
}  0  4x3+2  p-1-2.(-1)

(β+1)/2
.β  p

2
-p+1+2.(-1)

(β+1)/2
.β 

#{g
3
.g

4u
}  0  4x4  p-1-4α.if(x4>x2,-1,1)  p

2
-p+1+4α.if(x4>x2,-1,1) 

 

For p = 5 mod 8 

 

#{0}  1  2p-1  2p-1  (p-1)
2
 

#{g
4u

}  0  4x3+6  p-1-2.(-1)
(β+1)/2

.β  p
2
-p+1+2.(-1)

(β+1)/2
.β 

#{g.g
4u

} = [M0].[M1].[M2]. 0 = [M0] 4x4 = [M0] p-1-4α.if(x4>x2,-1,1) = p
2
-p+1+4α.if(x4>x2,-1,1) 

#{g
2
.g

4u
}  0  4x1+2  p-1+2.(-1)

(β+1)/2
.β  p

2
-p+1-2.(-1)

(β+1)/2
.β 

#{g
3
.g

4u
}  0  4x2  p-1+4α.if(x4>x2,-1,1)  p

2
-p+1-4α.if(x4>x2,-1,1) 

 

Normalization consists in dividing cardinals by p
2-1

(p-1)
1
 = p(p-1). 

 

For p = 2 

Fan{c, 2} = 1 

For p = 3 mod 4 

Fan{0, p} 
= 

(p+1)/p 

Fan{g
u
, p} (p

2
-p-1)/(p.(p-1)) 

For p = 1 mod 8 

Fan{0, p}  (p-1)/p 

Fan{g
4u

, p}  (p
2
-p+1-2.(-1)

(β+1)/2
.β)/(p.(p-1)) 

Fan{g.g
4u

, p} = (p
2
-p+1-4α.if(x4>x2,-1,1))/(p.(p-1)) 

Fan{g
2
.g

4u
, p}  (p

2
-p+1+2.(-1)

(β+1)/2
.β)/(p.(p-1)) 

Fan{g
3
.g

4u
, p}  (p

2
-p+1+4α.if(x4>x2,-1,1))/(p.(p-1)) 

Pour p = 5 mod 8 

Fan{0,p}  (p-1)/p 

Fan{g
4u

, p}  (p
2
-p+1+2.(-1)

(β+1)/2
.β)/(p.(p-1)) 

Fan{g.g
4u

, p} = (p
2
-p+1+4α.if(x4>x2,-1,1))/(p.(p-1)) 

Fan{g
2
.g

4u
, p}  (p

2
-p+1-2.(-1)

(β+1)/2
.β)/(p.(p-1)) 

Fan{g
3
.g

4u
, p}  (p

2
-p+1-4α.if(x4>x2,-1,1))/(p.(p-1)) 

 

In these entries, please do not forget that all the results are identical modulo p
ki
, hence modulo p here. In particular, we have 

Fan{c\p, p} = Fan {0, p}.       

 

Let us go back to our example and take a sample of each type (the choice of primitive roots g is that of the smallest value, 

the results being identical for any other choice). 

 

 p g α β x2 x4 

3 mod 4 23 5 / / / / 

1 mod 8 17 3 2 1 8 0 

5 mod 8 29 2 1 5 8 12 

 

For p = 23 

Fa{0, p} 
= 

(p+1).(p-1) 
= 

528 

Fa{g
u
, p} p

2
-p-1 505 
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For p = 17 

Fa{0, p}  (p-1)
2
  256 

Fa{g
4u

, p}  p
2
-p+1-2.(-1)

(β+1)/2
.β  275 

Fa{g.g
4u

, p} = p
2
-p+1-4α.if(x4>x2,-1,1) = 265 

Fa{g
2
.g

4u
, p}  p

2
-p+1+2.(-1)

(β+1)/2
.β  271 

Fa{g
3
.g

4u
, p}  p

2
-p+1+4α.if(x4>x2,-1,1)  281 

 

For p = 29 

Fa{0,p}  (p-1)
2
  784 

Fa{g
4u

, p}  p
2
-p+1+2.(-1)

(β+1)/2
.β  803 

Fa{g.g
4u

, p} = p
2
-p+1+4α.if(x4>x2,-1,1) = 809 

Fa{g
2
.g

4u
, p}  p

2
-p+1-2.(-1)

(β+1)/2
.β  823 

Fa{g
3
.g

4u
, p}  p

2
-p+1-4α.if(x4>x2,-1,1)  817 

 

and it is necessary to check the relative values of x2 and x4, which depends on the initial choice of g. 

 

x2 = 
(p-3)/4+2α.if(x4>x2,-1,1)-(-1)

(β+1)/2
.(1/2).β 

For p = 17 = 1 mod 8 
x4 (p-3)/4-2α.if(x4>x2,-1,1)-(-1)

(β+1)/2
.(1/2).β 

et 

x2 = 
(p+1)/4+2α.if(x4>x2,-1,1)-(-1)

(β+1)/2
.(1/2).β 

For p = 29 = 5 mod 8 
x4 (p+1)/4-2α.if(x4>x2,-1,1)-(-1)

(β+1)/2
.(1/2).β 

 

For p = 17, iterated powers of g = 3 are :  

 

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

g
r
 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1 

 

The targets c from 1 to 15 are thus in the following families’ classification : 

 

 
g

4u
 g

4u
.g g

4u
.g

2
 g

4u
.g

3
 

c 

1, 

4, 

13 

3, 

5, 

12, 

14 

2, 

8, 

9, 

15 

6, 

7, 

10, 

11 

Fa(c) 275 265 271 281 

 

and x2 = 8 and x4 = 0 (with this choice of g).   

 

For p = 29, iterated powers of g = 2 are : 

 

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

g
r
 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 

 

The targets c from 1 to 15 are thus in the following families’ classification : 

 

 
g

4u
 g

4u
.g g

4u
.g

2
 g

4u
.g

3
 

c 

1, 

7 

 

2, 

3, 

11, 

14 

4, 

5, 

6, 

9, 

13 

8, 

10, 

12, 

15 

Fa(c) 803 809 823 817 

 

and x2 = 8 and x4 = 12 (with this choice of g).   

 

The reader may refer to the table at paragraph 2.3 to check the consistency of the results.   

 

Thus, we get after normalization : 

 

Fan(0) = П (1-1/p)  
p = 1 mod 4 

П (1+1/p)                                                         (20) 
p = 3 mod 4 

and 
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Fan(c ≠ 0) = 

 

П  1-((-1)
(p-1)/2

)/p . П (1- 
   1 

). П (1+ 
1+2a 

)  

 

 p \ c p.(p-1) p.(p-1)             (21) 

  p ∤ c  

p = 3 mod 4 

 

 
p ∤ c  

p = 1 mod 4 

c  = g
i
.g

4u 

 

 

where       

a = (-1)
(p+3)/4+int(i/2)

.if(i mod 2 = 0, (-1)
(β+1)/2

.β, 2α.if(x4>x2,-1,1)) 

and 

p = (2α)
2
+β

2
   α > 0, β > 0 

      (22) 

 

From previous matrices [M0], [M1] and [M2], we are able to evaluate the (normalized) factors of abundance of a 

Diophantine equation such as : 

 

x1
4
+x2

4
+…+xi

4
+xi+1

2
+xi+2

2
+…+xi+j

2
+y1

4
+y2

4
+…+yk

4
+yk+1

2
+yk+2

2
+…+yk+m

2
 = y+c 

 

Previously (for the enumeration of x1
2
+x2

4
 = y+c), the complete knowledge of the components of the matrices [M2] was not 

useful (the first quasi-trivial column knowledge was sufficient). For the general count however, it becomes indispensable. 

 

6. Asymptotic formula 
 

So far, our results allow us to compare the number of solution between targets. If we have an asymptotic formula counting 

solutions for c = 0, we can deduce a general formula for any target c by simply using the ratio Fan(c)/Fan(0).   

 Friedlander and Iwaniec study [1] settled the following formula for c = 0 (here Γ is the Gamma function) : 

 

lim #{x1
2
+x2

4
 = y} = 2

1/2
.(Γ(1/4))

2
/(3.π

3/2
).y

3/4
/Ln(y)

 
                              (23) 

y → ∞  

 

We get straightforward :  

 

lim #{ x1
2
+x2

4
 = y+c} = Fan(c).(1/(6.2

1/2
π

1/2
)).(Γ(1/4))

2
.y

3/4
/Ln(y) 

 
       (24) 

y →∞  

using : 

П 1-1/p . П 1+1/p = 4/π     
p = 1 mod 4   p = 3 mod 4  

 

7. Numerical application 
 

We have (1/(6.2
1/2

π
1/2

)).(Γ(1/4))
2
 ≈ 0.8740191847640399368216131966 and then according to formula (24) : 

 

lim #{x1
2
+x2

4
 = y+c} ≈ Fan(c).0,874019184764.y

3/4
/Ln(y)  

 
             (25) 

y → ∞  

 

This formula cannot be used directly without taking a few precautions as the distribution of the prime numbers near the 

origin shows a surplus compared to the formula : 

 

lim #{y} = y/Ln(y)
 

             (26) 
y → ∞  

 

Then let us write the count of prime numbers near the origin in the form : 

 

#{y} ≈ coef(y).y/Ln(y)
 

                                  (27) 

 

Let us have y(i) = y the i-th prime number. We have the following values : 

 
i 50 100 200 500 1000 2500 5000 10000 20000 30000 40000 50000 

y(i) = pi 229 541 1223 3571 7919 22307 48611 104729 224737 350381 479909 611953 

coef(yi) 1,1864 1,1633 1,1626 1,1454 1,1336 1,1221 1,1100 1,1037 1,0966 1,0931 1,0903 1,0887 

 

We will use these values to correct the initial counting formula of Friedlander and Iwaniec equation by writing : 

 

lim #{x1
2
+x2

4
 = y+c} ≈ Fan(c).0,874019184764.coef(y).y

3/4
/Ln(y)  

 
             (28) 

y → ∞  

 

In addition, we do an approximate calculation of the normalized factors of abundance Fan(c) taking the column products up 

to pi = 197, products given by the following table : 
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c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fan(c) 1,2548 0,8009 0,6628 1,6285 0,9182 0,6138 1,2209 0,8356 1,0220 1,5366 0,6424 0,8945 1,0326 0,9528 1,0948 1,0159 

 

 
 

The evolution of the curves Fan(c), when values of pi are increasing, stabilizes very early as shown in the previous graphic. 

One target shows as an exception, namely c = 0, for which undulations of the curve remain important throughout the area 

presented here, but however a trend exists. All factors expressed at the pi = 197 sequence are less than 2.5 percent of their 

values at the sequence pi = 29. 

 

We will now be able to test the formula Fan(c).0,874019184764.coef(y).y
3/4

/Ln(y) by comparing it to the effective number 

of solutions of the equation when y is increasing. The distribution of the solutions in a given volume, here delimited by the 

value y, is not necessarily homogeneous. The road to infinity is very long. We do not know a priori whether there may be 

concentration or scarcity of the solutions on this or that part of the volume.  

 

Let us consider the case of the 16 targets selected in a natural way (without skipping some that would be annoying) and for 

this we will check deviations from an average value. Thus, we will use the following equality : 

 

Σ(#{x1
2
+x2

4
 = y+c} - Fan(c).0,874019184764. coef(y).(y-ey)

3/4
/Ln(y-ey)) = 0                      (29)  

 

 

The unknown here is parameter ey and we evaluate the relative gap ey/y obtained when y increases. In practice, this gap 

should tend towards 0 when y is increasing (with coef(y) tending towards 1 at the same time). This gap being settled for an 

given y, we then check the target by target gaps. 

 

The results are : 

 

i 100 1000 10000 100000 1000000 10000000 

y(i) = pi 541 7919 104729 1299709 15485863 179424673 

eyi/yi -25,3% -21,6% -11,6% -6,8% -5,7% -4,0% 
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The ripple of ey/y actually takes a direction towards 0 % when y is increasing. 

 

For the number of solutions target by target and for given y, we get the following table : 

 

i y(i) c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10 c = 11 c = 12 c = 13 c = 14 c = 15 

100 541 21 10 19 34 16 14 25 17 24 31 11 19 21 23 27 20 

1000 7919 118 67 81 173 88 79 137 93 108 147 61 99 116 99 124 103 

10000 104729 623 382 385 863 461 333 672 429 558 780 341 466 533 510 558 534 

100000 1299709 3348 2058 1909 4508 2507 1659 3317 2257 2780 4080 1719 2450 2786 2606 2917 2744 

1000000 15485863 18101 11282 9935 23790 13253 9076 17460 12039 14864 22243 9274 12909 14901 13743 15782 14827 

10000000 179424673 97682 61200 51813 126733 70928 48005 94937 64465 79482 119508 49846 69138 80521 73767 84364 79028 

 

For the gaps of each of the targets, the ratios 

 

r(y,c) = (#{x1
2
+x2

4
 = y+c} - Fan(c).0,874. coef(y).(y-ey)

3/4
/Ln(y-ey))/ (#{x1

2
+x2

4
 = y+c})         (30) 

 

are given by the table : 

 

i y = y(i) c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10 c = 11 c = 12 c = 13 c = 14 c = 15 

100 541 -18,7% -39,3% 39,3% 1,4% -15,4% 10,8% -0,5% -1,2% 14,1% -2,0% -16,8% 3,2% -1,2% 17,3% 19,8% -4,4% 

1000 7919 -10,4% -20,3% 16,4% 1,2% -8,7% 22,6% 6,9% 6,0% 0,7% -8,9% -9,6% 5,4% 7,0% -1,0% 7,9% -3,4% 

10000 104729 -5,0% -8,7% 11,2% 1,4% -3,9% 3,8% 5,3% -1,8% 4,5% -2,9% 1,6% -0,3% -1,2% 2,4% -2,5% 0,6% 

100000 1299709 -1,4% -5,0% 6,4% 2,3% 0,9% -0,1% 0,4% -0,2% 0,5% -1,9% -1,1% 1,2% -0,3% 1,1% -1,6% -0,2% 

1000000 15485863 -0,4% -2,7% 3,5% 0,9% -0,3% 2,1% -1,2% -0,5% 0,5% 0,0% -0,3% -0,3% -0,3% -0,4% -0,4% 0,8% 

10000000 179424673 0,3% -1,5% 0,7% 0,3% -0,5% 0,8% 0,2% -0,6% 0,2% 0,2% 0,0% -0,4% 0,5% -0,2% -0,7% 0,3% 
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The population densities corresponding to any particular target vary along the “volume” y : the curves are undulating. 

Targets that follow less the expected approximate formula are here c = 1, c = 2 and c = 9. However, the trend toward 0 % is 

underway for all targets. 

 

8. Fugue et prelude 
 

This article is a case study, which gives general terms for the asymptotic enumeration of Diophantine equations. Many 

aspects of the method are not covered here including : 

 

- The constitution of global asymptotic formulas (i.e. the assessment of r and s in asymptotic formulas α.z
r
/Ln

s
(z)), 

- The type of completely solvable equations, 

- The genesis and properties of cardinal matrices, 

- The construction of the cardinal matrices of a given environment, 

- The classic examples (De Polignac, Hua, Catalan, Pillai, Waring, quadratic equations u.z1
2
+v.z1.z2+w.z2

2
) and  

more complex examples (z1
6
, z1

3
z1

3
+z1

2
.z2+z1.z2

2
+z2

3
, z1

4
+z1

3
.z2+z1

2
.z2

2
+z1.z2

3
+z2

4
), 

- Etc. 
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APPENDIX 1 

 

This appendix provides two examples of calculation of cardinal matrices related to the Friedlander and Iwaniec equation. 

The calculation is based on a general formulation for a cardinal matrix corresponding to the monomial x
n
 where d = 

gcd(n,p-1) and with a degree of stability that is equal to 1 (for the complete equation) : 

 

  1 λ0*/d λ0*/d … λ0*/d σ0 0 0 … 0 1 λ0/d λ0/d … λ0/d  

  1 λ1*/d λ2*/d … λd*/d 0 σ1 0 … 0 1 λ1/d λ2/d … λd/d  

[M] = (1/p) 1 λ2*/d λ3*/d … λ1*/d 0 0 σ2 … 0 1 λ2/d λ3/d … λ1/d       

  … … … … … … … … … … … … … … …  

  1 λd*/d λ1*/d … λd-1*/d 0 0 0 … σd 1 λd/d λ1/d … λd-1/d  

where  

λ0 = p-1 

and for u > 0 : 

λk = d.  ∑e
(-2πi/p).g^(k-1+r.d)

                

 r = 0 à (p-1)/d-1  

and 

σk = if(variable of integers,1,0) + λk 

 

In this entry, the complex number λk* is the complex conjugate of λk.  

If p = 1 mod 2d, then eigenvalues σk (and the λk) are real, as g
(u+(p-1)/(2d)).d

 = g
(p-1)/2

.g
u.d

 = -g
u.d

 mod p and the terms 

sin((2π/p).g
k-1+(u+(p-1)/(2d)).d

) + sin((2π/p).g
k-1+u.d

) = 0 offset each other in pairs.  

If p = 1 + d mod 2d, on the contrary eigenvalues σk (and the λk) have an imaginary part. 

 

We write the product of previous matrices as : 

 

[M] = (1/p).[λd*].[σd].[λd] 

 

The matrices [σd] and [λd] are complex according to the cases and [λd*] is, except for the first row and the first column, the 

transconjugate matrix of [λd]. In fact, matrices [λd] and [λd*] are contracted expressions of transconjugate (and unitary) 

basis change matrices of circular matrices. The eigenvalues of these basis change matrices are typically consisting of ∑ct.e
-

2πi.t.r/n
, hence the previous form of the λk. By the way, [Id] being the identity matrix of rank d, we have also : 

 

[λd*].[λd] = p.[Id] 

 

For what interests us here, we have d = 4, and we consider two cases. 

 

Case p = 1 mod 8. 

We take the example p = 17 and g = 3 

 

Calculation of λk/d 

λk/d =   ∑cos(2π/17.3
k-1+4r

) + i.∑-sin(2π/17.3
k-1+4r

) 

 

cos      -sin     

k        r 0 1 2 3  k        r 0 1 2 3 

1 0,445738 -0,273663 0,445738 -0,273663  1 0,895163 0,961826 -0,895163 -0,961826 

2 -0,982973 0,739009 -0,982973 0,739009  2 -0,183750 -0,673696 0,183750 0,673696 

3 -0,850217 -0,602635 -0,850217 -0,602635  3 -0,526432 -0,798017 0,526432 0,798017 

4 0,092268 0,932472 0,092268 0,932472  4 -0,995734 -0,361242 0,995734 0,361242 

 

Calculation of [λd] et [λd*] 

 1 4 4 4 4 

 1 0,344151 -0,487928 -2,905704 2,049481 

[λd] = 1 -0,487928 -2,905704 2,049481 0,344151 

 1 -2,905704 2,049481 0,344151 -0,487928 

 1 2,049481 0,344151 -0,487928 -2,905704 

 

 1 4 4 4 4 

 1 0,344151 -0,487928 -2,905704 2,049481 

[λd*] = 1 -0,487928 -2,905704 2,049481 0,344151 

 1 -2,905704 2,049481 0,344151 -0,487928 

 1 2,049481 0,344151 -0,487928 -2,905704 
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It is easy to check here that [λd*].[λd] = 17.[Id].  

 

Calculation of [σd]  

 17 0 0 0 0 

 0 2,376603 0 0 0 

[σd] = 0 0 -0,951713 0 0 

 0 0 0 -10,622814 0 

 0 0 0 0 9,197925 

 

Calculation of [M]  

 1 16 0 0 0 

 4 1 8 4 0 

[M] = 0 8 1 4 4 

 0 4 4 5 4 

 0 0 4 4 9 

 

This compares to  

 1 p-1 0 0 0 

 4 x1-3 x2 x3 x4 

[M] = 0 x2 x4+1 x5 x5 

 0 x3 x5 x3+1 x5 

 0 x4 x5 x5 x2+1 

where 

x1  (p+5)/4+(-1)
(β+1)/2

.(3/2).β  4  

x2  (p-3)/4+2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  8  

x3 = (p-3)/4-(-1)
(β+1)/2

.(1/2).β = 4       

x4  (p-3)/4-2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  0  

x5  (p+1)/4+(-1)
(β+1)/2

.(1/2).β  4  

 

with integers’ decomposition of p  

p = (2α)
2
+β

2
  

thus also α = 2 and β = 1. 

 

Case p = 5 mod 8. 

We take the example p = 29 and g = 2 

 

Calculation of λu/d 

λk/d =   ∑cos(2π/29.2
k-1+4r

) + i.∑-sin(2π/29.2
k-1+4r

) 

 

cos        

k          r 0 1 2 3 4 5 6 

1 0,907575 0,796093 -0,561187 -0,994138 -0,161782 -0,856857 -0,725995 

2 0,647386 0,267528 -0,370138 0,976621 -0,947653 0,468408 0,054139 

3 -0,161782 -0,856857 -0,725995 0,907575 0,796093 -0,561187 -0,994138 

4 -0,947653 0,468408 0,054139 0,647386 0,267528 -0,370138 0,976621 

 

-sin        

k          r 0 1 2 3 4 5 6 

1 0,419889 0,605174 -0,827689 0,108119 -0,986827 -0,515554 0,687699 

2 0,762162 0,963550 0,928977 -0,214970 0,319302 0,883512 -0,998533 

3 0,986827 0,515554 -0,687699 -0,419889 -0,605174 0,827689 -0,108119 

4 -0,319302 -0,883512 0,998533 -0,762162 -0,963550 -0,928977 0,214970 

 

Calculation of [λd] et [λd*] 

 1 7 7 7 7 

 1 -1,596291 1,096291 -1,596291 1,096291 

Re[λd] = 1 1,096291 -1,596291 1,096291 -1,596291 

 1 -1,596291 1,096291 -1,596291 1,096291 

 1 1,096291 -1,596291 1,096291 -1,596291 

and 
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 0 0 0 0 0 

 0 0,509188 -2,643998 -0,509188 2,643998 

Im[λd] = 0 -2,643998 -0,509188 2,643998 0,509188 

 0 -0,509188 2,643998 0,509188 -2,643998 

 0 2,643998 0,509188 -2,643998 -0,509188 

 

 1 7 7 7 7 

 1 -1,596291 1,096291 -1,596291 1,096291 

Re[λd*] = 1 1,096291 -1,596291 1,096291 -1,596291 

 1 -1,596291 1,096291 -1,596291 1,096291 

 1 1,096291 -1,596291 1,096291 -1,596291 

and 

 0 0 0 0 0 

 0 -0,509188 2,643998 0,509188 -2,643998 

Im[λd*] = 0 2,643998 0,509188 -2,643998 -0,509188 

 0 0,509188 -2,643998 -0,509188 2,643998 

 0 -2,643998 -0,509188 2,643998 0,509188 

 

It is easy to verify here that [λd*].[λd] = 29.[I] 

 

Calculation of [σd]  

 29 0 0 0 0 

 0 -5,385165 0 0 0 

Re[σd] = 0 0 5,385165 0 0 

 0 0 0 -5,385165 0 

 0 0 0 0 5,385165 

and 

 0 0 0 0 0 

 0 2,036750 0 0 0 

Im[σd] = 0 0 -10,575994 0 0 

 0 0 0 -2,036750 0 

 0 0 0 0 10,575994 

 

Calculation of [M]  

 1 0 0 28 0 

 4 9 4 8 4 

[M] = 0 12 5 4 8 

 0 0 8 9 12 

 0 8 12 4 5 

 

This compares to  

 1 0 0 p-1 0 

 4 x3+1 x5 x3 x5 

[M2] = 0 x4 x5+1 x5 x2 

 0 x1 x2 x3+1 x4 

 0 x2 x4 x5 x5+1 

where 

x1  (p+1)/4+(-1)
(β+1)/2

.(3/2).β  0  

x2  (p+1)/4+2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  8  

x3 = (p-7)/4-(-1)
(β+1)/2

.(1/2).β = 8       

x4  (p+1)/4-2α.if(x4>x2,-1,1)-(-1)
(β+1)/2

.(1/2).β  12  

x5  (p-3)/4+(-1)
(β+1)/2

.(1/2).β  4  

 

with integers’ decomposition of p  

p = (2α)
2
+β

2
  

so that α = 1 and β = 5. 
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APPENDIX 2 

 

CODE FOR PARI/GP 

 

Getting the exact number of solutions to x
2
+y

4
 = p+c with parameter q = pi (to be chosen). 

{i= 100000; 

q = primes(i)[i]; print(i); print(q);limit1 = floor(q^(1/2)); limit2 = floor(q^(1/4)); 

for(c = 0 , 15,  

s = 0 ;  

for(x = 0 , limit1,  

for(y = 0, limit2, t = x^2+y^4-c; 

if(isprime(t), 

if(t < q, 

s++))));  

print(s))} 

 


