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 Number Theory / Théorie des nombres 

 

The Siamese twins of the Zeta function zeros. 
 

Hubert Schaetzel 
 

 

Abstract  The Zeta function shares its zeroes with other functions. We propose the construction of the latter using a 

general model which allows studying a plethora of such objects. In addition, completing the list of 

nontrivial zeroes with a second infinite list, we can highlight the same effects, chiefly the generation of 

bundles of curves converging towards these zeroes, when we compare them at real abscissas 1/2 and 1, 

hence providing further insight on the Riemann's hypothesis. These results tip the scales on the famous 

conjecture side. 

 
 

  Les frères siamois des zéros de la fonction Zêta et les deux clefs de l’hypothèse de Riemann. 
 

Résumé  La fonction Zêta partage ses zéros avec d’autres fonctions. Nous proposons la construction de celles-ci à 

partir d’un modèle général ce qui permet d’en étudier une pléthore. De plus, complétant la liste des zéros 

non triviaux par une seconde liste infinie, nous pouvons mettre en évidence les mêmes effets, notamment 

la génération de faisceaux de courbes convergeant vers ces zéros, en comparant ceux-ci aux abscisses 

réelles 1/2 et 1, apportant ainsi un éclairage complémentaire sur l’hypothèse de Riemann. Ces résultats 

font pencher la balance du côté de la célèbre conjecture. 
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1.Context. 
 

The mathematical literature is abundant with evidence for the Riemann hypothesis [1]. One of the most important is the 

proof by André Weil in the 1940s of an analogue of this hypothesis for curves over a finite field [4]. We leave here also 

an analogy between two sets of mathematical objects, but it is closer still. We begin here also with an analogy, but 

somewhat closer, namely that of the sharing of the same equations by two collections of mathematical objects: the zeros 

of Riemann and some peculiar list of imaginary numbers 

 

Indeed, we stage the Siamese twins of Riemann zeros. We named them Dirichlet zeroes for practical reasons (and 

symmetry to respond to a name by another name). The most convincing echo for the Riemann hypothesis for us is the 

mere existence of these imitators with their constant real value up to infinity.  

 

2.Objectives. 
 

The first objective of this article is to show that any non-trivial Riemann zero (or Dirichlet zero) is a solution of the set 

of equations  
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  ∞   m   

FG1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.if(m = n,1,2).((m/n)i.b.F(m)+(m/n)-i..b.F(n)) = 0         (1)                                     

  m = 1     n = 1 

 

on one hand, and of the set of equations  

  

  ∞   m   

FG2∞(s) =   ∑   ∑ (-1)m+n.if(m = n,1,2).((F(n)/ma+i.b)+(F(m)/na+i.b)) = 0         (2)                   

  m = 1     n = 1 

 

on the other hand. 

 

The second objective is then to show that any solution s of one or the other of these families admits no distinct 

symmetric solution to the real axis 1/2. 

 

The Riemann hypothesis is then true. 

 

Note 1 : It is not necessary to get a proof for the second point for the two families of equations and only the first set is 

investigated.  

Note 2: Some conditions, little restrictive for your purpose and targets, apply to the function F for the FG1∞(s) or 

FG2∞(s) sums to be actually null. They will be specified later on. 

 

The second objective is achieved only summarily hereby. However, we will expose all the steps necessary to a proof. 

We are not in a position to judge whether what is said is enough or not.  

 

The hereby method of investigation is simple. We seek the (Dirichlet) Siamese zeros properties and we hope the 

equivalent for the Riemann zeros. It is so and it will result in numerous illustrations. 

 

3.The zeros of the Riemann Zeta function and of the Dirichlet Eta function. 
 

Let us have thus s = a + i.b, a complex number. Subsequently when necessary, we index a and b by r (for Riemann) or s 

(for Siamese or Dirichlet). We will also use, whenever necessary, s = s0 to designate a zero, that is a root of the given 

equation and s ≠ s0 to designate a different number than this zero. A point s in the neighbourhood of a zero s0 is denoted 

by s ≈ s0. When this sign is used, the said neighbourhood is taken small enough so that the stated property applies, 

without be reduced to s0 to the right or to the left. Signs may be cumulative. Thus s ≈ s0 and s ≠ s0 is a point in the 

neighbourhood of s0 different of this point. In addition, for graphics represented versus axis b, we will call b the abscissa 

(although ordinate would possibly be more appropriate). Thus, at a zero, we talk about Riemann abscissa or Dirichlet 

abscissa.  

Let us have also Ln(x) the natural logarithm of x. 

 

The Riemann Zeta function is defined for Re(s) > 1 by the series 

 

 ∞   

ζ(s) = ∑ 
1 

               (3) 
ms 

 m = 1   

 

For Re(s) > 0, it admits an analytic extension based on Dirichlet Eta series η(s). 

 

η(s) = (1-21-s).ζ(s)            (4) 

 

To find of the Riemann Zeta function zeros is therefore essentially to find of the Dirichlet Eta function zeros. The zeros 

of 1-21-s are the previously mentioned zeros, Siamese brothers of Riemann zeros.  

Hence we have the sets of solutions : 

 

{Dirichlet zeros} ≡ {Riemann zeros} U {Dirichlet zeroes}         (5) 

 

This being done, we still have to identify the list of common equations. We will however take necessary time for this. 

 

4.Fundamental theorems. 
 

These are general results of the theory of entire functions, that we will not prove again here. 
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Theorem 1 (principle of isolated zeros) 
 

Let us have f an analytic function in a field U, cancelling in a. Then, or f is identically zero, or there is a disk D of centre 

a, for which f(s) is non-zero, in any s in D other than a. [6] 

 

This theorem is inferred from the principle of the analytic continuation 

It is also called the principle of isolated zeros. 

 

Theorem 2  
 

The none-constant function f(a,b), represented according the a-axis, with b constant, is not constant on any interval 

Inverting a and b, the same applies. 

 

This is a simple corollary of theorem 1. 

We express by this that the function is not constant if a varies alone and is not constant if b varies alone. Simultaneous 

variations allow, of course, by continuity, to find a contradictory path. 

 

This theorem will be used constantly in this article, most of the time without mentioning it. 

 

5.Study at the boundaries of the critical strip. 
 

5.1.Upper boundary of the critical strip. 

 

We are taking of Re(s) = 1. 

 

Theorem 3 
 

ζ(s) admits no zero such as Re(s) = 1. 

 

This is a historic result that we will just set out without rewriting any proof. In 1896, Hadamard and De La Vallée-

Poussin independently proved that no zero could lie on the line Re(s) = 1, and therefore that all non-trivial zeros should 

lie inside the critical strip 0 < Re(s) < 1. This was to be a key result in the first full demonstration of the theorem of 

prime numbers [5]. 

 

The zeros of η (s) are those of ζ (s), but also those of 1-21-s. Further digital illustration shows moreover that these 

solutions are appropriate. The zeros of 1-21-s are equal to 

 

s = 1+i.2π.k/Ln(2)          (6) 

 

where k is any relative integer. ζ(s) is not defined at s = 1, the zero corresponding to the value k = 0 should therefore be 

dismissed. 

 

Hence, the η(s) function has an infinity of zeros with real value exactly equal to 1 and imaginary values worth 

2π.k/Ln(2), perfectly periodic. It also has an infinite number of other zeros, according to the general theory of entire 

functions [5][6], with the first billions all actually of real value equal to 1/2 in agreement with the Riemann 

hypothesis. What fly would have stung this function Eta, for suddenly, while indefinitely keeping custody to 1, 

choosing to waive custody to 1/2 ? 

 

The similarity does not end there for the remainder zeroes. In fact, if 2π.k/Ln(2) is the imaginary value of Dirichlet's k-th 

zero, 2π.k/Ln(k) is the asymptotic imaginary value of the Riemann's k-th zero (see [7]), the “asymptotic supplement” 

being linked to the infinite number of terms in ζ(s) instead of the unique 2 in 1-21-s. 

Hence the continuation of the relationship (6) : 

 

s → 1/2+i.2π.k/Ln(k)          (7) 

 

The asymptotic convergence, as is often the case when the logarithm function is present, is extremely slow : 
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Rank k 
sk = 

zeros at rank k 

ak = 

2π.k/Ln(k) 
sk/ak 

 

10 49,77383248 27,28752708 1,82405069 

100 236,5242297 136,4376354 1,73357028 

1000 1419,422481 909,5842359 1,5605179 

10000 9877,782654 6821,881769 1,44795571 

100000 74920,8275 54575,05415 1,37280354 

1000000 600269,677 454792,1179 1,31987705 

10000000 4992381,014 3898218,154 1,28068282 

100000000 42653549,76 34109408,85 1,2504922 

1000000000 371870203,8 303194745,3 1,2265061 

10000000000 3293531632 2728752708 1,20697329 

100000000000 29538618432 24806842797 1,19074477 

 

Let us have then the truncated function (indispensable to the implementation of the graphics) : 

 

 n   

ηn(s) = ∑ 
(-1)m-1 

         (8) 
ms 

 m = 1   

 

One gets the Eta function for n tending towards +∞ in ηn(s). 

We also have for a sum truncated at step n : 

 

 n n  

ηn(s) = ∑ m-a.(-1)m-1.cos(b.Ln(m))+i. ∑ m-a.(-1)m-1.sin(b.Ln(m))          (9) 

 m = 1 m = 1  

 

To get the zeros of η∞(s) means to solve the two equations : 

 

∞ 

∑ m-a.(-1)m-1.cos(b.Ln(m)) = 0        (10) 

m = 1 

and 

∞ 

∑ m-a.(-1)m-1.sin(b.Ln(m)) = 0        (11) 

m = 1 

 

Ask for truncated sums to step n 

 

 n 

TCn(a,b) = ∑ m-a.(-1)m-1.cos(b.Ln(m))         (12) 

 m = 1 

and 

 n 

TSn(a,b) = ∑ m-a.(-1)m-1.sin(b.Ln(m))         (13) 

 m = 1 

 

Let us draw the two curves TCn(a,b) and TSn(a,b) for a = 1 according to b for n about 1 000 000 (n = 220-1 in fact) 

 



p 5/53 

  
 

We observe that the TCn(a,b) function basically oscillates in the half plane above the y = 0 axis, exceeding nevertheless 

this axis regularly. On the other hand, the TSn(a,b) function oscillates around the same y = 0 axis crossing the y = 0 axis 

regularly at the same time as TCn(a,b). 

 

The first zero approximate value thus obtained is bs1 = 9,0647 and corresponds indeed to : 

 

bs1 = 2π/Ln(2)        (14) 

 

The regularity of the other solutions is obvious, what we proved with (3) and we write for other zeros : 

 

bsk = 2π.k/Ln(2)        (15) 

 

We call these imaginary numbers the Dirichlet zeroes as announced earlier. They are solutions of η(s) without being 

solutions of ζ(s) according to theorem 3. 

 

The following formulas are the result of the previous basic arguments : 

 

 k Є Z* 

 ∞   

 ∑ 
(-1)m-1 

 = 0               (16) 
m1+i.2π.k/Ln(2) 

 m = 1   

or  

 ∞   

 ∑ 
(-1)m-1 

 .cos(2π.k.Ln(m)/Ln(2)) = 0       (17) 
m 

 m = 1   

and 

 ∞   

 ∑ 
(-1)m-1 

 .sin(2π.k.Ln(m)/Ln(2)) = 0       (18) 
m 

 m = 1   

 

From trigonometric identity cos(x+φ) = cos(x).cos(φ) - sin(x).sin(φ), we draw more generally, for any constant φ 

argument : 

 ∞ 

TC∞(1,b,φ) = ∑ (-1)m-1.cos(2π.k.Ln(m)/Ln(2)+φ)/m = 0        (19) 

 m = 1 

 

For k = 0, we refer to the particular case of 

 

 ∞ 

Ln(1+x) = ∑ (-1)m-1.xm/m         (20) 

 m = 1 

 

taking x = 1, thus having immediately TC∞(1,0) = Ln(2) and TC∞(1,b,φ) = cos(φ).Ln(2). 
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5.2.Lower boundary of the critical strip. 

 

Because of the functional equation ζ(s) = 2π.πs-1.sin(π.s/2).Γ(1-s).ζ(1-s) established by Riemann, which the reader will 

find for example in [2], we may expect a certain analogy between the cases Re(s) = 1 and Re(s) = 0, especially for zeros. 

It is not so, as it is the 1-21-s factor which has an impact on zeros at Re(s) = 1 and this term does not vanish for s a pure 

imaginary. 

 

6.First steps among the non-trivial zeros. 
 

6.1.The waves’ separation. 

 

We have given below the approximate curves representing the real and imagined values of the η(s = a+i.b) function, for 

different values of a, with abscissa the b parameter. More specifically, it is TC1500(a,b,0) and TS1500(a,b,0) = 

TC1500(a,b,π/2) with successively a = 0 (in light blue), a = 0.125 (in grey), a = 0.25 (in red), a = 0.375 (in blue), a = 0.5 

(in pink), a = 0.625 (in black), a = 0.75 (in green), a = 0.875 (in sky blue), a = 1 (in yellow ochre), a = 1.125 (in night 

blue), a = 1.25 (in purple) and a = 1.5 (in dark grey).  

The Riemann abscissas are highlighted by a black dashed line and the Dirichlet abscissas by a red dashed line, below 

and throughout the whole article. 

 

The drawings show the relative positions of these curves. 

 

 
 

 
 

To indicate the positions of the Dirichlet zeroes in addition to the Riemann zeros allows to isolate a unique and 

systematic rising wave between two zeros, hardly visible when zeros are close. 

 

6.2.Proximity of zeros. 

 

Considering the imaginary parts only, there is a Riemann zero arbitrary close to a Dirichlet zero. 

 

Argument 
 

The gap between two zeros of Dirichlet is constant (and equal to 2π/ln (2)). It is a well-known fact [5] that the average 

difference between zeros of Riemann tends towards 2π/ln (b), b being  the imaginary value of the current zero. This 

average tends towards 0 when b increases and therefore the smallest gap between zeros of Riemann tends towards 0. For 

a "random" distribution, one will find imaginary values of the Riemann zeros, in average, closer and closer to a Dirichlet 

zero.  
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We will take the time to show that they cannot be the same (uniqueness of a for given b). 

 

7.Synthesis of cosine and sine curves in a single equation. 
 

7.1.Convergence and cancellation. 

 

The cancellation equation (16) is written in a single equivalent equation using squares : 

 

    ∞ ∞  

T∞(s) = T∞(a+i.b) =    (  ∑ m-a.(-1)m-1.cos(b.Ln(m)))2 + ( ∑ m-a.(-1)m-1.sin(b.Ln(m)))2  = 0        (21)  

    m = 1 m = 1  

 

For the first square, one gets so one term in cosine brought to the square and two terms otherwise, which are 

cos(b.Ln(r).cos(b.Ln(s))) and cos(b.Ln(s).cos(b.Ln(r)). We can therefore sum up by choosing r > s and adding a 

multiplicative factor of 2. 

 

Using the remarkable identities cos(r-s) = cos(r)cos(s)+sin(r)sin(s) and cos2(m)+sin2(m) = 1, the truncated development 

at step n is : 

 

   n   i  n    i  

 Tn(s) =  ∑   ∑ (i.j)-a.(-1)i+j.cos(b.(Ln(i)-Ln(j))).if(i=j,1,2) =  ∑    ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).if(i=j,1,2)          (22)  

   i = 1     j = 1  i = 1     j = 1  

 

This is not exactly a double sum, the second depending of the first one, but we will use regularly this term later on. In 

the same time, we note that this let us free of problems of summability for double sums. 

 
 

We will also use the shortcut of writing : 
 

or(1,2) = if(i=j,1,2)         (23) 

 

which means if i = j then take 1, otherwise take 2 

Then we have : 

   n  i  

 Tn(s) =  ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2)           (24)  

   i = 1    j = 1  

 

Alternatively, the other unambiguous expression is obtained by isolating the terms for which i = j : 

 

   n  n    i-1   

 Tn(s) = Hn(s) + An(s) =   ∑  i-2a  + 2   ∑     ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j))       (25)    

   i = 1  i = 1      j = 1     

 

This last presentation of the formula highlights the special case a = 1/2 and a = 1.   

Indeed, a = 1/2 is the radius of convergence of H∞(s), which is the harmonic series when a = 1/2. To pass from H∞(s)’ 

convergence to H∞(s)’ divergence certainly has a particular impact on the whole of the term Tn(s).   

For a = 1, H∞(s) converges, but the harmonic series is present to some extent in the second term by the (i.j)-a term when 

choosing i = 1 and j = 2, 3, 4..., that is 1/2, 1/3, 1/4, 1/5... by failing to see the other fractions. However, the possibility of 

a particular impact is more questionable. 

Amazingly, even if the harmonic series is here much better hidden when a = 1 than when a = 1/2, in fact, we fully know 

the zeros of T∞(s) in the first case (Dirichlet zeroes), while the second case remains the subject of speculations at this 

point (Riemann zeros). 

 

We represent graphically, for three different values of the pair (a,b), the evolution of the term Tn(s) when n increases. In 

the sample, we are located near the first (non-trivial) zero of the Eta function. 
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Evolution of the truncated sum as a function of n Evolution of the truncated sum as a function of n 

  

 

The first series of curves stopping at n = 150 allows to see figures of interference resulting from the trigonometric 

functions present in Tn(s). The second series stopping at n = 1500 shows the same thing but detail is no more perceived 

with this backwards step. 

 

We observe two types of behaviours on curves : 

 

In the case of a curve taken at (a,b) corresponding to a zero (here a = 0.5 and b ≈ 14.134725141), the curve representing 

Tn(s) becomes smooth (without any interference pattern). 

 

For the case of a curve (a,b) not corresponding to a zero, the curve fluctuates and form bellies and knots of interference. 

Then, we can consider two situations : 

 

The first situation is that interferences occur to infinity without depreciate completely and in this case the T∞(a,b) 

expression would oscillate indefinitely. There would be no convergence towards a constant number, so there would be 

no convergence towards zero either. This loophole would obviously confirm the Riemann guess. 

The second situation is a progressive damping (even if clearly very slowly) of oscillations and convergence towards a 

given constant value. In this case, the tangent of Tn(a,b) tends towards 0 when n → +∞. Even if it then no longer allows 

to conclude immediately to what concerns us here (that the Riemann hypothesis is true), this is certainly the usual 

situation since the general term of the series converges.  

It is worth noting that these descriptive aspects do not interfere in the upcoming demonstrations. 

 

We have charted the evolution of Tn=1500(a, b) in the critical strip for b < 100 and a number of values a (with the same 

colour code as above, also systematically used afterwards), as follows : 

 

 
 

As T∞(a, b) is a square, the whole set presents above the y = 0 axis, the axis being reached for the Riemann zeros (for a = 

1/2 in the studied area) and for the Dirichlet zeroes (for a = 1). 

 

The overall look is given by the two examples below : 

 

 One Zero  

 One Zero  
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Dirichlet zero Riemann zero 

  

Curves order decreasing with a 
Curves order reversing at a = 1/2  

(along vertical) 

 

Let us see the case, however, when zeros are relatively close, which requires a zoom in the neighbourhood of the zeros. 

 

  
 

This highlights the reversal of the two configurations (Riemann zero and Dirichlet zero). 

The inversion at a = 1/2 for the Riemann zeros is a simple scaling of what occurs in the same way for the Dirichlet 

zeroes at a = 1. The fact is that things are not as simple as that as we will see later on. 

Note: The graphics are based on approximate calculations that explains sometimes less stringent alignments (last chart). 

 

7.2.Successive derivations. 

 

One can derivate T∞(s) with respect to the parameters a or b several times since the function is holomorphic (at a ≠ 1). 

One yields : 

 

   ∞  i  

 C∞(m,n,s) =  ∑  ∑ (i.j)-a.(-1)i+j.(Ln(i.j))m.(Ln(i/j))2n.cos(b.Ln(i/j)).or(1,2)          (26)  

   i = 1    j = 1  

and 

   ∞  i  

 S∞(m,n,s) =  ∑  ∑ (i.j)-a.(-1)i+j.(Ln(i.j))m.(Ln(i/j))2n+1.sin(b.Ln(i/j)).or(1,2)          (27)  

   i = 1    j = 1  

 

When one derives versus a, a new factor in Ln(i.j) appears and therefore any full power in m exists. On the other hand, 

when one derives versus b, one gets a new factor in Ln(i/j) at the same time as cosine becomes sine and vice versa, 

whence exponents 2n and 2n+1 above. Of course, without recourse to the derivation, we can add a factor even or odd in 

Ln(i/j) respectively in front of sine or cosine. This then gives half n values in C∞(m,n,s) et S∞(m,n,s). 
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7.3.Walk upon a. 

 

Let us move stay then to a T∞(s) zero (s0 = a+i.b) and step out an epsilon versus a from this position.  

We have : 

   ∞  i  

 T∞(s) =  ∑  ∑ (i.j)-a-ε.(-1)i+j.cos(b.Ln(i/j)).or(1,2)          (28)  

   i = 1    j = 1  
 

As ε is small, we have 

(i.j)-ε = e-ε.Ln(i.j) = 1-ε.Ln(i.j)+ε².ln²(i.j)/2+0(ε²) 

 

Let us replace in the previous equation. It follows : 

 

   ∞  i ∞  i   

 T∞(s) =  ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2) - ε. ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).Ln(i.j) + 0(ε)         (29) 

   i = 1    j = 1 i = 1    j = 1 

 

The first double sum is zero since we located at a zero.  

We extracted ε from the second double sum since that term is the same for all elements of this sum.  

The terms in ε², ε3… are negligible compared to ε.  

By construction (sum of two squares), the term T∞(s) is positive. Developing up to second order, it comes 

 
  ∞  i ∞  i   

 T∞(s) = -ε. ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).Ln(i.j) +ε². ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).ln²(i.j)/2 + 0(ε²)   (30) 

  i = 1    j = 1 i = 1     j = 1 

 

We necessarily have, for the first double sum of the previous equation, a value equal to 0, otherwise we would have 

reversal of sign of T∞(s), for ε an infinitesimal, when ε changes sign (which is impossible since T∞(s) is positive by 

construction). Moreover, the second double sum must be positive or zero for the same reason. The second term is the 

curvature of the curve T∞(s) at a zero. It is necessarily non-null at the immediate neighbourhood of that zero (isolated 

zero theorem) and so the so-called double sum is non-null. 

 

Hence the two theorems : 

 

Theorem 4 
 

Let us have (a,b) corresponding to a Riemann or Dirichlet zero s0, then : 

 

   ∞  i   

 C∞(1,0,s = s0) =   ∑  ∑ (i.j)-a.(-1)i+j.Ln(i.j).cos(b.Ln(i/j)).or(1,2) = 0               (31) 

   i = 1     j = 1 

 

The converse is false, since C∞(1,0,s) also cancels with each crossing from a Riemann zero to a Dirichlet zero and each 

crossing from a Dirichlet zero to a Riemann zero (see third graph below). 

 

Theorem 5 
 

In the immediate neighbourhood of a Riemann or Dirichlet zero (a, b), we have (including for s = s0) : 

 

   ∞  i   

 C∞(2,0,s ≈ s0) =   ∑  ∑ (i.j)-a.(-1)i+j.(Ln(i.j))2.cos(b.Ln(i/j)).or(1,2) > 0               (32) 

   i = 1     j = 1 

 

The curves below give the look of truncated C1500(1,0,s) and C1500(2,0,s) functions. 
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Formula (31) illustration Curves order reversed at  a = 1/2 

 

  

Formula (31) illustration Curves order reversed at  a = 1/2 
(the curve for a = 1/2 does not join the y = 0 axis on the chart due to numerical approximations) 
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The last two graphs illustrate well theorem 5. The C∞(2,0,s ≈ s0) expression is positive for a = 1/2 near Riemann 

abscissas and is positive for a = 1 near Dirichlet abscissas. 

 

We give, in appendix 2, the approximate numeric values of C∞(2,0,s) for the first 500 Riemann zeroes and the first 500 

Dirichlet zeroes. The graphs below show in addition a few thousand of them. These numeric data are certainly not very 

accurate. What we have to retain here is that, from one zero to another, the values of C∞(2,0,s) vary quite much. 

However, by grouping the results by samples of 50, the average values vary, with a multiplicative factor, as the reverse 

of the average gaps between zeros of each type. Everything happens as if the mean curvature increases linearly with the 

lack of space. In addition, the curves’ curvatures at the Dirichlet abscissas express somehow their indifference to the 

Riemann zeros environment, since approximately constant like the gap between Dirichlet zeroes (this constant is close to 

half of the gap between two such zeros, that is π/Ln(2)). More numerous are the Riemann zeros, their relative amount 

gradually tending towards infinity in between Dirichlet zeroes. It is therefore somewhat unrealistic and unnecessary to 

check the indifference of the curvature at Riemann abscissas towards Dirichlet zeroes. We note simply that the values of 

the curvatures are inverse of the logarithm of br, the imaginary value of Riemann zeros, which can be compared to the 

gaps between the so-called zeroes. 

 

  
 

In the previous graph relating the Dirichlet zeroes of (first chart), the lower values correspond certainly to numeric errors 

caused by sums’ truncation.  
 

We can also compare the evolution of br or bs, imaginary values of one or the other type’s zero, compared with 

r.∑1/C∞(2,0,s) by adjusting with a multiplicative coefficient r. 
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The graphics are shown from the first 1000 zeros. 

Only the values near the origin do not fit. The coordinates are logarithmic to better view that. In linear coordinates, the 

red and blue curves would different little. 

 

Theorem 6 
 

The function C∞(1,0,s) below is strictly positive in the immediate neighbourhood of a Riemann or Dirichlet zero (it is 

null at this zero according to theorem 4). 

 

   ∞  i   

 C∞(1,0,s ≈ s0 et s ≠ s0) =   ∑  ∑ (i.j)-a.(-1)i+j.Ln(i.j).cos(b.Ln(i/j)).or(1,2) > 0              (33) 

   i = 1     j = 1 

 

Proof 
 

We have T∞(s) = 0 at a zero and T∞(s) > 0 (strictly) in the immediate neighbourhood of a zero by construction. The 

derivative of T∞(s), with respect to the variable a, is C∞(1,0,s). We have, according to the relation (30), in the immediate 

neighbourhood of a zero 

T∞(s) = -ε.C∞(1,0,s)+0(ε) 

 

where ε changes sign at the crossing of the said zero (referring to the earlier construction of this expression). In the 

immediate neighbourhood of a zero, C∞(1,0,s) is therefore of same sign before and after the said zero. As C∞(1,0,s) is 

holomorphic (and thus continuous and differentiable), after verification of the sign with one zero, the other 

neighbourhoods of zeros bearing same sign by the same relation, we conclude that C∞(1,0,s) is positive in the 

neighbourhood of a zero and null at this zero. 

 

Let us place then on C∞(1,0,s) which is extremum in a zero. Its derivative, versus b, is thus null at this zero.   

Let us write this derivative 
 

   ∞  i   

 -S∞(1,0,s) = -   ∑  ∑ (i.j)-a.(-1)i+j.Ln(i.j).Ln(i/j).sin(b.Ln(i/j)).or(1,2)               (34) 

   i = 1     j = 1 

 

Hence the theorem : 

 

Theorem 7 
 

Upon a Riemann or Dirichlet zero, we have : 

 

  ∞  i   

S∞(1,0,s = s0) =   ∑  ∑ (i.j)-a.(-1)i+j.sin(b.Ln(i/j)).or(1,2).((Ln(i))2-(Ln(j))2) = 0         (35)                   

  i = 1     j = 1 

 

The converse is false, since S∞(1,0,s) cancels also for the maxima of T∞(s) giving at least an intruder among two. 

We illustrate these results below. 
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We note effectively the intersections with the horizontal y = 0 axis to the Riemann abscissas for a = 1/2 and Dirichlet 

abscissas for a = 1. 

 

7.4.Walk upon b. 

 

Let us move again, at a non-trivial Riemann zero (s0 = a+i.b) and step out an epsilon versus b of this position.  

We have : 

   ∞  i  

 T∞(s) =  ∑  ∑ (i.j)-a.(-1)i+j.cos((b+ε).(Ln(i/j))).or(1,2)          (36)  

   i = 1    j = 1  

 

Using trigonometric identity, we get : 

 

cos((b+ε).Ln(i/j)) = cos(b.Ln(i/j)).cos(ε.Ln(i/j))-sin(b.Ln(i/j)).sin(ε.Ln(i/j)) 

 

As ε is an infinitesimal, we have : 

 

cos((b+ε).Ln(i/j))  = cos(b.Ln(i/j)).(1-(ε.Ln(i/j))²/2)-sin(b.Ln(i/j)).(ε.Ln(i/j)) + 0(ε²) 

 = cos(b.Ln(i/j))-ε.Ln(i/j).sin(b.Ln(i/j))-(1/2).ε².(Ln(i/j))².cos(b.Ln(i/j)) + 0(ε²)        (37) 

 

Replace in equation (36), it follows : 
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  ∞  i  ∞  i  

 T∞(s) = ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2) - ε. ∑  ∑ (i.j)-a.(-1)i+j.sin(b.Ln(i/j)).or(1,2).Ln(i/j) + 0(ε)         (38) 

  i = 1    j = 1 i = 1    j = 1 

 

By the same argument on the positivity of T∞(s), with the first term of the equation right member being null, it 

immediately induces the theorem : 

 

Theorem 8 
 

Let us have (a,b) corresponding to a Riemann or Dirichlet zero, then : 

 

   ∞  i 

 S∞(0,0,s) =   ∑  ∑ (i.j)-a.(-1)i+j.Ln(i/j).sin(b.Ln(i/j)).or(1,2) = 0               (39) 

   i = 1   j = 1 

 

The converse is false since the function S∞(0,0,s) cancels also for the T∞(s) maxima causing the appearance of an 

intruder every two cases (at least).  

The curves below give the look of truncated functions. 

 

 
 

  
Formula (39) illustration Order of curves reversed at a = 1/2  
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Formula (39) illustration Order of curves reversed at a = 1/2  

 

  
Formula (39) illustration Order of curves reversed at a = 1/2  

 

Theorem 9 
 

The C∞(0,1/2,s) function is negative (or null) in the immediate neighbourhood of a Riemann or Dirichlet zero (as well as 

at this zero). 
 

   ∞  i   

 C∞(0,1/2,s ≈ s0) =   ∑  ∑ (i.j)-a.(-1)i+j.(Ln(i/j))2.cos(b.Ln(i/j)).or(1,2) ≤ 0              (40) 

   i = 1     j = 1 
 

Proof 
 

Using the relation (37), we get in the neighbourhood of a zero 

 

T∞(s) = C∞(0,0,s0)-ε.S∞(0,0,s0)-ε2.C∞(0,1/2,s0)+0(ε2)         (41) 

 

As T∞(s) is a square, the first two terms C∞(0,0,s0) and S∞(0,0,s0) being null (by construction for the first term, by 

theorem 8 for the second term), the third term C∞(0,1/2,s0) is necessarily of negative sign, possibly zero, because of the 

ε2 square. Equality is certainly strict but this point is not proven here. 

 

8.Global order of curves. 
 

This paragraph has nothing essential but allows understanding the evolutions of the curves. For the moment, we 

interested in curves near the zeros (Riemann or Dirichlet). We now focus on the evolution of these away from these 

positions. 

 

8.1.Order of T∞(s) curves. 

 

Specifically, we seek to assess the order of the curves T∞(s) on all of the critical strip, and beyond to be complete, 

remaining at constant b = b0. 

 

He had previously 
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  ∞  i 

T∞(s = a+i.b) =  ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2)                (42)    

  i = 1    j = 1 

 

Consider two coordinates (a1,b0) and (a2,b0). The ratio of the general terms (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2) of (42), is 

equal to (i.j)-(a1-a2), which is thus independent of b. This multiplicative function, independent of b, acts exponentially 

on each of the terms in the evolution of T∞(s) with a. 

 

T∞(s) is a holomorphic function. Thus it is infinitely differentiable versus variable a or b (or s). Its derivative with 

respect to a, which is -S∞(0,0,s), is null at a zero as we have demonstrated at theorem 8.  

Moving away from a zero, the slope becomes steeper and that in an exponential manner. The zero acts as a centre of a 

“homothety”, in the geometric sense, this homothety being of a particular type (exponential and not linear). The term 

“homothety” reflects the involved phenomenon. It is an illustration and should not be taken in its flat literal sense. 

At a zero, by continuity, there is necessarily a range on which the order of curves is that of a (which reverses at the said 

point) with an exponential evolution. The evolution along the axis above a zero is necessarily alike this origin off 

perturbations. We call these perturbations the effects. 

 

The graphs below illustrate this introduction. 

 

8.1.1.Far away zeros. Separated effects. 

 

We first investigate the first ten Riemann zeros and the first ten of Dirichlet zeroes. 

 

Dirichlet abscissas 

 

  
 

We note that the curves on both sides of a = 1 are in the same order. This is because C∞(2,0,s) is the same when 

approaching from the right or left of a = 1 and the ratio is then held by homothety. However, this similarity is not 

eternal. Thus, the curves of zero n°2 and zero n°6 do switch in the range of graphics.  

 

The curves on the left tend to infinity. Curves on right tend underneath towards 1 asymptotically. 

 

  
 

Drawing the ratios T∞(s = a+i.bs) / T∞(s = a+i.bsref), where bsref is a chosen reference for bs (here the first zero, then the 

eighth zero, we get the following paces : 
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The peak, somewhat more on left that slightly distinguishes the curve corresponding to zero n°8 from the other zeros on 

the first chart, comes from the proximity with the 18th Riemann zero. When this zero is taken in reference, the other 

curves more or less have their maxima in the same region (with a shift to the right in this case). 

 

Riemann abscissas 

 

  
 

The look is similar to the Dirichlet zeroes curves with both sides’ order more or less respected at remote distance than 

previously.  

 

The curves on the left tend to infinity. Curves right tend towards 1 asymptotically downwards or upwards. 

 

  
 

The look is similar to curves for Dirichlet zeroes with both sides’ order, less respected at remote distance as previously. 
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Here, it is zero n°6 that offsets the maxima of curves to the right. It is close (relatively) of the 4th Dirichlet zero. The 

ratios at abscissas near a = 0.5 and a = 1 are obtained by unrefined smoothing. 

 

Intermediary abscissas between Riemann and Dirichlet zeroes 

 

In this case, we have two centres of homothety. The result is an additive effect on the look of the curves and the 

distortion may result in two minima de T∞(s) between these two zeros (curve in red here). The abscissas between the 

Riemann zero n°18 (br ≈ 72,0671576744819) and the Dirichlet zero n°8 (bs ≈ 72,5177622692351) perfectly illustrates 

this point. 
 

 
 

Intermediate summary  

 

The first ten examples at Riemann and Dirichlet abscissas show curves with similar looks with the expected minimum at 

a = 0.5 for the first of them and a = 1 for the latter.   

We call these "potential well" the attractive effect of zeros. 

 

8.1.2. Nearby zeros. Conjugated effects. 

 

We observe that, when two abscissas of distinct type are close, the two effects combine. The median curve at b = 72,208 

shows this at best.  

This combination of effects exists at any abscissa, intermediate or not. It is only a matter of degree of intensity. The 

examples below are eloquent. 

 

The first example shows the evolution of effects for a range of values of b between br ≈ 163,030709687 and bs ≈ 

163,164965105779. The combined effect is more pronounced here above a = 1 than above a = 0,5.   

For the second example, the Riemann abscissas br ≈ 716,112396454 and Dirichlet abscissa bs ≈ 716,112902408697 are 

so close that curves are not distinct at the drawing’s scale. Magnification at a = 0.5 and a = 1 would however show the 

expected order at these abscissas near the y = 0 axis. Under the conditions of the numeric application, the curve 

corresponding to bs ≈ 716,112902408697 is located under the curve corresponding to br ≈ 716,112396454 everywhere 

on the range [0.10], except a small interval around a = 0.5 (see underneath data, remembering approximations due to 

truncations used for compilations). 
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a T∞(s=a+i.br) T∞(s=a+i.bs) ΔT a T∞(s=a+i.br) T∞(s=a+i.bs) ΔT 

0,4 0,27003244 0,26992652 0,00010592 0,5 0,0001912 0,00019382 -2,6212E-06 

0,41 0,1997609 0,19968361 7,7292E-05 0,51 0,00113853 0,0011405 -1,9736E-06 

0,42 0,14413682 0,14408217 5,4653E-05 0,52 0,00367473 0,0036754 -6,7821E-07 

0,43 0,1007764 0,10073936 3,7043E-05 0,53 0,00733796 0,00733689 1,0716E-06 

0,44 0,06762549 0,06760185 2,3631E-05 0,54 0,01174731 0,0117442 3,1162E-06 

0,45 0,04291837 0,04290468 1,3697E-05 0,55 0,01659144 0,01658611 5,3248E-06 

0,46 0,02514142 0,0251348 6,6227E-06 0,56 0,02161857 0,02161098 7,5919E-06 

0,47 0,01300096 0,01299909 1,8753E-06 0,57 0,02662787 0,02661804 9,8334E-06 

0,48 0,00539504 0,00539604 -9,9943E-07 0,58 0,03146183 0,03144984 1,1983E-05 

0,49 0,00138852 0,00139091 -2,3888E-06 0,59 0,03599965 0,03598566 1,3992E-05 

0,5 0,0001912 0,00019382 -2,6212E-06 0,6 0,04015157 0,04013575 1,5822E-05 
 

Note : ΔT = T∞(s=a+i.br)-T∞(s=a+i.bs) 

 

General summary 

 

We complete the previous remarks.   

 

The look of T∞(s) curves, function of a, is characterized by effects of two kinds :  

- the effects related to the poles of the equation, that we can also appoint asymptotic effects,  

- the effects related to the zeros of the equation, also called zero attractive effect.   

 

The effects are all the more accentuated that actors are close (all zeros and poles interact). The effects are locally 

exponential (from the fact that a is an exponent) so that trends, once begun, are strong. 

 

The result of this is, following a from -∞ to +∞ :  

- a brutal decrease from infinity before abscissa ar = 0.5 (assuming the Riemann hypothesis)  

- a potential well around this abscissa ar, if one has s = ar+i.b with b sufficiently close to a br (imaginary value of a 

Riemann zero), the axis y = 0 being reached if s = sr = a+i.br where br is one zero Riemann,  

- a potential well around as = 1, if s = 1+i.b with b sufficiently close to a bs = 2k.π/Ln(2) (a Dirichlet zero imaginary 

value), axis y = 0 being reached in case of equality 

- a growth towards y-ordinate 1, possibly exceeded to return back to this axis if the last centre of homothety is strong 

enough to cause this temporary overflow,   

-an asymptotic branch y = 1, quickly reached with great precision. 

 

The purpose of all this numerical research is to find the worst scenarios within the a and b choices. The range of values b 

≈ 716,112 to 716,113 turns out be such a case and deserves to be examined closely later on. 

 

8.2.Order of curves C∞(1,0,s). 

 

We proceed as previously.   
 

The look of the curves is familiar after the previous paragraph. 
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Dirichlet abscissas 

 

  
 

  
 

Riemann abscissas 

 

  
 

  
 

As C∞(1,0,s) is not a square as was T∞(s), the curves cross the y = 0 axis at a = 0.5 and a = 1 at the zeroes’ abscissas. 
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8.3.Order of curves C∞(2,0,s). 

 

The series is the following  

 

   ∞   i  

  C∞(2,0,s) = ∑  ∑ (i.j)-a.(-1)i+j.or(1,2).cos(b.Ln(i/j)).(Ln(i.j))2 > 0                  (43)       

   i = 1     j = 1  

 

Dirichlet abscissas 

 

  
 

The curves do not through the same point, the multiplicative ratio presented above has no more meaning here. 

 

Riemann abscissas 

 

 
 

Now, curves do no more cross axis y = 0 together.   

Is there another equation extending, beyond the first derivative, such a clustering ? 

 

9.The wall-through 
 

This paragraph prevails over everything else (besides the Riemann hypothesis).  

 

9.1.Remarkable infinite sums. 

 

Let us note first that when the cosine is involved in our infinite sums, we have Ln(i.j) = ln (i)+Ln(j) factor, and that when 

the sinus occurs, we have Ln(i/j) = ln (i)-Ln(j) factor. 

 

Let us summarize some of our results using the previous specified logarithm development.  

Let us have (a,b) a Riemann or Dirichlet zero.  

The referee equation for these zeros is 
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 ∞  i  

 ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).(Ln(i))0+(Ln(j))0)  = 0             

 i = 1    j = 1  
 

and we have trivially  

 ∞  i  

 ∑  ∑ (i.j)-a.(-1)i+j.sin(b.Ln(i/j)).or(1,2).(Ln(i))0-(Ln(j))0)  = 0             

 i = 1    j = 1  
 

From theorem 4 

  ∞  i   

  ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).(Ln(i))1+(Ln(j))1) = 0               

  i = 1     j = 1 
 

From theorem 8 

 ∞  i 

 ∑  ∑ (i.j)-a.(-1)i+j.sin(b.Ln(i/j)).or(1,2).(Ln(i))1-(Ln(j))1)  = 0        

 i = 1   j = 1 
 

From theorem 7 

 ∞  i  

 ∑  ∑ (i.j)-a.(-1)i+j.sin(b.Ln(i/j)).or(1,2).(Ln(i))2-(Ln(j))2)  = 0          (44)             

 i = 1    j = 1  
 

We propose to succeed : 
 

  ∞  i   

  ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).((Ln(i))2+(Ln(j))2) = 0          (45)               

  i = 1     j = 1 

 

We isolate this relation by circumstantial necessity. Indeed, it appears not as a natural derivative as its sister formula of 

theorem 7. 

 

Let us first illustrate these two sisters’ functions noted respectively LS∞(2,s) and LC∞(2,s). 

 

 
 

  
 

As hoped, intersections at Riemann and Dirichlet abscissas take place on y = 0 axis for a = 1/2 and a = 1 respectively. It 

is worth noting however that these are not extrema at these points. 
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Again, the intersections at Riemann and Dirichlet abscissas take place on y = 0 axis without another remarkable fact. 

 

We take interest below specifically to the values a = 1/2 and a = 1 by placing the two curves LC∞(2,s) and LS∞(2,s) on 

the same graphics. These views are reminiscent of the graphs on page (4). 
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The intersection with the y = 0 axis takes place at the Riemann abscissas for the two curves without so at Dirichlet 

abscissas. 

 

 
 

  
 

The intersection with the y = 0 axis takes place at the Dirichlet abscissas for the two curves without so at Riemann 

abscissas. 

 

Let us go back to the relation (45) and to  

 

   ∞   i  

  C∞(2,0,s)   = ∑  ∑ (i.j)-a.(-1)i+j.or(1,2).cos(b.Ln(i/j)).(Ln(i)+Ln(j))2              (46)  

   i = 1     j = 1  

 

This expression is reminiscent of C∞(0,1/2,s) that can be found in (40) which was negative (or null) for of Riemann or 

Dirichlet zeroes. 

   ∞  i   

 C∞(0,1/2,s) =   ∑  ∑ (i.j)-a.(-1)i+j.or(1,2).cos(b.Ln(i/j)).(Ln(i)-Ln(j))2              (47)    

   i = 1     j = 1 

 

Then let us start from expression 
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    ∞ ∞  

LN2∞(s) =    (  ∑ m-a.(-1)m-1.cos(b.Ln(m)).Ln(m))2 + ( ∑ m-a.(-1)m-1.sin(b.Ln(m)).Ln(m))2         (48)  

    m = 1 m = 1  

 

As the sum of two squares, it is necessarily positive or null. Developing and grouping the terms as we did in (22), we get 

: 

 

  ∞    i  

 LN2∞(s) = ∑    ∑ (i.j)-a.(-1)i+j.or(1,2).cos(b.Ln(i/j)).Ln(i).Ln(j) ≥ 0         (49)  

  i = 1      j = 1   

 

But (Ln(i.j))2 = Ln(i)2+2Ln(i).Ln(j)+Ln(j)2 and (Ln(i/j))2 = Ln(i)2-2Ln(i).Ln(j)+Ln(j)2.  

Thus  

   ∞  i  

  C∞(2,0,s)   = 2.LN2∞(s) + ∑  ∑ (i.j)-a.(-1)i+j.or(1,2).cos(b.Ln(i/j)).((Ln(i))2+(Ln(j))2)             (50)  

   i = 1    j = 1  
 

Let us write  

   ∞  i  

  LC∞(2,s) = ∑  ∑ (i.j)-a.(-1)i+j.or(1,2).cos(b.Ln(i/j)).((Ln(i))2+((Ln(j))2)               (51)  

   i = 1    j = 1  

 

We then have to summarize 

C∞(2,0,s) = 2.LN2∞(s)+LC∞(2,s)                (52) 

-C∞(0,1/2,s) = 2.LN2∞(s)-LC∞(2,s)                (53) 

 

LN∞(2,s) is a square by construction and the positive or negative walks of LC2∞(s) do not interfere with the positivity of 

C∞(2,0,s) or -C∞(0,1/2,s) at Riemann or Dirichlet zeroes. 

 

Dirichlet abscissas 

 

The chart below is a summary of the evolution of LC∞(2,s) as a function of parameter a in the critical strip and beyond a 

= 1 (only really useful point here). The second chart is a simple zoom along the y axis of the first chart aimed 

particularly at the area around a = 1. 

 

  
 

We observe that the function LC∞(2,s) decreases in any interval a = 0 to 1,25 represented here and crosses the y = 0 axis 

at abscissa a = 1 as announced. Our argument for the Riemann zeros is similar in all respects to that above. 

 

Riemann abscissas  

 

The chart below is a summary of the evolution of LC∞(2,s = a+i.b) as a function of a, around a = 1/2 (only really useful 

point here) for different b values corresponding to the imaginary values of the Riemann and Dirichlet zeroes. Again, the 

second chart is a simple zoom along the y axis of the first chart going beyond a = 1/2. 

 

As previously, numerical applications show that the function crosses through the y = 0 axis at the Riemann abscissas, 

here for a = 1/2. It decreases in the interval [0, 1/2], continues to decrease beyond, but increases then again. 
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9.2.The wall-through equations. 

 

It now time to find equations as general as possible with Riemann and Dirichlet zeroes as common solutions. One thinks 

immediately to the L functions (of all types) and in particular those associated with Dirichlet characters. We did not take 

this axis of research preferring a simpler way which provides us with a range of functions with much smaller 

requirements.   

 

As a first step, we do only some observations from numerical examples, the theoretical part being postponed to the 

general case. 

 

According to our investigations, there are at least two types of general equations. 

 

9.2.1.The first type of general equations. 

 

First generalisation 

 

Let us come back then to our series of expressions. It is natural, the reader will agree, to generalize the relations to the 

powers 3, 4, etc. and then to intermediate powers. 

 

Thus let us write : 
 

  ∞  i   

LC∞(r,s) =   ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)).or(1,2).((Ln(i))r+(Ln(j))r)          (54)                   

  i = 1     j = 1 

 

  ∞  i   

LS∞(r,s) =   ∑  ∑ (i.j)-a.(-1)i+j.sin(b.Ln(i/j)).or(1,2).((Ln(i))r-(Ln(j))r)          (55)                   

  i = 1    j = 1 

 

  ∞  i   

LM∞(r,s,φ,θ) =   ∑  ∑ (i.j)-a.(-1)i+j.cos(b.Ln(i/j)+φ).or(1,2).((Ln(i))r+θ.(Ln(j))r)          (56)                   

  i = 1    j = 1 

 

The function LC∞(r,s) converges for r = 0 and r = 1 when s = a+i.b is in the critical strip. As, for all r and for all ε > 0, 

Lnr(x)/xε → 0+ when x → +∞, we have still the convergence of LC∞(r,s) for all r in the critical strip (having removed 

lnr(1) which as a null contribution). The same holds for LS∞(r,s).  

 

Theorem 10 
 

Let s = (a, b) be a Riemann or Dirichlet zero.  

For any real positive or null real number r 

LC∞(r,s) = 0           (57) 
 

Theorem 11 
 

Let s = (a, b) be a Riemann or Dirichlet zero.  

For any real positive or null real number r 

LS∞(r,s) = 0           (58) 

 

Everything looks as if logarithms crossed the double sum thus still producing null products when T∞(s) is null. One can 

see the same type of phenomenon with indefinite integrals (instead of infinite sums), what we called wall-through in 
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other articles, term that we have reused here. This was involving Diophantine equations with asymptotic branches where 

logarithms 'crossed' the integral symbol. In the same way here, the logarithms cross twice somehow the (double) sum 

sign.   

However, his wall-through is quite different as it applies not only to logarithms as we will see later on. 

 

Theorem 12 
 

For all real numbers -π/2 ≤ φ ≤ 0 (enabling crossing from cosine to sine) and 0 ≤ r, there exists θ such as : 

 

LM∞(r,s,φ,θ)  = 0           (59) 

 

Being an intermediate equation between the previous two, by virtue of the continuity of functions, this relation is 

obvious and there is therefore nothing to prove more than the theorems (10) et (11). The study of variations of θ versus r 

and φ deserves certainly a longer look. However, numerical applications show a rather difficult to understand behaviour. 

 

  

  

  
 

We see with some astonishment the possibility of excursion of θ outside the interval [-1,1] (here for Dirichlet zero n°2), 

even if it is unusual.  

The order of the curves seems to be respected in the case of Dirichlet zeroes (curve above the other for lower r and vice 

versa). Order seems also respected for Riemann zeros but with a round-trip (analogue to round-trips evoked to solve the 

Riemann hypothesis). The highest curve change from one zero to another (r ≈ 0 for zero n ° 1, r ≈ 1 for zero n ° 2, r ≈ 2 

for zero n ° 18). 
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It is to be noted that the connection at (φ,θ) = (0,1) is inaccurate, when r is large (here r = 10). This follows again from 

the truncation of the functions.  

 

Rewriting with complex numbers 

 

Let us bring together the equations by writing  

 

L∞(r,s) = LC∞(r,s)+i.LS∞(r,s)            (60) 

 

Using the imaginary number i, we switch the indices i and j in the double sums for m and n. We get : 

 

  ∞   m   

L∞(r,s) =   ∑   ∑ (m.n)-a.(-1)m+n. or(1,2).(exp(i.b.Ln(m/n)).lnr(m))+exp(-i.b.Ln(m/n)).lnr(n))          (61)                   

  m = 1     n = 1 

 

This is also : 

  ∞   m   

L∞(r,s) =   ∑   ∑ (m.n)-a.(-1)m+n.or(1,2).((m/n)i.b.lnr(m)+(m/n)-i..b.lnr(n))          (62)                   

  m = 1     n = 1 

 

Let us note besides that the result remains true for negative r.  

 

Generalization 

 

The substitution Lnr(x) → F(x) give a more general turn to the previous equation.  

We have then : 

 

  ∞   m   

FG1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.or(1,2).((m/n)i.b.F(m)+(m/n)-i..b.F(n))          (63)                   

  m = 1     n = 1 

 

Theorem 13 

 

Let us have s a Riemann or Dirichlet zero. If FG1∞(s) converge, then FG1∞(s) = 0.  

 

Proof 

 

Let us make the list of the terms including F(r), r being an integer given in advance, when we develop the expression 

FG1∞(s). This gives : 

                                                                         ∞   

 r-2a.(-1)2r.(r/r)i.b.F(r)+r-2a.(-1)2r.(r/r)-i..b.F(r)+2 ∑ (r.n)-a.(-1)r+n.(r/n)i.b.F(r)                               

                    
                                                                       n = 1 

                                                                       n ≠ r 

 

We distinguished the case n = r, but it is easy to reintroduce the term into the sum, so that : 

 

           ∞   

 2.F(r).∑ (r.n)-a.(-1)r+n.(r/n)i.b                                       

             n = 1 

which is also 

                                ∞   

 2.(-1)r. (1/r)a-ib.F(r).∑ (-1)n.(1/n)a+i.b                                       

                                  n = 1 

 

Getting all terms together, we have then : 

 

     ∞  ∞   

FG1∞(s) =   2 ∑ (-1)r.(1/r)a-ib.F(r).  ∑ (-1)n.(1/n)a+i.b           (64)                                     

     r = 1    n = 1 

 

The second sum is precisely the Dirichlet Eta function, which cancels at the Riemann and Dirichlet zeroes. One can then 

expect the same for FG1∞(s). However, it is necessary here to consider the respective evolutions of the first and second 
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sums when r and n grow towards infinity. Our product was written somewhat rapidly without taking account of any 

relationship between r and n when we develop the initial double sum FG1∞(s). It is better to write here : 

 

                 r   r   

FG1∞(s) =   lim      2 ∑ (-1)m.(1/m)a-ib.F(m).  ∑ (-1)n.(1/n)a+i.b           (65)                                     

  r → ∞    m = 1    n = 1 

 

Thus FG1∞(s) will cancel at the Eta function zeros if and only if the first sum does not diverge too fast while the second 

sum converge. The divergence phenomena due to the first sum is instantaneous when F(x) get too large as F(x) is factor 

of an exponential term (that is (1/m)a-ib). Hence the product FG1∞(s) either cancels, either diverges. Thus, when we chose 

to say FG1∞(s) cancels if FG1∞(s) converges, we get free of an explicit determination of F(x) to effectively realize this 

annulation. 

 

We can nevertheless try to get such a determination. For that, let us consider the dominant terms of each of the sums and 

let us ignore the factors without effect on the module, that is rib and its opposite. This simplification gives however a 

speculative turn to what follows. We then have to compare ∑ (-1)n.(1/n)a.F(n) and ∑ (-1)n.(1/n)a. Thus, the divergence of 

the first sum will be faster than the convergence du second as soon as F(x) ≥ x2a asymptotically. 

In particular, all the terms like F(x) = Lnr(x) will be illegible for convergence (and annulation) of the product. 

 

Splitting of real and imaginary parts 

 

Using cos(x) = (exp(i.x)+(exp(-i.x))/2 et sin(x) = (exp(i.x)-(exp(-i.x))/2, we get the corresponding real and imaginary 

parts : 
 

  ∞   m   

FC1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.or(1,2).cos(b.Ln(m/n)).(F(m)+F(n))          (66)                   

  m = 1     n = 1 

and 

  ∞   m   

FS1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.or(1,2).sin(b.Ln(m/n)).(F(m)-F(n))          (67)                   

  m = 1     n = 1 

 

We get : 

 

Theorem 14 

 

Let us have s a Riemann or Dirichlet zero. If FC∞(s) and FS∞(s) converge, then FC1∞(s) = 0 and FS1∞(s) = 0 

simultaneously.  

 

Illustration of LC∞(r,s) and LS∞(r,s) 

 

We give below a sample of the variations of LC∞(r,s) and LS∞(r,s) as a function of a when this parameter varies in the 

interval [0,2] for r values between 0.5 and 5 and for different b values corresponding to Riemann and Dirichlet zeroes  

imaginary values (thus the terminology ‘Riemann or Dirichlet abscissas’ and ‘zeros n°’). 
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We can observe behaviour on the same pattern but with significant variations from one case to another. It seems difficult 

to give an a priori estimate of LC∞(r,s) apart from those of Riemann or Dirichlet abscissas.  

As graphics from truncated functions, the reader will not be surprised of vagueness at the intersection with the x-axis. 

We note the attraction of the centre of homothety at a = 0.5 for the curve corresponding to the Dirichlet zero n°8 which 

is somewhat bullied by the pole a = -∞, with more pronounced effect as r increases. 

 



p 32/53 
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Let us check the curves’ look for a case of relatively marked conjugated effects. 

 

  

  

  
 

At remote distance, the cosine curves are very close. 
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Strangely enough here, the sine curves have differences between them much more marked than previous cosine curves, 

even remotely. This feature is certainly not a generality. 

 

To finish with, let us have a look on curves for very marked conjugated effects.  Note that this type of curves’ look is not 

uncommon. It is even a general pattern around a Dirichlet zero of high number (anticipating later remarks). 
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The curves are identical to a small shift in a. At the Riemann abscissa, the curves intersect (badly) before a = 1 and the 

Dirichlet abscissa, the curves intersect (badly) beyond 0.5.  

It is easier to have a good accuracy of graphics, despite truncations, near a = 1 than near a = 0.5 (problem of parallax 

versus verticals with step Δa = 0.02). 
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With hindsight, sine curves appear symmetrical to cosine curves versus the x-axis. This symmetry is only a semblance of 

symmetry. The curves obtained by summing cosine and sine still give curves similar to the previous ones, just being an 

example of an intermediate curve LM∞(r,s,φ,θ) that we will expose underneath after the three illustrative examples. 

 

Illustration of FC1∞(s) and FS1∞(s) 

 

We give underneath a sample of the variations of FC1∞(s) and FS1∞(s), function of a, when this parameter varies in 

interval [0,2]. 

 

Example 1 : F(x) = 1/x 
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Example 2 : F(x) = sin(x) 

 

  

  

  



p 39/53 
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Example 3 : F(x) = sin(x).Ln(x)/x 
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Remarks concerning the positions of the curves at a = 0.5 and a = 1 are the same as usually. 

 

9.2.2.The second type of general equations. 

 

Formulation 

 

Let us go back to the general function (63) : 

 

  ∞   m   

FG1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.or(1,2).((m/n)i.b.F(m)+(m/n)-i..b.F(n))          (68)                   

  m = 1     n = 1 

 

which write also 

 

  ∞   m   

FG1∞(s) =   ∑   ∑ (-1)m+n.or(1,2).((m-a+i.b/na+i.b).F(m)+(n-a+i.b/ma+i.b).F(n))          (69)                   

  m = 1     n = 1 

 

Let us choose the particular case of F(x) = xa-i.b : 
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  ∞   m   

FP∞(s) =   ∑   ∑ (-1)m+n.or(1,2).((1/ma+i.b)+(1/na+i.b))          (70)                   

  m = 1     n = 1 

 

We will prove later on that this function admits effectively the Riemann and Dirichlet zeroes and remarkable proprieties 

that are easy to verify. We called it the basic equation as it is common to the two types of equations that we have 

identified. 

 

If, instead of the preceding substitutions, we had chosen to do F(m) → ma-i.b.F(n) and F(n) → na-i.b.F(m), we would have 

the general functions of the type : 
 

  ∞   m   

FG2∞(s) =   ∑   ∑ (-1)m+n.or(1,2).((F(n)/ma+i.b)+(F(m)/na+i.b))          (71)                   

  m = 1     n = 1 

 

It happens that this expression suits to our objectives as we have the theorem. 

 

Theorem 15 

 

Let us have s a Riemann or Dirichlet zero. If FG2∞(s) converge, then FG2∞(s) = 0.  

 

Proof : 

 

The proof is the same as that used for FG1∞(s). 

The terms collected for F(r), r an integer given in advance, when we develop the expression FG2∞(s) are : 

 

                   ∞   

 2.(-1)r.F(r).∑ (-1)n.(1/n)a+i.b                                       

                     n = 1 

 

Gathering all terms, we get then  : 

 

                 r   r   

FG2∞(s) =   lim      2 ∑ (-1)m.F(m).  ∑ (-1)n.(1/n)a+i.b           (72)                                     

  r → ∞    m = 1    n = 1 

 

Again FG1∞(s) cancels for the Eta function zeros if and only if the first sum does not diverge to fast while the second 

sum converge. The product FG2∞(s) either cancels or diverge. Let us consider then the dominant terms of each of the 

two sums omitting factors with no effect on the module, that is n-i.b. This is the same as comparing ∑ (-1)n.F(n) and ∑ (-

1)n.(1/n)a. Thus, the divergence of the first sum will be superior to the convergence of the second sum as soon as F(x) ≥ 

xa asymptotically. 

 

Note : If we have chosen the substitutions F(m) → ma-i.b.F(m) and F(n) → na-i.b.F(n), we would not achieve our goal. The 

formal independence (m and n are obviously linked and it means only here independence in a symbolic way) of 

variables is essential for these artificial assemblies. 

 

Splitting of real and imaginary parts 

 

Splitting real and imaginary part, we get the deux expressions : 

 

  ∞   m   

FC2∞(s) =   ∑   ∑ (-1)m+n.or(1,2).(F(n).cos(b.Ln(m))/ma+F(m).cos(b.Ln(n))/na)          (73)                   

  m = 1     n = 1 

et 

  ∞   m   

FS2∞(s) =   ∑   ∑ (-1)m+n.or(1,2).(F(n).sin(b.Ln(m))/ma+F(m).sin(b.Ln(n))/na)          (74)                   

  m = 1     n = 1 

 

For that last equation, unlike the FS1∞(s) case, there is no change of sign in front of F(m). 

 

Let us go back to a more precise study. 
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Basic equations 

 

Let us have  

  ∞   m   

FP∞(s) =   ∑   ∑ (-1)m+n.or(1,2).(1/ma+i.b+1/na+i.b)          (75)                   

  m = 1     n = 1 

 

and the decomposition in real and imaginary parts :  

  

  ∞   m   

FPC∞(s) =   ∑   ∑ (-1)m+n.or(1,2).(cos(b.Ln(m))/ma+cos(b.Ln(n))/na)          (76)                   

  m = 1     n = 1 

and  

  ∞   m   

FPS∞(s) =   ∑   ∑ (-1)m+n.or(1,2).(sin(b.Ln(m))/ma+sin(b.Ln(n))/na)          (77)                   

  m = 1     n = 1 

 

Then we consider the truncated functions for the first and second of these expressions that we note here FTPCm(s) and 

FTPSm(s).  

These two relations cancel regularly in a trivial way for m = 2k and n = m, and this even if a ≠ 0,5 and ≠ 1 for all b (thus 

giving no particular information on b).  

 

Proof : 

 

Let us consider the truncations at m = 2k-1 and at m = 2k, meaning here the internal sums (of the double sum) of n = 1 to 

m for m = 2k-1, respectively m = 2k (k ≥ 1). It suffices to sum up the expressions coef = (-1)m+n.or(1,2) = (-1)m+n.if(m=n, 

1, 2) before cos(b.Ln(n))/na, respectively sin(b.Ln(n))/na, for some value n given in advance. Let us thus have such n. 

One has necessarily n ≤ 2k. If 1 ≤  n ≤ 2k-2, there is a unique increment with value n in the truncation 2k-1 and a unique 

one in the truncation 2k, the values of coef being equal to 2.(-1)2k-1+n and 2.(-1)2k+n will annihilate. If n = 2k-1, there are 

2k-2 coef of value 2.(-1)2k-1+r with alternated signs with cancel together (in the truncation 2k-1), 2 coef of value (-1)2k-1+n 

(in the truncation 2k-1) and 1 coef of value 2.(-1)2k+n (in the truncation 2k) annihilating together. If n = 2k, there are 2k-2 

coef of value 2.(-1)2k+r (in the truncation 2k) of alternated signs annihilating together, 1 coef of value 2.(-1)2k+n-1 (in the 

truncation 2k) and 2 coef of value (-1)2k+n (in the truncation 2k) which cancel. 

 

This is illustrated in the table underneath making the sum of the values of « coef » for m = r or n = r. 

 

m 1 1 2 1 2 3 1 2 3 4 

n 1 2 2 3 3 3 4 4 4 4 

coef = (-1)m+n.(m,n)-a.or(1,2) 1 -2 1 2 -2 1 -2 2 -2 1 

cos(b.Ln(m))/ma 1 1 0,7971 1 0,7971 -0,0095 1 0,7971 -0,0095 0,2708 

cos(b.Ln(n))/na 1 0,7971 0,7971 -0,0095 -0,0095 -0,0095 0,2708 0,2708 0,2708 0,2708 

S1 = coef.cos(b.Ln(m))/ma 1 -2 0,4740 2 -0,9479 -0,0041 -2 0,9479 0,0083 0,0957 

S2 = coef.cos(b.Ln(n))/na 1 -0,9479 0,4740 -0,0083 0,0083 -0,0041 -0,1915 0,1915 -0,1915 0,0957 

S1+S2 2 -0,9479 0 1,9917 1,0521 1,0438 -1,1477 -0,0083 -0,1915 0 

 

This table is done for a = 0.75 and b = 10 without any link to the value of a (Riemann or Dirichlet) zero. 

The sum S1+S2 returns regularly to 0. However, this does not mean that S1+S2 converge. 

 

Let us then consider the truncations, m being fixed : 

 

   m   

FTPC∞(s,m) =    ∑ (-1)m+n.or(1,2).(cos(b.Ln(m))/ma+cos(b.Ln(n))/na)          (78)                   

     n = 1 

and  

   m   

FTPS∞(s,m) =    ∑ (-1)m+n.or(1,2).(sin(b.Ln(m))/ma+sin(b.Ln(n))/na)          (79)                   

     n = 1 

 

The coefficients before cos(b.Ln(m))/ma and sin(b.Ln(m))/ma are equal to ±2 with alternating signs. The contributions 

will thus cancel (as m is constant). The terms thus tend, when m tends towards infinity, towards : 
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   ∞   

FTPC∞(s,m → +∞) →   2.(-1)or(0,1)  ∑ (-1)n.cos(b.Ln(n))/na          (80)                   

     n = 1 

et  

   ∞   

FTPS∞(s,m → +∞) →   2.(-1)or(0,1)  ∑ (-1)n.sin(b.Ln(m))/ma          (81)                   

     n = 1 

 

We came back essentially to the initial equations of η(s) which cancel exclusively at the Riemann (for a = 0,5 a priori) or 

Dirichlet (for a = 1) zeros. 

 

We give the examples underneath of the evolution of the truncated sums FPCm(s) and FPSm(s) as functions of m for and 

at the vicinity of a Riemann or Dirichlet zero. 

 

Riemann zero n°1 Dirichlet zero n°1 

  
a = 0,5, b = b1 ≈ 14,134725 a = 1, b = b1 ≈ 9,064720 

  
a = 0,51, b = b1 ≈ 14,134725 a = 1,002, b = b1 ≈ 9,064720 

  
a = 0,49, b = b1 ≈ 14,134725 a = 0,998, b = b1 ≈ 9,064720 

 

The evolutions are similar but the sensibility to the variation of a is very different from one zero to another. 

The curves for which the « general move » is large are those associated with the cosines. 
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Monomial equations 

 

Let us study the case F(x) = xr for the truncated functions : 

 

  mmax   m   

FC2mmax(s) =   ∑   ∑ (-1)m+n.or(1,2).(cos(b.Ln(m))/(ma.nr)+cos(b.Ln(n))/(na.mr))          (82)                   

  m = 1     n = 1 

et 

  mmax    m   

FS2mmax(s) =   ∑   ∑ (-1)m+n.or(1,2).(sin(b.Ln(m))/(ma.nr)+sin(b.Ln(n))/(na.mr))          (83)                   

  m = 1     n = 1 

 

For that, we chose again the same zeros (the first of each type) changing only the values of r. 

The curves as functions of m are then : 

 

Riemann zero n°1 Dirichlet zero n°1 

  
a = 0,5, b = b1 ≈ 14,134725, r = -0,8 a = 1, b = b1 ≈ 9,064720, r = -1,2 

Divergence when r < -a 

  
a = 0,55, b = b1 ≈ 14,134725, r = -0,5 a = 1, b = b1 ≈ 9,064720, r = -1 

Divergence when r = -a (undamped oscillations) 

  
a = 0,55, b = b1 ≈ 14,134725, r = -0,25 a = 1, b = b1 ≈ 9,064720, r = -0,5 

« Convergence ». Splitting of curves for r > -a  
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a = 0,55, b = b1 ≈ 14,134725, r = -0,1 a = 1, b = b1 ≈ 9,064720, r = -0,25 

« Convergence ». Accentuation of splitting of curves for r > -a 

  
a = 0,5, b = b1 ≈ 14,134725, r = 0 a = 1, b = b1 ≈ 9,064720, r = 0 

Convergence. The split curves merge with y = 0 for r = 0 

  
a = 0,5, b = b1 ≈ 14,134725, r = 0,1 a = 1, b = b1 ≈ 9,064720, r = 0,25 

Convergence. The split-in-two curves are of opposite signs versus the initial curves for r > 0 

  
a = 0,5, b = b1 ≈ 14,134725, r = 0,25 a = 1, b = b1 ≈ 9,064720, r = 0,5 

Convergence. The split curves are of opposite signs to initial curves for r > 0 
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a = 0,5, b = b1 ≈ 14,134725, r = 0,5 a = 1, b = b1 ≈ 9,064720, r = 1 

Convergence. The split curves are near-valued and opposite signs to initial curves for r >> 0 

  
a = 0,5, b = b1 ≈ 14,134725, r = +∞ a = 1, b = b1 ≈ 9,064720, r = +∞ 

Convergence. The split curves have same absolute values and opposite signs to initial curves for r = +∞ 

 

The above represented points correspond to integer truncation, that is a full calculation of a sum inside the double sums 

FTPCm(s) et FTPSm(s). The graphics show what we named initial and double-up curves. The first title (initial curves) 

corresponds to odd m and the second title to even m. During the entire process of evolution, initial and double-up curves 

intersect at y = 0. We remain however very reserved as for the convergence of double sums for-a < r < 0. Indeed, there is 

well a reduction in the amplitude of the oscillations when calculations are made on whole truncations (comparing the 

same parity m = 0 mod 2 or m = 1 mod 2), but it does no decrease considering the set of intermediate values (the 

maximum values are higher and higher).  

Thus, it is useful and simpler to say: If the function converges, then it converges to 0. 

 

10.The two keys to the Riemann hypothesis. 
 

10.1.First key : The Riemann functional equation. 

 

The first key for resolution of the Riemann hypothesis is the Riemann functional equation mentioned earlier. 

 

Theorem 16 
 

For all s ≠ 0 and s ≠ 1, and in particular within the critical strip, we have 

 

ζ(s) = 2π.πs-1.sin(π.s/2).Γ(1-s).ζ(1-s) 

 

This equation has also a more symmetrical form Φ(s) = Φ(1-s) with Φ(s) = π-π/2.Γ(s/2).ζ(s) as specified in [2]. This 

means, for what interests us here, that to a possible zero s for (a,b) = (0,5-ε,b), 0 < ε < 1/2, corresponds another zero s’ 

for (a’,b’) = (0,5+ε,-b). 

 

Indeed, we have then 

 

0 = ζ(s) = ζ(a,b) = ζ(0,5-ε,b) = 2π.πs-1.sin(π.s/2).Γ(1-s).ζ(1-(0,5-ε),-b) = 2π.πs-1.sin(π.s/2).Γ(1-s).ζ(0,5+ε,-b) 

 

As sin(π.s/2) is different from 0 at (0,5-ε, b) and that Γ(1-s) does not vanish, necessarily ζ(0,5+ε,-b) = 0.  

Furthermore 

ζ(0,5+ε,b) = ζ(0,5+ε,-b) 

when  
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ζ(s=a+ib) = ∑ m-a.cos(b.Ln(m))+i.∑ m-a.sin(b.Ln(m)) = 0 

 

since this is equivalent to 

 

0 = ∑ m-a.cos(b.Ln(m))-i.∑ m-a.sin(b.Ln(m)) = ∑ m-a.cos(-b.Ln(m))+i.∑ m-a.sin(-b.Ln(m)) = ζ(a-ib) 

 

We can therefore change the sign of ε and b at will.  

As η(s) = (1-21-s).ζ (s), the previous relationship also applies to η(s), as well as the equivalent relation below. 

 

  ∞  i 

  ∑  ∑ (i.j)-a-ε.(-1)i+j.cos(b.Ln(i/j)).or(1,2)  = 0 

  i = 1    j = 1 

Hence what follows : 

 

Theorem 17 
 

Let us have 0 < ε < 1/2. 

If 

  ∞  i  

  ∑  ∑ (i.j)-a-ε.(-1)i+j.cos(b.Ln(i/j)).or(1,2)  = 0         (84)  

  i = 1    j = 1  

then 

  ∞  i   

  ∑  ∑ (i.j)-a+ε.(-1)i+j.cos(-b.Ln(i/j)).or(1,2)  = 0         (85)  

  i = 1    j = 1  

 

that is if ε ≠ 0, there are thus two solutions (instead of one if ε =0). 

 

10.1.Second key : Unicity of the zero 

 

For this end of the article, we are so far obliged to use only the terms of propositions and arguments (instead of theorems 

and proofs). 

 

Proposition 1 

 

There are no accidental annulations of the function FG1∞(s, F) for a Riemann or Dirichlet zero. 

 

We mean here that it is impossible that the expression vanishes for an F without peculiar propriety (that is some 

independent in m and n construction).  

 

Argument 

 

Let us suppose that FG1∞(s, F) vanishes for F(n,m) some function at a Riemann zero. The accidental annulation induces 

that if one chooses then F(n,m)+ε, where ε is some constant, the position of the zero will move and is no more a zero for 

the previous equation. However, as ε is a constant, one can write FF(m) = ε/2 and FF(n) = ε/2 and FG1∞(s, F+FF) 

vanishes then still at the said Riemann zero, which is a contradiction. The reasoning hold in the same way for a Dirichlet 

zero. 

 

Proposition 2 
 

Riemann and Dirichlet zeroes cancel exclusively for functions like FG1∞(s,F) and FG2∞(s,F) with F appearing in a sum 

F(n)+F(m). 

 

Partial argument  
 

The functions are necessarily product of the zeta function by another function to coincide for all of its solutions. 

 

Let us then go back to  

 

  ∞   m   

FC1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.ou(1,2).cos(b.Ln(m/n)).(F(m)+F(n))          (86)                   

  m = 1     n = 1 
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  ∞   m   

FS1∞(s) =   ∑   ∑ (m.n)-a.(-1)m+n.ou(1,2).sin(b.Ln(m/n)).(F(m)-F(n))          (87)                   

  m = 1     n = 1 

 

We say that there is no b such that the two expressions are null for any F for two distinct values of a (that is for the a = 

1/2 et a = 1 pair or for any other pair). 

 

Argument 

 

Otherwise, we would have two a1 and a2 values (and some b) such that : 

 

FC1∞(s = a1+i.b) = 0            (88) 

and  

FC1∞(s = a2+i.b) = 0            (89) 

and the same for FS1∞(s). 

 

By subtracting, we have then also (trivially) : 

 

ΔFC1∞(s) = FC1∞(s1 = a1+i.b) – FC1∞(s2 = a2+i.b)  = 0            (90) 

that is : 

 

∞  m   

- 

   

∑  ∑ (-1)m+n.ou(1,2).cos(b.Ln(m/n)).( (F2(m)+F2(n))   (F1(m)+F1(n)) ) = 0         (91)                   

m = 1  n = 1 (m.n)a2   (m.n)a1  

 

and again, the resulting, none-identically null, function ΔFC∞(s) encounters the cosine and sine’s filter.  

Consequently, there must be a function F (x) such as for any integers m and n : 

 

  F(m)+F(n)              
= 

 (F2(m)+F2(n))               
- 

(F1(m)+F1(n))                                        

  (m.n)a (m.n)a2 (m.n)a1  

 

We have of course a choice among an infinite kind of forms F1 and F2 to hope to find a function F which meets 

conditions. However, a is not equal to a1, nor to a2, otherwise we would be back to trivial identities. We can then rewrite 

the preceding expression as : 

 

F(m)+F(n) = (m.n)a-a2.( (F2(m)+F2(n)) - 
(F1(m)+F1(n)) 

)           (92) 
(m.n)a1-a2 

 

However, this equality bears its proper contradiction. The (m.n)a-a2 factor is not trivial as a is different from a2. We 

cannot thus find any function F such that the right member of the equation be independently the sum of a function of m 

and a function of n and thus especially if the said functions are the same F. Hence the proposition : 

 

Proposition 3 
 

At constant b, FG1∞(s = a+i.b) vanishes for a single value a at most. 

 

10.2.The Riemann hypothesis. 

 

Proposition 4 
 

The non-trivial zeros of the Riemann function have real value 1/2. 

 

Argument  
 

There is contradiction, if a ≠ 1/2, between the theorem 17 meaning two solutions and the argument of the unicity of the 

solution. 
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Appendix 1 
List of the Riemann zeros for imaginary values less than 100. 

 

 

n 
Real values 

zeros 

Imaginary 

values of zeros 
n 

Real values 

zeros 

Imaginary 

values of zeros 

1 0,5 14,1347251 16 0,5 67,0798105 
2 0,5 21,0220396 17 0,5 69,5464017 
3 0,5 25,0108576 18 0,5 72,0671577 
4 0,5 30,4248761 19 0,5 75,7046907 
5 0,5 32,9350616 20 0,5 77,1448401 
6 0,5 37,5861782 21 0,5 79,337375 
7 0,5 40,918719 22 0,5 82,9103809 
8 0,5 43,3270733 23 0,5 84,735493 
9 0,5 48,0051509 24 0,5 87,4252746 
10 0,5 49,7738325 25 0,5 88,8091112 
11 0,5 52,9703215 26 0,5 92,4918993 
12 0,5 56,4462477 27 0,5 94,651344 
13 0,5 59,347044 28 0,5 95,8706342 
14 0,5 60,8317785 29 0,5 98,8311942 
15 0,5 65,112544    
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Appendix 2 
 

Values of C∞(2,0,s) at Riemann zeros ( first 500th) 

 
1 7,1305 51 16,5237 101 45,8122 151 78,1467 201 42,3610 251 57,1435 301 29,7604 351 106,995 401 64,3868 451 34,8301 

2 10,8741 52 51,4075 102 93,3804 152 43,3887 202 88,3864 252 97,2044 302 71,0911 352 32,3326 402 51,3827 452 59,6033 

3 10,7082 53 29,8179 103 91,5001 153 59,2390 203 81,1045 253 130,627 303 64,9111 353 28,8540 403 78,5750 453 13,6989 

4 16,2057 54 23,3984 104 42,7579 154 73,8396 204 53,9744 254 74,7229 304 88,4861 354 118,938 404 82,4683 454 9,9060 

5 18,7284 55 33,1986 105 16,8979 155 57,6978 205 47,8466 255 40,6040 305 181,835 355 71,2005 405 184,116 455 37,8005 

6 9,6855 56 48,0686 106 50,4787 156 40,2400 206 79,8938 256 50,1461 306 73,8915 356 85,7789 406 71,1741 456 179,563 

7 25,9004 57 31,2301 107 34,3134 157 46,2825 207 17,6712 257 57,2388 307 31,3936 357 48,4639 407 16,4037 457 120,474 

8 16,6645 58 52,9047 108 61,8276 158 151,299 208 35,8997 258 37,8504 308 71,8181 358 63,5827 408 101,530 458 87,9665 

9 18,7522 59 62,8352 109 96,3061 159 17,9924 209 114,683 259 75,0688 309 117,636 359 127,217 409 93,6107 459 59,9685 

10 23,4928 60 6,2609 110 32,4313 160 11,5061 210 116,471 260 104,819 310 29,1905 360 24,9220 410 65,2995 460 64,7419 

11 16,8833 61 73,9558 111 34,0713 161 88,9035 211 110,080 261 109,332 311 39,9033 361 62,2452 411 99,1086 461 131,546 

12 29,1320 62 68,2293 112 64,4693 162 103,296 212 12,6380 262 52,5487 312 93,3175 362 154,830 412 58,4737 462 49,1747 

13 22,1559 63 21,7610 113 81,9159 163 63,2552 213 11,8205 263 11,5110 313 92,5843 363 16,3791 413 70,8919 463 25,1940 

14 20,2364 64 24,3270 114 26,8843 164 39,4108 214 98,2928 264 173,320 314 34,2259 364 13,0487 414 85,4746 464 57,4246 

15 19,3622 65 26,0197 115 37,0966 165 72,4477 215 36,4990 265 45,3884 315 11,0417 365 90,7691 415 56,5006 465 203,105 

16 33,6980 66 38,8993 116 36,4565 166 15,3596 216 37,8411 266 32,4842 316 14,2761 366 72,7009 416 51,1966 466 107,369 

17 41,4214 67 81,4690 117 48,6326 167 37,1614 217 130,436 267 69,5988 317 149,568 367 111,808 417 118,786 467 97,2490 

18 5,4539 68 67,3915 118 38,1144 168 62,5777 218 118,104 268 104,993 318 71,9517 368 26,1026 418 164,875 468 45,3518 

19 29,7180 69 33,6393 119 91,3718 169 100,356 219 47,7058 269 20,5833 319 57,5844 369 17,5220 419 63,1923 469 49,6426 

20 24,7746 70 36,1415 120 83,6489 170 64,9096 220 34,8137 270 73,0014 320 53,9766 370 90,6440 420 41,1678 470 182,966 

21 41,2171 71 23,4114 121 12,7365 171 58,6547 221 76,1704 271 34,5420 321 102,081 371 196,776 421 74,3566 471 67,7089 

22 17,8033 72 17,6587 122 84,8677 172 14,1269 222 81,6646 272 57,1745 322 103,081 372 85,5619 422 135,387 472 47,9118 

23 43,3210 73 73,9196 123 52,0091 173 80,7263 223 27,0686 273 90,8418 323 42,0248 373 18,6085 423 70,1176 473 85,1527 

24 30,7658 74 38,4815 124 41,9777 174 25,5207 224 44,2347 274 35,3702 324 39,7802 374 106,345 424 29,0503 474 217,776 

25 20,6240 75 28,5775 125 45,8569 175 39,2143 225 101,233 275 41,6614 325 169,443 375 167,571 425 55,0114 475 29,5183 

26 39,5112 76 44,3308 126 49,0203 176 137,976 226 59,8400 276 101,332 326 51,1597 376 107,075 426 191,904 476 44,4006 

27 24,7283 77 93,1937 127 20,5892 177 74,4099 227 55,2986 277 112,084 327 9,2832 377 78,8779 427 21,3561 477 34,4987 

28 31,6490 78 33,7777 128 22,8019 178 27,3820 228 61,7972 278 65,5587 328 119,711 378 22,6482 428 65,9088 478 38,7058 

29 16,9129 79 28,2907 129 112,695 179 80,7818 229 142,049 279 52,7478 329 141,059 379 28,8815 429 78,9385 479 247,726 

30 34,8771 80 49,8816 130 88,9765 180 145,636 230 107,470 280 102,959 330 137,028 380 24,2094 430 127,484 480 52,0053 

31 53,0995 81 44,8745 131 56,0832 181 59,4301 231 38,6919 281 125,015 331 47,6427 381 28,4669 431 133,832 481 30,3354 

32 34,4547 82 49,9920 132 18,5247 182 31,1329 232 14,9656 282 14,6513 332 42,9610 382 114,226 432 100,875 482 63,2037 

33 31,2399 83 71,1394 133 107,300 183 55,8197 233 41,7031 283 27,8072 333 86,8975 383 135,753 433 32,0846 483 73,7004 

34 15,0969 84 16,3288 134 75,2092 184 35,4189 234 34,2649 284 189,955 334 74,1376 384 161,279 434 18,0929 484 69,1358 

35 16,8592 85 31,8471 135 17,8558 185 41,0816 235 66,6544 285 79,3687 335 36,1274 385 87,4175 435 172,413 485 28,9377 

36 66,9912 86 103,256 136 25,3368 186 23,4146 236 57,3740 286 69,0690 336 55,5672 386 39,4146 436 13,6013 486 31,3119 

37 34,4068 87 50,0724 137 71,0826 187 26,4317 237 119,209 287 64,2821 337 194,429 387 49,4528 437 14,5766 487 173,557 

38 23,0640 88 42,8989 138 25,5522 188 127,055 238 23,1272 288 35,2889 338 53,9954 388 156,717 438 118,767 488 162,906 

39 54,5297 89 53,6766 139 59,1308 189 28,7520 239 39,4303 289 26,3859 339 44,3265 389 74,2108 439 123,715 489 30,2231 

40 27,3191 90 54,2810 140 84,5741 190 37,1634 240 123,398 290 20,1689 340 13,4896 390 31,7479 440 148,479 490 40,0572 

41 40,1608 91 20,2898 141 50,5164 191 150,662 241 166,579 291 72,3713 341 75,0883 391 49,3037 441 22,3599 491 125,448 

42 13,0890 92 29,0996 142 31,4008 192 51,5976 242 27,8349 292 128,476 342 124,028 392 167,237 442 54,2227 492 131,949 

43 41,6286 93 51,4867 143 41,1631 193 43,0340 243 26,1697 293 110,146 343 51,9595 393 36,8065 443 185,494 493 36,3023 

44 61,8407 94 30,0801 144 59,2287 194 90,6304 244 22,8785 294 44,6175 344 48,9816 394 30,1476 444 194,951 494 50,7273 

45 35,7384 95 31,7608 145 39,5274 195 67,0741 245 140,038 295 47,6022 345 98,1925 395 31,1054 445 41,5322 495 114,477 

46 17,7363 96 107,064 146 68,4599 196 31,9929 246 51,2638 296 125,710 346 104,172 396 197,434 446 34,2259 496 76,6292 

47 55,1902 97 25,5172 147 105,293 197 26,4735 247 27,3317 297 174,198 347 44,4569 397 126,699 447 106,113 497 91,3705 

48 35,3289 98 23,1312 148 95,4352 198 105,614 248 68,8090 298 15,3290 348 64,2499 398 23,0290 448 60,3328 498 48,3223 

49 45,4383 99 91,8313 149 11,5406 199 64,0531 249 116,958 299 12,1512 349 91,8474 399 28,7367 449 107,927 499 59,4395 

50 65,7140 100 20,4283 150 54,7274 200 40,4558 250 25,3253 300 102,384 350 131,329 400 32,3913 450 78,3804 500 169,539 
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Values of C∞(2,0,s) at Dirichlet zeroes ( first 500th) 

 
1 1,7540 51 2,5012 101 4,6862 151 2,3958 201 1,7899 251 3,6214 301 13,1771 351 3,6405 401 4,3517 451 7,7870 

2 3,2443 52 2,8251 102 2,0610 152 8,7376 202 9,9357 252 2,0101 302 3,2952 352 6,6289 402 2,4824 452 1,4905 

3 3,6990 53 11,5180 103 5,5234 153 1,9236 203 2,4590 253 6,2274 303 1,8857 353 2,8223 403 2,4809 453 11,2509 

4 2,7383 54 1,1717 104 5,5135 154 5,1513 204 2,4849 254 4,3156 304 4,1755 354 13,0210 404 3,3743 454 1,7496 

5 5,2534 55 2,1612 105 3,2382 155 4,2520 205 9,4321 255 7,6543 305 3,0469 355 2,6213 405 6,6594 455 3,2001 

6 3,1847 56 6,6840 106 8,8636 156 3,2179 206 1,8816 256 1,6723 306 7,5051 356 1,2448 406 1,2413 456 4,3655 

7 5,6815 57 3,9079 107 1,3374 157 5,5111 207 8,2704 257 1,7953 307 5,2170 357 10,3177 407 12,0384 457 6,9045 

8 1,3412 58 6,0259 108 3,3078 158 1,6892 208 3,2571 258 9,9500 308 3,9153 358 2,2248 408 1,4502 458 5,6817 

9 4,5432 59 3,3715 109 7,6160 159 8,5467 209 2,3557 259 1,7049 309 1,8065 359 8,6597 409 2,6090 459 2,0627 

10 6,3339 60 3,9779 110 1,9062 160 1,8467 210 3,3590 260 8,3507 310 3,5158 360 2,2609 410 9,9024 460 9,7728 

11 2,2782 61 3,0401 111 6,6770 161 9,8207 211 3,1153 261 5,3117 311 15,5711 361 4,2137 411 3,6250 461 2,1700 

12 7,5943 62 4,2676 112 2,2890 162 5,1767 212 6,1160 262 2,2092 312 1,2162 362 1,5560 412 4,7938 462 3,8068 

13 2,8754 63 7,5320 113 7,9283 163 1,3266 213 2,6014 263 5,4846 313 4,9642 363 5,3356 413 2,1905 463 6,5228 

14 2,7086 64 1,0430 114 3,4863 164 5,8251 214 8,0681 264 4,2133 314 2,3851 364 12,6006 414 5,0258 464 2,0292 

15 5,5255 65 9,7768 115 6,1381 165 1,9739 215 2,4021 265 8,9319 315 2,0939 365 1,0788 415 3,9666 465 3,7413 

16 3,6943 66 1,6378 116 2,7014 166 5,6806 216 1,6093 266 1,5657 316 5,6238 366 7,8366 416 5,4098 466 3,1303 

17 5,7588 67 5,3605 117 1,7488 167 2,4986 217 12,2496 267 6,6234 317 4,6214 367 4,3173 417 4,8496 467 5,4146 

18 1,0723 68 6,8042 118 11,1889 168 4,3022 218 4,9126 268 2,4221 318 6,3062 368 4,1530 418 1,2905 468 5,1329 

19 7,0418 69 2,7570 119 1,5620 169 2,7098 219 3,6414 269 1,4151 319 1,6336 369 4,0753 419 5,5111 469 2,4724 

20 3,2332 70 6,0202 120 5,6145 170 3,3539 220 4,0463 270 15,9805 320 7,0695 370 2,9265 420 5,9272 470 5,8045 

21 4,1762 71 1,9290 121 4,2895 171 13,9877 221 2,8779 271 1,6832 321 3,0939 371 3,7879 421 2,4894 471 1,5170 

22 8,1422 72 9,2282 122 1,6234 172 2,7197 222 3,2738 272 4,0146 322 2,9283 372 1,8406 422 8,2219 472 13,9671 

23 1,5261 73 2,6782 123 3,1766 173 3,7164 223 2,1930 273 3,0753 323 12,6332 373 6,5037 423 1,6174 473 2,4579 

24 7,6455 74 3,4421 124 5,1850 174 7,0518 224 14,3727 274 5,6692 324 1,8692 374 4,9184 424 7,8411 474 2,0937 

25 3,4985 75 2,9969 125 6,8591 175 1,1266 225 1,0977 275 5,8731 325 2,7610 375 2,6069 425 2,5431 475 4,7038 

26 4,5921 76 1,5814 126 3,1079 176 9,3695 226 2,9592 276 2,6281 326 4,0486 376 9,3525 426 5,1616 476 1,6532 

27 3,8453 77 10,3093 127 2,8838 177 4,6940 227 7,0666 277 9,8082 327 4,3144 377 1,4357 427 3,2241 477 8,7045 

28 3,1681 78 4,7428 128 7,1096 178 4,7847 228 1,8383 278 1,0531 328 4,3514 378 6,9442 428 1,9084 478 4,6452 

29 4,8968 79 1,9982 129 1,7012 179 1,4136 229 9,8972 279 4,2183 329 2,1388 379 6,4001 429 7,4283 479 5,2371 

30 1,7679 80 4,4408 130 13,2951 180 3,8253 230 3,2863 280 5,5435 330 8,3860 380 3,0449 430 1,3269 480 2,5607 

31 9,5595 81 3,1027 131 2,0552 181 9,0155 231 4,1661 281 2,4533 331 2,9270 381 3,2727 431 10,8173 481 3,8724 

32 2,6567 82 5,6505 132 1,8848 182 2,0869 232 1,5822 282 6,0455 332 6,6036 382 1,7659 432 3,1402 482 7,8688 

33 2,6599 83 2,7568 133 5,3656 183 13,5894 233 7,0384 283 3,5127 333 7,0212 383 7,3560 433 1,9065 483 2,2289 

34 7,3816 84 9,7867 134 3,9207 184 1,9298 234 5,6829 284 3,1007 334 1,5413 384 1,9096 434 5,4863 484 6,8545 

35 1,9755 85 2,3838 135 7,9803 185 3,1096 235 1,7003 285 4,0694 335 8,2415 385 4,9316 435 4,8570 485 3,4252 

36 7,2994 86 1,7387 136 2,0091 186 4,9005 236 4,6858 286 5,8391 336 1,8833 386 3,1493 436 9,1899 486 0,8711 

37 5,2636 87 11,1221 137 9,5411 187 4,4789 237 2,6874 287 7,0615 337 3,9666 387 2,0284 437 2,9814 487 8,8232 

38 2,0817 88 1,9416 138 1,4993 188 3,4273 238 3,6257 288 1,3882 338 4,2619 388 13,5317 438 5,0279 488 3,6549 

39 1,7413 89 8,2255 139 2,7236 189 1,8044 239 9,9747 289 9,1017 339 2,7170 389 2,7887 439 2,0823 489 5,2517 

40 3,1965 90 4,2148 140 12,4036 190 6,0111 240 3,0522 290 3,1950 340 3,2066 390 6,0456 440 1,9215 490 1,3151 

41 10,4870 91 2,6515 141 1,9180 191 2,4799 241 5,4478 291 3,7152 341 1,5262 391 4,2148 441 14,8357 491 5,6238 

42 2,0578 92 4,0828 142 3,8699 192 2,9923 242 2,9439 292 4,4727 342 14,4349 392 2,9843 442 2,0177 492 3,4903 

43 6,9502 93 5,1155 143 3,0066 193 11,0822 243 6,3468 293 0,9342 343 2,1943 393 3,1421 443 2,8473 493 3,2523 

44 4,4554 94 10,7099 144 2,2278 194 1,8131 244 3,7020 294 8,1844 344 5,8317 394 4,5114 444 5,9527 494 14,0574 

45 1,4620 95 0,9064 145 3,7425 195 6,4205 245 2,3003 295 2,5392 345 4,0654 395 11,1316 445 2,6078 495 1,8480 

46 10,0235 96 6,1811 146 4,9547 196 4,2646 246 8,1041 296 8,2187 346 1,8144 396 1,4651 446 4,4530 496 2,9428 

47 3,9105 97 2,2154 147 6,8413 197 4,1749 247 1,0752 297 2,1074 347 9,6442 397 2,9585 447 4,1442 497 4,8940 

48 6,6083 98 1,7379 148 1,7586 198 6,5164 248 9,9705 298 4,3798 348 5,1685 398 4,3517 448 9,2997 498 2,5304 

49 1,4710 99 9,0818 149 7,1455 199 1,8043 249 2,7632 299 3,4576 349 3,0295 399 1,5658 449 1,1184 499 5,5318 

50 5,0024 100 3,1869 150 5,2193 200 5,4704 250 3,5870 300 1,9603 350 2,5080 400 13,6871 450 3,4222 500 3,1275 

 
 


