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Abstract. The purpose of this article is to design a frame of reference
enabling to locate the Zeta function zeros with the smallest margin of
error. This optimal frame, based on a constant real part, favours the
spring of some most interesting properties of these zeros, partial zeros
pairings, Gaussian distributions, identification of uncommon permuta-
tions of positions...

Résumé. (Positionner les zéros de la fonction Zêta de Riemann dans
un système de référence optimal).

Le but de cet article est de bâtir un repère permettant de positionner
les zéros de la fonction Zêta de façon la plus précise possible. Ce repère
optimal, basé sur une partie réelle constante, favorise l’émergence de
propriétés intéressantes de ces zéros, appariements à des zéros partiels,
distributions gaussiennes, identification d’inhabituelles permutations de
positions...
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1. Introduction

The Riemann Zeta function is defined over the complex plane Re(s) > 1
by

ζ(s) =

∞∑
n=1

1

ns

This function has an analytic continuation over the whole complex plane
except the unique complex point s = 1 + 0.i. The Riemann’s hypothesis,
formulated in 1859 [1], is that the non-trivial zeros of the function are such
that Re(s) = 1

2 , the zeros quoted as trivial being s = −2n, n ∈ N∗.
A well-established result is that all the non-trivial zeros are located within

the critical band 0 ⩽ Re(s) ⩽ 1. In search of zeros, one can reduce the review
to the domain 0 ⩽ α ⩽ 1/2 thanks to the following fact:

Theorem 1. Within the critical band, the non-trivial ζ−function zeros are
symmetrical to the axis s = 1/2.

Proof. Using the functional equation (see [2])

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s),

Let us write then ξ(s) = (1/2)π−s/2s(s−1)Γ(s/2)ζ(s). Referring to [10], we
get immediately ξ(s) = ξ(1− s). □

Therefore looking for exception to the Riemann rule is equivalent to ex-
amine the {0 ⩽ s < 1/2} cases.

As a meromorphic function [10], the Zeta function is infinitely derivable
except at its pole. The previous theorem then extends to its derivatives:

Theorem 2. Within the critical band, the non-trivial systematic multiple
zeros of the ζ−function are symmetrical to the axis s = 1/2.

Proof. We refer to [3] which provides the functional equation of the kth

derivative of ζ(s)

(−1)kζ(k)(1−s) = 2(2π)−s
k∑

j=0

k∑
m=0

(ajkm cos
πs

2
+bjkm sin

πs

2
)Γ(j)(s)ζ(m)(s).

Thus ζ(k)(1−s) = 0 if ζ(m)(s) = 0 for each m = 0 to k. Hence the symmetry
with respect to the axis s = 1/2 at step k for a systematic multiple zero up
to k. □
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To study the ζ-function, one can use the Euler-Maclaurin formula, an
integral on ℜ+, a contour integral in the C plane or the Abel sum, this list
not being exhaustive [10]. The said function is available on online platforms.
The Pari gp application, chosen here whenever we wish to provide some
numerical illustrations, usually uses the Euler-Maclaurin formula, unless
integers are involved in which case the use of Bernoulli numbers or modular
forms is activated (see User guide to Pari gp).

Finding the non-trivial zeros of the ζ-function is to solve, within the
critical band, simultaneously

Re(ζ(s)) = 0 and Im(ζ(s)) = 0

where Re(ζ(s)) designates the real part of ζ(s) and Im(ζ(s)) is it imaginary
part.

The purpose of this article is to find an adequate set to locate the solutions
to the two equations. It seems almost obvious, short of its effective relevance,
to choose a priori the two sets:

Set 2 : {Re(ζ(s)) = 0 and Im(ζ(s)) ̸= 0} (1)

Set 3 : {Re(ζ(s)) ̸= 0 and Im(ζ(s)) = 0} (2)

The locus of the nth Riemann zeros is addressed by the standard coordinates
setting σn + i · tn . For the set {Re(ζ(s)) = 0 and Im(ζ(s)) ̸= 0}, we will
use σrn + i · trn, while for {Re(ζ(s)) ̸= 0 and Im(ζ(s)) = 0}, we will spot
the elements with σin + i · tin:

Set 1 : Re(ζ(s)) = 0 and Im(ζ(s)) = 0 ⇔ s = σn + i · tn
Set 2 : Re(ζ(s)) = 0 and Im(ζ(s)) ̸= 0 ⇔ s = σrn + i · trn
Set 3 : Re(ζ(s)) ̸= 0 and Im(ζ(s)) = 0 ⇔ s = σin + i · tin

Given some coordinate s value, we will also call, here and there, σ the
abscissa and t the ordinate.

2. Short return to the Riemann hypothesis

Lemma 1. The non-trivial zeros of the Zeta function are all located on the
critical line except eventually in the case of some double zero s, that is if
ζ(s) = ζ ′(s) = 0 (and σ ̸= 1/2).

Proof. One of the property of an analytic function is the conservation of
angles [6] [15] wherever the derivative doesn’t cancel.
So let us consider a rectangle r in the complex plane not encompassing the
pole (1,0) of the function, this later case being considered in appendix A.
Applying the function to the rectangle r, the resulting figure ζ(r) will be a
deformed ”rectangle”. If the rectangle is small, the resulting conformal map
[15] is a quasi-rectangle. Local deformation results from non-null scaling
factors. The trajectories of the opposite sides of the initial rectangle will
give local ”parallel” trajectories of the images in the complex plane. Corre-
sponding opposite points of same abscissa, or of same ordinate, don’t meet
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in the image because of the non-null scaling.
A typical example of rectangle deformation is given in figure 1. Of course,
as the figure shows, if the rectangle gets long enough, part of the image set
can overlap. To get a bijection, an artefact would be to add the depth’s
dimension (for example attribute to this extra coordinate the value of the
length along the red line starting at the bottom left vertex), allowing to
unfold the image like a Riemann surface. Going back to the complex plane
(without additional dimension), the non-null scaling ensures that the red
line stays always on the same side of the blue line (as does the yellow line
in regard of the green one).
Now, let us consider a rectangle r centred on the critical axis. Let us choose
the rectangle so that the abscissa of a non-trivial zero identified on the lower
half of the critical band is on the left side of the said rectangle. By the func-
tional equation, we know the existence of another zero on the right side of
the rectangle exactly at the same height, giving the same image 0 + i.0,
hence a contradiction with the local bijection.
Of course, to be exhaustive, as said in the first phrase of the argumentation,
we have to be sure that no point within the initial rectangle corresponds to a
zero of the derivative of Zeta causing some eventual havoc to our argument.
If so, one will reduce simply the vertical size of the rectangle r. The set of
real numbers ℜ being dense, this reduction can be as small as needed, the
only way to an exception being that this zero of the Zeta function is at the
same ordinate as the zero of its derivative. In this peculiar case, one will
choose a slightly rounded rectangular shape for the Zeta function’s domain,
therefore avoiding the zero of the derivative. The conformal map’s argument
can then be applied without dispute except if the zeros to ζ−function and
its derivative are the same, the previously mentioned double zero’s case. □

In figure 1, as the chosen initial rectangle is encompassing two solutions s
to ζ(s) = 0 (the 4521th zero equal approximatively to 1/2 + i.5000.2343169
and the 4522th zero near the complex value 1/2 + i.5000.8343814, we get
two transits around the axis intersection.

Remarkable cases like the Zeta function’s pole (1,0) and the two first of
its trivial zeros (-2,0) and (-4,0), the other trivial zeros being similar, are
displayed in appendix A.

Note. Although not crucial to our argument, we give some information in
appendix A figures 25 a and b about the pattern in the vicinity of a first
derivative’s cancelling. In a sufficient close-up, there is no difference to the
standard behaviour, a rectangle is still transformed in an almost rectangular
surface. But bereft of a proof to generalize this observation, we resolve to
the following further analysis.

Lemma 2. The non-trivial zeros of the Zeta function are all located on the
critical line except if ζ(s) = ζ ′(s) = ζ ′′(s) = ... ζ(n)(s) ... = 0 for any n ∈ N∗

(and σ ̸= 1/2).
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Figure 1.
Initial rectangle r delimiting

σ = [0.495, 0.505], t = [5000, 5001]
Image ”rectangle” ζ(r)

Proof. The Zeta function is an analytic complex meromorphic function. So
it is indefinitely derivable and each derivative is also analytic. The functional
expression of the nth derivative of ζ(s) is provided in the proof of theorem
2. According to that general functional equation, if ζ(s) = 0 and ζ ′(s) = 0
then ζ ′(1 − s) = 0. Then we apply the previous local conformal map’s
argument to ζ ′(s) instead of ζ(s). A potential exception is thereafter the
case ζ(s) = ζ ′(s) = ζ ′′(s) = 0. Recalling that the functional equation implies
the symmetry with respect to the axis s = 1/2 for systematic multiple zeros
and that the conformal map’s argument applies to any analytic function, the
procedure can be repeated as long as the derivative of the current derivative
is null. If not, we get a contradiction to the possibility to have a non-trivial
zero outside the critical line.

Hence the non-trivial zeros of the Zeta function not located on the critical
line are infinite multiple zeros. □

Figures 2 and 3 show the examples of deformation of rectangles by the first
and second derivatives of the Zeta function. In order to collect these graph-
ics, we use the quotient difference’s and the second symmetric derivative’s
approximations (ζ(s+∆ϵ)−ζ(s))/∆ϵ and (ζ(s+∆ϵ)−2ζ(s)+ζ(s−∆ϵ))/∆ϵ2.
The choice of ∆ϵ for these developments is arbitrary as long as small enough.
It can be purely real or purely imaginary or a mix. Here the data collec-
tion was done with ∆ϵ = 0.00001 except for the red curves where we use
∆ϵ = 0.00001i (to show that it has no damaging effect and that the curves
still stay ”parallel” and meet at their vertices).

In these figures, we observe, here and there, places where the red and blue
curves get, for corresponding equal ordinates in the initial rectangle, very
near one to each other. However, as we checked on close-ups, there is no
meeting (nor therefore crossing) of the two curves.



6 HUBERT SCHAETZEL

Figure 2.
Initial rectangle r delimiting
σ = [0.495, 0.505], t = [0.2, 21]

Image ”rectangle” ζ ′(r)

Figure 3.
Initial rectangle r delimiting

σ = [0.495, 0.505], t = [0.9, 23.5]
Image ”rectangle” ζ ′′(r)

Note. The reader will find an example of second derivative’s cancellation’s
effect on the first derivative of ζ(s) in appendix A figures 26 a and b. It
shows the same pattern as the first derivative’s cancellation’s effect on ζ(s).

Theorem 3. The non-trivial zeros of the Zeta function are all located on
the critical line.

Proof. The Zeta function is a meromorphic [16] function and holomorphic
at every point except (1,0). Locally at ρ, its identified nth multiple zero, it
can be written as ζ(s) =

∑
m≥n am(s− ρ)m where am are constant complex

coefficients. By the previous lemma however, for any finite n, the coeffi-
cients am remain dependant of s and therefore there is no possible escape to
that dependency, thus a contradiction to the property of holomorphy. The
Riemann hypothesis is therefore true. □
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This result set forth, let us consider the ”trivial” zeros

s = 1 + ik
2π

Ln(2)
, k ∈ Z, (3)

of another analytic continuation of Zeta (over Re(s) > 0), built on Dirichlet
Eta function, and defined by ζ(s) = (1− 21−s) · η(s) = (1− 21−s)

∑∞
n=1

−1n

ns .
We observe the obvious constant real part. It happens that the two sets
{s = 1 + ik 2π

Ln(2)} and {s = 1/2 + it} show identical behaviour in graphic

representations (see [17] Dirichlet sheet). So, why wouldn’t the similarity
of the constance of real parts be a hint to some hidden similarity in their
imaginary parts? Where has gone the periodicity exposed in equation 3 so
acutely? Isn’t there still something worth to be dug into? These questions
will be addressed soon.

3. The pain-free locus

The following result was formulated by Bernhard Riemann in 1859 and
proven by Hans Carl Friedrich von Mangolt in 1905 [13]:

Theorem 4. Riemann - von Mangoldt formula: The number N(t) of zeros
of the zeta function with imaginary part greater than 0 and less than or equal
to t satisfies

N(t) =
t

2π
Ln

t

2π
− t

2π
+O(Ln(t)).

where Ln() is the Napierian logarithm.

Reference [4] provides a proof of a more precise result as t → ∞:

N(t) =
t

2π
Ln

t

2π
− t

2π
− 7/8 +

1

π

∫ ∞

1/2
Im(−ζ ′

ζ
(σ + i.t))dσ +O(t−1)

Let us get then the approximate reciprocal function of N(t) is order to
produce an upper boundary approximation of the locus of the nth Riemann
zero. For that, we use the following theorem.

Theorem 5. The reciprocal function of n = TLn(T )− T + a, n a function
of T , is given by (refer for example to [5]):

T =
n− a

W (n−a
e )

where e = exp(1) and W is the Lambert function [12] defined by w = W (y)
where w.ew = y.

Then some approximate ordinate tn of the nth ζ function zero, using the
substitution t = 2πT , is provided by

tn ≈ 2π
n+ 7/8− 2

W (n+7/8−2
e )

(4)
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where, via a numerical verification, we choose the appropriate beginning
index n = 1 and the offset −2 in the tn expression for the first Riemann zero
approximation.

Note. In 1993, it was reported that the Lambert W function provides an
exact solution to the quantum-mechanical double-well Dirac delta function
model for equal charges - a fundamental problem in physics -. Prompted
by this, Rob Corless and developers of the Maple computer algebra sys-
tem realized that ”the Lambert W function has been widely used in many
fields, but because of differing notation and the absence of a standard name,
awareness of the function was not as high as it should have been [12].”

Note. The general Lambert function is a multivalued function. Here, only
the principal branch W0 is useful, the 0 indexing being omitted systemati-
cally.

Note. The principal branch of the Lambert function is a smooth monotonous
strictly increasing function defined over ℜ for x > −1

e .

Note. An approximate value of W (x) is also

W (x) = Lnx− Ln(Lnx) + o(1)

The later is not used in our own numerical evaluations as it is much too far
off the required precision. Instead, we use systematically the ”lambertw(x)”
function provided within the Pari gp on-line application.

4. Defining the appropriate frame of reference

Proposition 1. The nth solution of the set 2, thus verifying Re(ζ(s)) = 0
and Im(ζ(s)) ̸= 0, follows a smooth monotonous ordinates’ evolution trn
given by

trn = LaRe(n)− (LaRe(n)− LaRe(n− 1)).ϵ2(n) (5)

where

LaRe(n) = 2π
n− 11/8

W (n−11/8
e )

(6)

and where, for n ≥ 1, the maximum deviation is

0 < ϵ2(n) <
1

2000
n−1/2 (7)

provided that the first element of the S2−set is indexed with n = 0.

Proposition 2. The nth solution of the set 3, thus verifying Re(ζ(s)) ̸= 0
and Im(ζ(s)) = 0, follows a smooth monotonous ordinates’ evolution tin
given by

tin = LaIm(n)− (LaIm(n)− LaIm(n− 1)).ϵ3(n) (8)

where

LaIm(n) = 2π
n− 7/8

W (n−7/8
e )

(9)
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and where, for n ≥ 1, the maximum deviation is

0 < ϵ3(n) <
1

2000
n−1/2 (10)

provided this time that the starting element of the S3−set is indexed with
n = −1.

Graphic data are collected in figures 27 and 28.

Note. The difference between the two sets’ parametrisation of a is −7/8 −
(−11/8) = 1/2 . The middle value is −11/8 + 1/4 = −9/8, which adding
the index value 2 give back the approximate position of the first Riemann
zero corresponding parameter a = 7/8.

Proposition 3. Pairing of the sets 2 and 3: With the exception of n = −1,
to each element of ordinate trn of the set 2 corresponds an element tin of
the set 3, such that

trn − tin = LaRe(n)− LaIm(n)− ϵ1(n) (11)

where, for n > 1, the deviation is such that (see also figure 29)

0 < ϵ1(n) <
1

1000
n−3/2 (12)

and where LaRe(n) and LaIm(n) are defined by the equations 6 and 9.

Note. The knowledge of the exact evolutions of ϵ1(n), ϵ2(n) and ϵ3(n) is not
crucial. What is relevant is their respective convergence to 0 which is much
faster than the narrowing of two successive elements of the sets 2 or 3.

This said, we ought to explain now why it is pertinent to call the previous
frame an appropriate reference.

5. The pairing of cancellations

Let us call partial cancellations the event where eitherRe(ζ(s)) or Im(ζ(s))
cancel on the critical line, the ”or” being the exclusive or. Table 1 provides
in strict increasing order a sample of those partial cancellations, as well
as the complete cancellations corresponding to the non-trivial zeros of the
Riemann function. Appendix B provides all of the examples s such that
Im(s) < 100.

Except for the two fist line of data, this table shows a pairing of the
cancellations. For each non-trivial zero on the critical line, it happens that
there is one partial cancellation event that we may associate. Appendix F
provides the graphics of the pairings for the 50000+50000 first of them.

Let us call s = sz the coordinate of a non-trivial zero and s = sp its
pairing companion. When the cases Re(ζ(s)) = 0 are examined, we get
Im(ζ(sp)).(Im(sp) − Im(sz)) > 0. The same kind of events holds for the
cases Im(ζ(s)) = 0 but this time we get Re(ζ(sp)).(Im(sp)− Im(sz)) > 0.
Let us note that when Im(ζ(s)) = 0, here and in the examples of the
appendix, we observe that Im(sp) − Im(sz) > 0 (because Re(ζ(sp)) > 0).
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Table 1. Pairing of partial cancellations

Set 2: Re(ζ(s)) = 0 Set 3: Im(ζ(s)) = 0
Im(s) Im(ζ(s)) Im(s) Re(ζ(s))

3.4362182 0.5641510
0.8195453 −0.8255143 9.6669081 1.5318207
14.1347251 0 14.1347251 0
14.5179196 0.3122704 17.8455995 2.3401817
20.6540450 −0.4227757 21.0220396 0
21.0220396 0 23.1702827 1.4574270
25.0108576 0 25.0108576 0
25.4915082 0.6888099 27.6701822 2.8450912
29.7385103 −0.9855390 30.4248761 0
30.4248761 0 31.7179800 0.9252646

This is however not a systematic result. The smallest two exceptions are
Im(sp) = 282.4547208235 . . . for which Re(ζ(sp)) = −0.0276294989 . . . and
Im(sp) = 295.5839069742 . . . for which Re(ζ(sp)) = −0.0169003909 . . .

A note important notice here is that if we are looking for a set acting
as the center of some distribution, because set 2 and set 3 are ”equally”
shifted, only one can fit and the candidate to favour is, from the first sample
of values review, the set 2.

Let us then compare the set 1 and set 2 imaginary part tn and trn ad-
vancing by decade in the index n. The results are given in table 2. The
data for set 1 is obtained at reference [7]. In this table, we no more use

Table 2

n Set1 Set2 tn − trn
tn−trn

( 2π
Ln(n/2π)

)

1 14.134725 14.521347 -0.38662 -0.0499
103 1419.42248 1419.51776 -0.09528 -0.0822
104 9877.78265 9877.62962 0.15304 0.179
105 74920.8275 74920.8910 -0.06353 -0.0949
106 600269.6770 600269.6379 0.03906 0.0713
107 4992381.0140 4992381.1105 -0.09653 -0.209
108 42653549.7610 42653549.7735 -0.01254 -0.0314
109 371870203.837 371870204.0508 -0.21377 -0.609
1010 3293531632.397 3293531632.259 0.1382 0.442
1011 29538618431.613 29538618431.813 -0.2002 -0.710

for n > 1000 the value trn = Im(s) such that Re(ζ(s)) = 0, but instead,
because the two results are so close numerically, we opt for trn ≈ LaRe(n) =
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2π(n−11/8)W (n−11/8
e ). This table shows at high index a remarkable match-

ing between the two sets.
Using additional data available at reference [8], the largest height of or-

dinates we found readily on-line, we still get an excellent correspondence
between the nth Riemann’s zero and the nth element of set 2, as table 3
confirms. In this table, lag = 1.370919909931995300000 1022. The spacings
tn− trn are in general much closer than in table 2 . The pairing is still fully
effective.

Table 3

n− 1022 Set1 Set2 tn − trn
tn−trn

( 2π
Ln(n/2π)

)

tn − lag trn − lag
9990 9566.96777 9566.94111 0.02665 0.199
9991 9567.07324 9567.07528 -0.00203 -0.015
9992 9567.20137 9567.20944 -0.00807 -0.06
9993 9567.30864 9567.3436 -0.03497 -0.261
9994 9567.45599 9567.47777 -0.02178 -0.162
9995 9567.67736 9567.61193 0.06543 0.488
9996 9567.82092 9567.7461 0.07483 0.558
9997 9567.8998 9567.88026 0.01954 0.146
9998 9568.09053 9568.01443 0.07611 0.567
9999 9568.15106 9568.14859 0.00247 0.018
10000 9568.33539 9568.28276 0.05263 0.392

Note. As the Riemann hypothesis is concerned, there is more than a mild
signal issued by the pairing phenomena. Indeed, to which reference point
on the critical line could be associated a non-trivial zero outside the critical
line using the knowledge of such ”random” abscissa?

6. Gaussian distributions

Recall that the set 1 is defined by {Re(ζ(s)) = 0 and Im(ζ(s)) = 0} and
set 2 by {Re(ζ(s)) = 0 and Im(ζ(s)) ̸= 0} within the critical band.

Proposition 4. Pairing of the sets 1 and 2: To each element of ordinate
tn of the set 1 correspond an element trn of the set 2. Moreover

tn − trn = Gr(n) (13)

where, for n = i, n = i + 1, ..., n = i + j, i ∈ N , j ∈ N , a sufficient large
range of natural number n, Gr(n) has a centred Gaussian distribution.

Figures 5 and 6 compares the distributions of a sample of 10000 values
of ϵ2(n) = (trn − LaRe(n))/(LaRe(n) − LaRe(n − 1)) classified by increas-
ing values with a Gaussian distribution of same standard deviation. Before
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getting to this comparison, which superposition is trivial, we checked the
matching of the cumulative distribution function of the sample (for distri-
bution’s basic definitions refer to [14]) with the expected distribution type.
The comparison of these cumulative distribution functions is shown in figure
4.

Figure 4.
Cumulative distribution functions

Samples 1 and 2

Figure 5. Sample 1 :
Gaussian distribution

n = 1 to 10000

This means that the distribution Gr(n) of the locus of the set S1 of Rie-
mann zeros is centred when taking as reference the set 2. As Riemann
zeros get closer one to each other, one might then except some increasing
repulsion effect from the centred values, therefore a Gaussian distribution
with increasing standard deviations σ. Numerical verifications confirm ef-
fectively such expectation. The practical distribution samples, we choose
here to verify numerically the proposition, are samples of 1000 successive
results starting at index n.
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Figure 6. Sample 2 :
Gaussian distribution
n = 1011 to 1011 + 9999

A ”wild” approximation of the standard deviation, as applied by table 11
and figure 32 (see appendix D), might be given by the formula

σapp(n) =
1

8
+

Ln(Ln(n+ 500))

4π
(14)

Although using π and only natural numbers in the coefficients, which makes
it look like an exact asymptotic formula, this approximation function so far
is just a guess. Within Ln(Ln()), we use of course n+500 because the sample
contains 1000 elements. For higher values of n, it can be neglected but not
for n < 10000. At much higher height of ordinates, with the help of the
data provided at reference [8], we confirm the proximity to our assumption
within the table 4.

Table 4

n σ(n) σapp(n) ∆r(n)
1021 + 1 to 1021 + 1000 0.4340 0.4336 -0.082 %
1022 + 1 to 1022 + 1000 0.4310 0.4373 1.467 %

This formula means a very slow increase of the standard deviation. We
give in table 5, in addition to σ, the 3σ values corresponding to the ap-
proximative probability 99.73% for the solutions to be present within trn
plus or minus this range. We compare also, via a ratio, the 6σ spacing with
the average asymptotic distance between Riemann zeros (or elements of our
reference frame) using the standard asymptotic 2π/Ln( n

2π ) spacing.
When n tends towards infinity, although the absolute distance to the

presume position of a Riemann zero may be small, its index compared with
the index of the nearest point of the reference frame may be quite different
in absolute value (but not in relative value). That doesn’t mean at all that
the pairing slowly vanishes. It means only that there can be some ”wide”
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Table 5

n σ 3σ 6σ
2π/Ln( n

2π
)

10100 0.558 1.674 122
10200 0.613 1.839 268
10300 0.645 1.936 425
101000 0.752 2.257 1628
1010000 0.941 2.822 20322
10100000 1.129 3.387 243525
101000000 1.317 3.952 2838159

late comers, then in-advance candidates, and in between a catching-up. This
shifting is however a very rare scenario.

7. Shifting of ordinates

Let us label an element of set 1 by ”−ri” and an element of set 2 by ”−re”.
The most regular pairing pattern would be, ordering the ordinates of the
sequences by increasing values, something like ”−ri− re− ri− re− ri− ...”.
Of course, this is impossible in a long sequence as we have seen that the
distribution of the elements of set 1 is Gaussian compared with the position
of the elements of set 2, therefore having as well later comers as in-advance
candidates.

So let us have a look at consecutive ”−ri” elements. Let us start with
two consecutive ”−ri − ri−”. We count them as one event each. If we
get three of them ”−ri − ri − ri−”, we will count them as two events. If
we get four of them ”−ri − ri − ri − ri−”, we will count them as three
events and so on. With the same samples of 1000 elements used to establish
the standard deviation approximation σapp, we collect the proportion of
the consecutive pairs’ pattern ”−ri − ri−”. Having 2000 elements (adding
1000 ”−ri” and 1000 ”−re”), we may have at most 1000 consecutive ”−ri”
(followed or precedented by 1000 consecutive ”−re”). So our proportions
will be evaluated by dividing the number of consecutive pairs by 1000.

Here again a ”wild” approximation of the proportions, as applied by table
12 and figure 33 (see appendix E), and labelled κapp(n), might be given by
the formula

κapp(n) =
1

5
√
π
+

1

4 Ln(Ln(n+ 500))
(15)

As figure 33 shows the collected data ”behaviour” is much more bumpy
and the interpretation driven here may be subject to some doubt. Additional
data, with the same data help [8], still corroborates fairly the approximation
as the reader can verify in table 6.

If the assumption is correct, the asymptotic proportion would be around
1

5
√
π
≈ 0.113, and the said proportion would be therefore almost constant in
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Table 6

n κ κapp(n) ∆r(n)
1021 + 1 to 1021 + 1000 0.182 0.1773 -2.59 %
1022 + 1 to 1022 + 1000 0.176 0.1765 0.30 %

a wide range as soon as n is large enough. This assumption is reflected in
table 7.

Table 7

n κapp(n)
10100 0.159
10200 0.154
10300 0.151
101000 0.145
1010000 0.138
10100000 0.133
101000000 0.130

∞ ≈ 0.113

The reader will note that 3 consecutive sequences ”−ri − ri − ri−” are
rare events. There are only 3 happening among the first 50000 pairings, 20
in the n = 1021 + 1 to 1021 + 10000 range and 15 in the n = 1022 + 1 to
1022 + 10000 range. The detailed data is given in appendix F. To show
that these events have a Gaussian trend (and why would they not ?) would
require a huge calculation for no obvious crucial necessity.

8. Sinusoidal birth of curves

Recall that s = σ + i · t using the standard coordinates settings and that
here σ has no relationship with the standard deviation writing convention.
Then let us compare the evolution of the curves Re(ζ(s)) within a small
range of values of t as σ take values starting with some negative value (here
−0.5) up to 1/2 the center of the critical band. Let us compare also Im(ζ(s))
in the same way. These two cases are given in figures 7 and 8. The curves
having very different amplitudes, we use scaling factors, as indicated in the
figures’ legends, in order to make a more meaningful comparison.

The reader, having a close look at the case σ = −0.5, discovers an almost
periodic amortized wave. The wave length diminishes smoothly towards an
asymptotic trend (the expected 2π/Ln( t

2π ) ratio). As σ increase towards
1/2, the regularity of the patterns diminishes significantly. Let us observe
that the shifts occur essentially within the critical band between σ = 0
and 1/2, that is the curves have not much ”time” to adjust to the ”disrupt
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Figure 7. Trajectory Re(ζ(s)) versus t

Figure 8. Trajectory Im(ζ(s)) versus t

positions”, and therefore the Riemann zeros will stay in the vicinity of the
”ideal” positions.

Note. Starting with a sufficient negative value of σ and increasing this value,
let us consider the intersections of the curves Re(ζ(s)) with the t − axis.
We know, resulting from the pairing mentioned earlier, that half of the
intersections will move to the positions of the set 1 and half to that of the
set 2. Nevertheless, as the figure 7 shows (and equally for set 1 and set 3
in figure 8), the order of the positions of each intersection stays the same in
the process. We emphasize that, starting with the early almost sinusoidal
wave (ignoring the progressive change of the amplitude phenomena), the
belonging of the intersections with the t− axis to such or such sets cannot
be traced by keeping an eye on the evolution of a mere initial alternating
”yes − no − yes − no − ...” positioning. There is some property, certainly
related to the prime numbers’ positions or spacings which determines from
the start the belonging status to the final type of sets. Finding the related
code to the prime numbers would allow even more to be knowledgeable in
regard to the zeros’ locations.

We mentioned the necessity of a scaling factor to compare the curves.
The following factor sc(σ, t) constitutes a good start for such enterprise and
brings the curves within an approximative amplitude ±1 when σ is kept
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within the range [−50,−1]:

sc(σ, t) =
5

2
(t

− 1
2
+(1− 1.83806

Ln(t)
)·σ

) (16)

Of course, in the vicinity of the critical line σ = 1/2, most of the peaks’
ordinates are much larger in absolute values than 1, but away down, like
σ = −10, we get the typical case shown in figure 9. In this typical figure,
over a moderate size interval of t, the curve is almost rigorously sinusoidal
and this local interval can be taken larger and larger as t increases (while
the wave length will shorten very slowly). This scaling factor is adapted as
well for Re(ζ(s)) as for Im(ζ(s)).

Figure 9. Trajectory sc(σ, t).Re(ζ(s)), σ = −10

The proposed scaling factor fails badly for much larger negative values
of σ than the mentioned domain, but not the almost sinusoidal property
(ignoring the progressive change of the amplitude). The formula has to be
revised. We don’t give here such estimation as there is no use for larger
values.

The origin of the sinusoidal trajectory is very simple to grasp with the
following arguments. Indeed, one of the expression of the zeta function
(valid over the entire complex plane except the unique point (1, 0)), based

on
∑∞

n=0 f(s) =
1
2f(0) +

∫∞
0 f(x)dx+ i

∫∞
0

f(ix)−f(−ix)
e2πx−1

dx [11], is the Abel-
Plana type formula

ζ(s) =
1

2
+

1

s− 1
+ 2

∫ ∞

0

sin(s arctan x)

(1 + x2)
s
2 (e2πx − 1)

dx.

Let us have s = σ + it, σ a constant and t varying within a small range of
values. Then ζ(s) = ζ(σ, t) = ζ(t) and let us examine the expression under

the integral τ(t) = sin((σ + it) arctan x) (1 + x2)−
1
2
(σ+it) (e2πx − 1)−1.

Considering the terms dependant of t, we get sin((σ + it) arctan x) =
sin(σ.y) cos(i.t.y)+cos(σ.y) sin(i.t.y) = sin(σ.y) cosh(t.y)+i. cos(σ.y) sinh(t.y)
≈ exp(t.y)(sin(σ.y)+i. cos(σ.y)), where y = arctanx and cosh(t.y)≈ sinh(t.y)

≈ exp(t.y) for large enough t on one hand and (1+x2)−
1
2
(σ+it) = (1+x2)−

σ
2
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(cos(t.Ln(
√
1 + x2)) + i. sin(t.Ln(

√
1 + x2))) on the other hand. Multiply-

ing all terms, we get τ(t) ≈ (e2πx − 1)−1 (1 + x2)−
σ
2 exp(t.y) (sin(σ.y)

cos(t. Ln(
√
1 + x2)) − cos(σ.y) sin(t. Ln(

√
1 + x2)) + i. (cos(σ.y) cos(t.

Ln(
√
1 + x2)) + sin(σ.y) sin(t. Ln(

√
1 + x2)))) = (e2πx − 1)−1 (1 + x2)−

σ
2

exp(t.y) (sin( − t.Ln(
√
1 + x2) + σ.y) +i. cos( t.Ln(

√
1 + x2) + σ.y)). So,

disregarding the scaling correction applied by the exponential term exp(y.t),
the expression under the integral τ(t) is sinusoidal both for its real and imag-
inary parts. As the integration of a sine function is a cosine (and similarly a
cosine gives a sine), we understand the origin to observed trajectory in fig-
ure 9. When σ is small in absolute value, of course, there is the perturbing
effect of the additional terms 1

2 + 1
σ−1+it to the integral of 2τ(t) to get back

ζ(t) as well as other tunings lost by the approximations.

9. The imaginary domain is a stronghold

The consequence of the previous argument and of the regularly spaced
positions of the partial cancellations is a fair realignment at each wave length
between Re(ζ(1/2 + it)) and Re(ζ(σ + it)), σ < 1/2, as shows the example
of figure 10.

Figure 10.
Trajectory sc(σ, t).Re(ζ(s)),

σ = −10 and σ = 1/2

However, the topic is even more interesting when comparing the imaginary
parts at each wave length (between Im(ζ(1/2 + it)) and Im(ζ(σ + it)),
σ < 1/2), as shows figure 11.

In this later case, the two curves stick to each other after each period
when crossing the t−axis.

In an interval of t values, where there are three consecutive zeros’ sequence
”−ri − ri − ri−” within a wave length, there are some sharp adjustments
necessary before and/or after the disrupting event, but the ”sticking” still
holds firmly. Figure 12 shows typically this kind of circumstances.
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Figure 11.
Trajectory sc(σ, t).Re(ζ(s)),

σ = −10 and σ = 1/2

Figure 12.
Trajectory sc(σ, t).Re(ζ(s)),

σ = −10 and σ = 1/2

10. The partial cancellations’ network

The sinusoidal feature, embedded in the Zeta function away from the
critical band, allows the pairings of the partial and total cancellations sets.
The existence of the pairings, by itself, is tempting for confirming the Rie-
mann hypothesis as additional zeros outside the critical line would create
necessarily havoc in these associations. In this section, we will take some
distance from the critical line, to examine the network Re(ζ(s)) = 0 (or
Im(ζ(s)) = 0) and its ”well-behaviour” which any exception to the Rie-
mann hypothesis would have certainly disturb a lot.

10.1. Covering the left half critical band. We will adopt in this section
the convention s = α+ i.β in order to construct another reference where s is
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also expressed as a function of a and b and navigate between the two points
of view.

In order to examine the entire 0 < α < 1/2 domain, we consider the set of
circles of radius 1/4+a and centre (1/4−a, 0), where a ∈ ]−1/4,∞[. All of
these circles are tangent to point (1/2, 0) on the left side, and continuously
increasing a, one will cover the entire targeted area (and more).

The parametrized equation of each of these circles, a being fixed, is then
given in complex representation by:

1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt))

where t describes a 1-length interval, for example:

−1/2 < t ⩽ 1/2

For t = 0, we get 1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)) = 1/2 + 0.i.
For t = ±1/2, we get 1/4−a+(a+1/4).(cos(2πt)+ i. sin(2πt)) = −2a+0.i.

If we wish to reduce the points of the initial domain to 0 < α < 1/2, it suf-
fices to restrict the previous domain of t to 0 < 1/4−a+(a+1/4). cos(2πt) <
1/2, that is

−acos((a− 1/4)/(a+ 1/4))/2π < t < 0

to which we may add the symmetric with respect to the α-axis. Doing so,
we get for example the mapping from figure 13a to figure 13b (the left figure
being a piece of a circle).

(a) Initial domain : a = 500,
−0.044714 < 2πt < 0.044714

(b) Image by ζ : ζ(1/4− a+ (a+
1/4).(cos(2πt) + i. sin(2πt)))

Figure 13

However, due to considerations appearing in the context of this article
later on, it is quite more appropriate to take into account the whole domain
−1/2 < t ⩽ 1/2 (or 0 ⩽ t ⩽ 1/2) rather than the above restriction.

Hence, the domains of definition are an infinite set of circles inscribed in
each other. In figure 14, we provide a sample where parameter a takes integer
values between 0 and 8, the intermediate circles not being represented. The
left half critical band is situated on the right side of that figure.
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Figure 14.
Domain of definition :
a = 0 to a = 8, a ∈ N

One can then choose to navigate from one set of coordinates (a, t) to the
other set (α, β):

α = 1/4− a+ (a+ 1/4). cos(2πt)
β = (a+ 1/4). sin(2πt)

(17)

or from the set of coordinates (α, β) to the other set (a, t), using the value
of parameter a found in the first expression for the second one underneath:

a = 1
2
(1/4−α)2+(β−1/4)(β+1/4)

1/2−α

t = 1
2πasin(

β
a+1/4) =

1
2πasin(2(

1
2 − α) β

(1/2−α)2+β2 )
(18)

Note that if in this case α = 1/2 then a is undefined and t = 0.

10.2. Axis intersections. A typical example of the domains and codomains
of the previously mentioned circles, choosing a = 12, gives the mapping from
figure 15a to figure 15b.

The symmetry, in respect with the y = 0 axis, of the initial circle, due to
the functional equation, implies the symmetry of the image versus the same
axis. Making the choice to take only positive values as an initial domain,
the transformation from domain to codomain is as illustrated in figure 16a
and figure 16b.

Let us consider then the codomain figures. We are going to collect some
data on the set of intersections with the x = 0 and y = 0 axis.

Proposition 5. The number of intersections #I with the x-axis is equal to
a over the domain 0 ⩽ t < 1/2, for any value of a equal to a strictly positive
integer. For a = 0, the number of intersections is equal to 1.

#I = a if a ∈ N∗

#I = 1 if a = 0
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(a) Domain : circle
1/4−a+(a+1/4).(cos(2πt)+i. sin(2πt)),

a = 12, −1/2 < t ⩽ 1/2

(b) Codomain by ζ :
ζ(1/4− a+ (a+ 1/4).(cos(2πt) +

i. sin(2πt)))

Figure 15

(a) Domain : circle
1/4−a+(a+1/4).(cos(2πt)+i. sin(2πt)),

a = 12, 0 ⩽ t ⩽ 1/2

(b) Codomain by ζ :
ζ(1/4− a+ (a+ 1/4).(cos(2πt) +

i. sin(2πt)))

Figure 16

The underneath additional note is a direct consequence of the previous
proposition. We provide it in order to make easier the reading (and checking)
of the various graphics using sometimes −π < t ⩽ π and sometimes 0 ⩽ t <
π as domains of definition.

Note. The number of intersections, distinct or not, #I1 with the x-axis is
equal to 2a over the domain −1/2 < t ⩽ 1/2 for any value of a equal to a
strictly positive integer. The number of distinct intersections #I2 with the
x-axis over the same domain is equal to a+ 1 for any value of a equal to a
strictly positive integer.

#I1 = 2a, #I2 = a+ 1, a ∈ N∗
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Besides for a = 0, we get

#I1 = 2 and #I2 = 2

Proposition 6. The intersections with the y-axis are all distinct. The
number of intersections #I with the y-axis is equal to a over the domain
0 ⩽ t ⩽ 1/2 for any value of a = n+ ϵ, where n ∈ N and 0 < ϵ < 1, N the
natural numbers including 0.

#I = n \a = n+ ϵ, 0 < ϵ < 1

Note. If a ∈ N , there are a few cases a < 3 to distinguish from the general
result:

#I = 0 if a = 0

#I = 2 if a = 1
#I = 3 if a = 2
#I = a if a ∈ N ∩ a ≥ 3

Note. The number of intersections (all distinct) #I1 with the y-axis is equal
to 2n over the domain −1/2 < t ⩽ 1/2 for any value of a = n + ϵ, where
n ∈ N and 0 < ϵ < 1. The number of intersections #I2 with the y-axis over
the same domain is equal to 2a − 1 for any value of a equal to a strictly
positive integer except for a = 0 (#I2 = 0) and a = 1 (#I2 = 3).

#I1 = 2n if a = n+ ϵ, 0 < ϵ < 1

#I2 = 0 if a = 0
#I2 = 3 if a = 1
#I2 = 2a− 1 if a ∈ N − {0, 1}

Proposition 7. The value of the mantissa of a, for which an increase of
the number of intersections #I with the x-axis occurs, is strictly increasing
and bounded by 1 excluded when a tends towards infinity.

mantissa(a) = a− ⌊a⌋ → 1−, a → +∞,#I → #I + 1

Proposition 8. The approximate interpolation of the value of the mantissa,
linked to the intersections’ cardinal #I increase, is given by:

mantissa(a) = 1− 0.615(a+ 0.5)−0.33 (19)

The corresponding data are given in table 8 and figure 17.

Note. To be precise, the depiction of the mantissa is not a continuous func-
tion as it takes actual values only when the number of intersections #I with
the x-axis increases.

Note. The presence of a non-trivial zero would cause havoc to a rule of
thumb for the number of intersections and to the previous mantissa formula’s
smooth match.
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Table 8. Mantissa values

n a mantissa approx n a mantissa approx
1 1.358632 0.358632 0.353276 20 20.780205 0.780205 0.772207
2 2.468381 0.468381 0.508165 30 30.808699 0.808699 0.800493
3 3.537299 0.537299 0.573760 40 40.825408 0.825408 0.818434
4 4.585247 0.585247 0.613479 50 50.836720 0.836720 0.831246
5 5.620606 0.620606 0.641244 60 60.845044 0.845044 0.841050
6 6.647788 0.647788 0.662248 70 70.851511 0.851511 0.848896
7 7.669365 0.669365 0.678955 80 80.856731 0.856731 0.855384
8 8.686942 0.686942 0.692712 90 90.861066 0.861066 0.860876
9 9.701567 0.701567 0.704334 100 100.864746 0.864746 0.865614
10 10.713951 0.713951 0.714345 110 110.867923 0.867923 0.869762
15 15.755717 0.755717 0.749768 120 120.870705 0.870705 0.873438

Figure 17. Mantissa of a matching an increase of the
number of intersections #I.

Proposition 9. Similarly, but in a much simpler way as for the x-axis, the
number of intersections #I with the y-axis increases with the value of a each
time parameter a reaches an integer value, that is each time the mantissa of
a cancels:

mantissa(a) = 0 (20)

Note. The triviality of the mantissa of a, guiding the increase of the number
of intersections with the y-axis, is a mirror indicator of some expected ”triv-
iality” of the mantissa a relative to the x-axis, this latter triviality being the
smooth evolution shown in figure 17. Therefore, we get again a reminder
that non-trivial zeros outside s = 1/2 are not relevant.

In the rest of this article, we will focus on the x-axis intersections. Let
us however note the existence of the same kind of pattern for the y-axis
intersections.
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Table 9. Sample of values u = 2πt(a)

a 1 2 3 4 5 6 7 8 9
S0 0 0 0 0 0 0 0 0 0
S1 π 0.4567π 0.3064π 0.2350π 0.1916π 0.1621π 0.1407π 0.1244π 0.1115π
S2 π 0.7124π 0.5769π 0.5117π 0.4749π 0.4545π 0.4454π 0.4449π
S3 π 0.8202π 0.7033π 0.6446π 0.6099π 0.5886π 0.5757π
S4 π 0.8766π 0.7751π 0.7208π 0.6865π 0.6637π
S5 π 0.9096π 0.8216π 0.7713π 0.7380π
S6 π 0.9306π 0.8538π 0.8074π
S7 π 0.9446π 0.8773π
S8 π 0.9545π
S9 π

Table 10. Sample of values u = 2πt(a)

a 6 6.2 6.4 6.6 6.647788 6.8 7
S0 0 0 0 0 0 0 0
S1 0.1621π 0.1573π 0.1528π 0.1485π 0.1476π 0.1445π 0.1407π
S2 0.4749π 0.4697π 0.4651π 0.4610π 0.4602π 0.4575π 0.4545π
S3 0.6446π 0.6363π 0.6287π 0.6218π 0.6203π 0.6156π 0.6099π
S4 0.7751π 0.7619π 0.7501π 0.7393π 0.7369π 0.7296π 0.7208π
S5 0.9096π 0.8864π 0.8669π 0.8499π 0.8461π 0.8349π 0.8216π
S6 π π π π π 0.9556π 0.9306π
S7 π π π

Proposition 10. Let us have the explicit function of two variables ζ(a, t) =
ζ(1/4 − a + (a + 1/4).(cos(2πt) + i. sin(2πt))). We consider the implicit
application t(a) such as Im(ζ(a, t)) = 0. It defines a network of continuous
values t of the variable a with an additional curve for each incrementation
of #I, #I being the term defined in proposition 5.

The data t(a), for a sample of integer values of a, are given in table 9.
Each line corresponds to an additional curve.

Following the curves’ trajectories imposed by keeping Im(ζ(1/4−a+(a+
1/4).(cos(2πt)+i. sin(2πt)))) = 0, we get the intermediary values of table 10
for a between 6 and 7, the reader will note the beginning of a new junction
for the mantissa approximative value 6.647788 (as previously mentioned in
table 8). The ordinate t = 1/2 (written twice therefore) splits here into two
values as the abscissa a increases.

The corresponding graphic representation is given by figure 18.
These are the curves which prolongation is linked to the trivial zeros of

the Zeta function. One can observe a void between the first of the curve
(excluding S0 the trivial t = 0 line) and the other ones. The reason of
this empty space is that it’s not the full picture which one is given in figure
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Figure 18. Network of curves t(a) such that
Im(ζ(1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)))) = 0

19. There, we have been completing it by the curves aiming at the non-
trivial zeros and the partial zeros, something one could check with a careful
tracking.

Figure 19. Network of curves t(a) such that
Im(ζ(1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)))) = 0

Note. The Zeta function is a smooth expression. With Occam’s razor prin-
ciple, it is difficult to imagine, in the initial

∑ 1
ns , what would change the

regular evolution of the network of curves shown in figure 19 on its way to
infinity (a increasing). Of course, any non-trivial zero, outside Re(s) = 1/2,
would create quite some havoc in this pattern.

Note. One can also represent the network of curves Im(ζ(1/4 − a + (a +
1/4).(cos(2πt) + i. sin(2πt)))) = 0 within the system of coordinates (α, β)
where α and β is defined by the equations labelled (17). The corresponding
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network is shown in figure 20. This representation is however less appealing
as the two patterns intermingle with confusing intersections while figure 19
allows to avoid that kind of phenomena. The diagonal pattern corresponds
to the curves heading to the trivial zeros, the ”partially horizontal” pattern
heading towards the non-trivial zeros and their pairings in an totally ordered
manner. One can trace the link from one figure to the another by the
corresponding colors of the curves.

Figure 20. Network of curves (α, β) such that
Im(ζ(1/4− a+ (a+ 1/4).(cos(2πt) + i. sin(2πt)))) = 0

11. Conclusion

As presumed, there are a lot of quite simple features in the real and imag-
inary parts of the Zeta function:
- the real parts are constant;
- the imaginary parts of the solutions to partial cancellations lie on a smooth
slowly contracting sinusoidal wave;
- there are the ”same” number of solutions to partial cancellationsRe(ζ(s)) =
0 as to total cancellations ζ(s) = 0;
- there are the ”same” number of solutions to partial cancellations Im(ζ(s)) =
0 as to total cancellations ζ(s) = 0;
- the imaginary parts’ distribution of the zeros of the Zeta function is Gauss-
ian when referred to the adequate frame of reference, which is the set of
cancellations Re(ζ(s)) = 0, a reference that besides can be swapped asymp-
totically (in fact much earlier) for a simpler set related to Lambert function
principal branch;
- the network of solutions s to Re(ζ(s)) = 0 (and Im(ζ(s)) = 0 likely) is as
”well-tempered” as a Johann Sebastian Bach composition.
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Appendix A. Conformal maps

The case around the pole (see figure 21) could have been an exception to
the general rule as the value of the image diverges in the center. But adding
the correspondence (1, 0) → ∞ preserves the bijection. When oriented,

Figure 21.
Initial rectangle r delimiting
σ = [0.95, 1.05], t = [−0.1, 0.1]

Image ”rectangle” ζ(r)

the trajectory around the pole of the image is reversed compared to the
trajectory of the initial rectangle.

Around the trivial zeros (see figures 22 and 23), there is no special phe-
nomena.

Figure 22.
Initial rectangle r delimiting

σ = [−2.05,−1.95], t = [−0.1, 0.1]
Image ”rectangle” ζ(r)
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Figure 23.
Initial rectangle r delimiting

σ = [−4.05,−3.95], t = [−0.1, 0.1]
Image ”rectangle” ζ(r)

For a typical case (see figure 24), over a broader interval, including ze-
ros, the surfaces overlap and like Riemann surfaces would unfold and spiral
around some middle axis in a 3D representation. It seems that except for the

Figure 24.
Initial rectangle r delimiting
σ = [1.1, 1.2], t = [1.25, 26]
Image ”rectangle” ζ(r)

pole’s contour, all the other contours are oriented like the initial rectangle.

The event where ζ ′(s0) = ζ ′(σ0 + i.t0) = 0 appears as a limit case of
the general feature. The curve ζ(σ0 + i.t), t ≈ t0 is almost a straight line
inwards and a straight line outwards (red curve). The surrounding curves are
at arbitrary close distances but without ever meeting the limit curve. There
is no crossing locally, every curve staying on its respective side of the other.
Figure 25 a (and its close-up b) is a typical case. Here the derivative cancels
for s0 ≈ 0.84873532 + i.60.14084577857. In this example, we alternate the
sign of ∆σ while we took increasing absolute values. At very large close-up,
a rectangular domain will still give an almost rectangular image.
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Figure 25.
σ0 = 0.84873532 t = [60.140715, 60.140967]

Image ζ(σ0 +∆σ + t)

(a)

(b)

In the case of second derivative’s cancelling, it is this time the first
derivative of ζ that shows the previous pattern. Figure 26 a (and its
close-up b) is a typical case. Here the second derivative cancels for s0 ≈
0.9691707 + i.295.16838.

For a curious reader, a relevant remark may be: how to explain the simul-
taneous property of the ζ−function being infinitely derivable and showing
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Figure 26.
σ0 = 0.9691707 t = [295.16825, 295.1685]

Image ζ ′(σ0 +∆σ + t)

(a)

(b)

in the same time straight lines coming in and going out within the for-
mer graphics? What happens in the vicinity of σ0 + i.t0? The answer is a
size-diminishing node (crunode), barely visible even at high magnification,
therefore avoiding a cusp, and allowing any derivative’s value and a smooth
continuation through the non-singular point σ0 + i.t0.
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Appendix B. Partial Zeta zeros

α = Re(s) = 0.5
Re(ζ(s)) = 0 Im(ζ(s)) = 0

Im(s) Im(ζ(s)) Im(s) Re(ζ(s))
3.4362182 0.5641510

0.8195453 −0.8255143 9.6669081 1.5318207
14.1347251 0 14.1347251 0
14.5179196 0.3122704 17.8455995 2.3401817
20.6540450 −0.4227757 21.0220396 0
21.0220396 0 23.1702827 1.4574270
25.0108576 0 25.0108576 0
25.4915082 0.6888099 27.6701822 2.8450912
29.7385103 −0.9855390 30.4248761 0
30.4248761 0 31.7179800 0.9252646
32.9350616 0 32.9350616 0
33.6237931 1.0716783 35.4671843 2.9381215
37.2567418 −0.6505448 37.5861782 0
37.5861782 0 38.9992100 1.7867218
40.7000036 −0.3314003 40.9187190 0
40.9187190 0 42.3635504 1.0987569
43.3270733 0 43.3270733 0
43.9935273 1.3843203 45.5930290 3.6629029
47.1646902 −1.6474277 48.0051509 0
48.0051509 0 48.7107766 0.6882924
49.7738325 0 49.7738325 0
50.2332544 0.7168152 51.7338428 2.0112139
52.9703215 0 52.9703215 0
53.2140564 0.5998411 54.6752374 2.9123905
56.1185828 −0.7940224 56.4462477 0
56.4462477 0 57.5451652 1.7581649
58.9559503 −0.5974902 59.3470440 0
59.3470440 0 60.3518120 0.5385858
60.8317785 0 60.8317785 0
61.7335435 2.0558319 63.1018680 4.1643988
64.4574470 −1.7414112 65.1125440 0
65.1125440 0 65.8008876 1.0538773
67.0798105 0 67.0798105 0
67.1327484 0.0948357 68.4535449 1.5400583
69.5464017 0 69.5464017 0
69.7637543 0.4793063 71.0638190 1.9527373
72.0671577 0 72.0671577 0
72.3541506 0.8790431 73.6351323 3.6143950
74.9071220 −1.8642143 75.7046907 0
75.7046907 0 76.1704546 0.5654782
77.1448401 0 77.1448401 0
77.4254438 0.4310013 78.6723840 1.2271237
79.3373750 0 79.3373750 0
79.9115523 1.7004816 81.1432094 3.9981977
82.3676012 −1.6134986 82.9103809 0
82.9103809 0 83.5849601 1.1700214
84.7354930 0 84.7354930 0
84.7955057 0.1307266 85.9994461 1.9497714
87.1969784 −0.4361305 87.4252746 0
87.4252746 0 88.3882899 0.6417239
88.8091112 0 88.8091112 0
89.5735585 2.2103660 90.7529534 4.4753670
91.9266357 −1.9099442 92.4918993 0
92.4918993 0 93.0947590 1.3057893
94.2574700 −0.6452860 94.6513440 0
94.6513440 0 95.4149085 0.4915215
95.8706342 0 95.8706342 0
96.5672083 1.5460137 97.7144973 2.8521685
98.8311942 0 98.8311942 0
98.8568982 0.0903128 99.9945282 2.6914141
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Appendix C. Graphics of deviations

Figure 27.
ϵ2(n) = ∆Re =

trn−LaRe(n)
LaRe(n)−LaRe(n−1)

Figure 28.
ϵ3(n) = ∆Im = tin−LaIm(n)

LaIm(n)−LaIm(n−1)

Figure 29.
ϵ1(n) = δn = −(trn − tin − (LaRe(n)− LaIm(n)))
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Integrating the specific Lambert function’s values within the ζ−function,
we get figures 30 and 31:

Figure 30. ΥIm(k) = Im(ζ(12 + i2π(k−7/8)

W (
k−7/8

e
)
)),

k = 1 to 10000, k ∈ N

Figure 31. ΥRe(k) = Re(ζ(12 + i2π(k−11/8)

W (
k−11/8

e
)
)),

k = 1 to 10000, k ∈ N
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Appendix D. Data of standard deviations

The samples are composed of 1000 consecutive elements, starting at n and
the standard deviation is noted σ(n). The approximation function σapp(n)

is equal to 1
4(

1
2 + Ln(Ln(n+500))

π ). We provide also the relative difference

between the two values: ∆r(n) =
σapp(n)−σ(n)

σ(n) . The two last data are close

neighbours showing similarities and also still a notable difference. That is
the result of ”small” samples.

Table 11

n σ(n) σapp(n) ∆r(n)
1 0.2593 0.2704 4.28 %

1000 0.2790 0.2833 1.55 %
3000 0.2896 0.2921 0.83 %
10000 0.3011 0.3021 0.32 %
30000 0.3096 0.3108 0.39 %
100000 0.3197 0.3195 -0.06 %
300000 0.3273 0.3267 -0.17 %
1000000 0.3346 0.3340 -0.20 %
3000000 0.3412 0.3400 -0.35 %
10000000 0.3461 0.3462 0.03 %
30000000 0.3525 0.3515 -0.29 %
100000000 0.3586 0.3568 -0.48 %
300000000 0.3628 0.3615 -0.36 %
1000000000 0.3666 0.3662 -0.11 %
3000000000 0.3732 0.3703 -0.76 %
10000000000 0.3731 0.3746 0.40 %
30000000000 0.3771 0.3783 0.33 %
100000000000 0.3801 0.3822 0.55 %
100000001000 0.3820 0.3822 0.05 %

Figure 32. Standard deviation σ
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Appendix E. Proportion of consecutive sequences of zeros

The notion of consecutive sequences has been given in the main text. The
samples are composed of 1000 + 1000 elements of set 1 and set 2 respectively,
starting at n, and the proportion is labelled κ(n). The approximation func-
tion κapp(n) is equal to

1
5
√
π
+ 1

4 Ln(Ln(n+500)) . We provide also the relative

difference between the two values: ∆r(n) =
κapp(n)−κ(n)

κ(n) .

Table 12

n κ κapp(n) ∆r(n)
1 0.254 0.2497 -1.71 %

1000 0.235 0.2385 1.48 %
3000 0.234 0.2319 -0.89 %
10000 0.224 0.2252 0.52 %
30000 0.214 0.2199 2.77 %
100000 0.208 0.2151 3.43 %
300000 0.210 0.2115 0.70 %
1000000 0.211 0.2080 -1.40 %
3000000 0.202 0.2054 1.66 %
10000000 0.206 0.2028 -1.57 %
30000000 0.209 0.2007 -3.98 %
100000000 0.196 0.1986 1.35 %
300000000 0.207 0.1970 -4.84 %
1000000000 0.179 0.1953 9.11 %
3000000000 0.192 0.1939 1.01 %
10000000000 0.187 0.1925 2.96 %
30000000000 0.197 0.1914 -2.86 %
100000000000 0.199 0.1902 -4.43 %
100000001000 0.193 0.1902 -1.46 %

Figure 33. κ evolution
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Appendix F. Three consecutive zeros

Figure 34 shows the evolution, up to the 50000+50000 zeros, of the pairing
by adding 1 each time that a non-trivial zero is reached (by increasing the
ordinate) and adding −1 each time a partial zero Re(s) = 0 is met. We
observe the systematic rapid return to 0 for the count #(ad). We mention
in table 13 the number of times ##(ad) some value of #(ad) is obtained in
this data collection.

Table 13

#(ad) -2 -1 0 1 2
##(ad) 5 24982 49993 25018 2

Figure 34. Pairing: Evolution of #(ad)

Figure 35.
Paring: Evolution of #(ad)

(a) Detail for some temporary
#(ad) = 2

(b) Detail for some temporary
#(ad) = −2
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Table 14

type n n n
re 39324 44467 45926
ri 39324 44467 45925
ri 39325 44468 45926
ri 39326 44469 45927
re 39325 44468 45927

type ordinates ordinates ordinates
re 32694.0584 36446.1498 37502.2671
ri 32694.1706 36446.1535 37502.3231
ri 32694.5156 36446.7618 37502.535
ri 32694.7693 36446.8685 37502.8381
re 32694.7927 36446.8748 37502.9898

spacings spacings spacings
0.1122 0.0038 0.0559
0.345 0.6083 0.2119
0.2537 0.1067 0.3031
0.0234 0.0063 0.1518

totalspacing totalspacing totalspacing
0.7343 0.7251 0.7227



POSITIONING THE ZETA FUNCTION ZEROS WITHIN AN OPTIMUM FRAME OF REFERENCE39

Table 15.
lag n = 1021 + 1,
lag t = 1.44176897509546973000 1020.

type n− lag n n− lag n n− lag n n− lag n n− lag n
re 119 135 792 1210 1311
ri 120 135 793 1209 1311
ri 120 136 793 1210 1312
ri 121 136 794 1211 1312
re 121 137 794 1211 1313

type t− lag t t− lag t t− lag t t− lag t t− lag t
re 555.2929 557.407 650.1474 708.9205 723.1557
ri 555.2998 557.4186 650.15 708.9393 723.1806
ri 555.3471 557.4616 650.179 709.0054 723.2689
ri 555.4214 557.5318 650.2569 709.0563 723.2966
re 555.4338 557.548 650.2883 709.0614 723.2967

spacings spacings spacings spacings spacings
0.0069 0.0116 0.0027 0.0188 0.0249
0.0474 0.043 0.0289 0.066 0.0884
0.0743 0.0701 0.078 0.0509 0.0277
0.0124 0.0162 0.0314 0.0052 0

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1409 0.1409 0.1409 0.1409 0.1409
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Table 16.
lag n = 1021 + 1,
lag t = 1.44176897509546973000 1020.

type n− lag n n− lag n n− lag n n− lag n n− lag n
re 1859 1877 2039 2520 2703
ri 1860 1877 2039 2520 2704
ri 1860 1878 2040 2521 2704
ri 1861 1878 2040 2521 2705
re 1861 1879 2041 2522 2705

type t− lag t t− lag t t− lag t t− lag t t− lag t
re 800.5333 802.9293 825.762 893.5555 919.489
ri 800.5547 802.9301 825.8046 893.5681 919.5006
ri 800.5769 802.9997 825.8683 893.628 919.5866
ri 800.6554 803.0679 825.8956 893.6816 919.6161
re 800.6742 803.0703 825.903 893.6965 919.6299

spacings spacings spacings spacings spacings
0.0214 0.0007 0.0426 0.0126 0.0117
0.0223 0.0696 0.0637 0.0599 0.0859
0.0785 0.0682 0.0273 0.0536 0.0295
0.0188 0.0024 0.0074 0.0149 0.0139

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1409 0.1409 0.1409 0.1409 0.1409
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Table 17.
lag n = 1021 + 1,
lag t = 1.44176897509546973000 1020.

type n− lag n n− lag n n− lag n n− lag n n− lag n
re 3417 6465 6665 6845 7381
ri 3417 6465 6665 6845 7382
ri 3418 6466 6666 6846 7382
ri 3418 6466 6666 6846 7383
re 3419 6467 6667 6847 7383

type t− lag t t− lag t t− lag t t− lag t t− lag t
re 1019.9812 1449.5747 1477.7632 1503.1329 1578.8192
ri 1020 1449.5943 1477.7751 1503.1397 1578.8232
ri 1020.0296 1449.6929 1477.8436 1503.1841 1578.8685
ri 1020.1185 1449.7057 1477.9003 1503.2356 1578.9558
re 1020.1221 1449.7156 1477.9042 1503.2739 1578.9601

spacings spacings spacings spacings spacings
0.0189 0.0196 0.0118 0.0068 0.004
0.0296 0.0986 0.0685 0.0444 0.0454
0.0889 0.0128 0.0566 0.0515 0.0872
0.0036 0.0099 0.0039 0.0383 0.0044

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1409 0.1409 0.1409 0.1409 0.1409
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Table 18.
lag n = 1021 + 1,
lag t = 1.44176897509546973000 1020.

type n− lag n n− lag n n− lag n n− lag n n− lag n
re 7413 7745 8587 8766 9661
ri 7414 7745 8587 8766 9661
ri 7414 7746 8588 8767 9662
ri 7415 7746 8588 8767 9662
re 7415 7747 8589 8768 9663

type t− lag t t− lag t t− lag t t− lag t t− lag t
re 1583.3294 1629.9814 1748.6552 1773.884 1900.0278
ri 1583.3401 1629.9948 1748.6562 1773.8977 1900.0659
ri 1583.4421 1630.0423 1748.7048 1773.9784 1900.0998
ri 1583.4693 1630.111 1748.7801 1774.0111 1900.1661
re 1583.4703 1630.1224 1748.7962 1774.0249 1900.1687

spacings spacings spacings spacings spacings
0.0107 0.0134 0.001 0.0137 0.0382
0.102 0.0475 0.0487 0.0807 0.0338
0.0272 0.0687 0.0753 0.0328 0.0663
0.001 0.0114 0.016 0.0138 0.0026

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1409 0.1409 0.1409 0.1409 0.1409
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Table 19.
lag n = 1022 + 1,
lag t = 1.370919909931995300000 1021.

n− lag n n− lag n n− lag n n− lag n n− lag n
re 215 1193 3828 3881 4899
ri 216 1193 3829 3882 4899
ri 216 1194 3829 3882 4900
ri 217 1194 3830 3883 4900
re 217 1195 3830 3883 4901

t− lag t t− lag t t− lag t t− lag t t− lag t
re 8255.6156 8386.6945 8740.3526 8747.4633 8883.9088
ri 8255.6317 8386.6989 8740.3693 8747.4721 8883.9101
ri 8255.6595 8386.7573 8740.4315 8747.5558 8884.0109
ri 8255.7033 8386.8156 8740.4694 8747.5766 8884.0413
re 8255.7498 8386.8287 8740.4867 8747.5975 8884.0429

spacings spacings spacings spacings spacings
0.0161 0.0044 0.0167 0.0087 0.0013
0.0278 0.0584 0.0622 0.0838 0.1008
0.0438 0.0583 0.0379 0.0207 0.0304
0.0465 0.013 0.0174 0.0209 0.0016

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1342 0.1342 0.1342 0.1342 0.1342
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Table 20.
lag n = 1022 + 1,
lag t = 1.370919909931995300000 1021.

n− lag n n− lag n n− lag n n− lag n n− lag n
re 5265 5850 6308 7423 7480
ri 5265 5851 6309 7423 7480
ri 5266 5851 6309 7424 7481
ri 5266 5852 6310 7424 7481
re 5267 5852 6310 7425 7482

t− lag t t− lag t t− lag t t− lag t t− lag t
re 8933.013 9011.6335 9073.081 9222.5404 9230.1878
ri 8933.0147 9011.6515 9073.0933 9222.548 9230.2155
ri 8933.1088 9011.684 9073.1475 9222.6183 9230.2712
ri 8933.1423 9011.7486 9073.1932 9222.6729 9230.3204
re 8933.1472 9011.7677 9073.2151 9222.6746 9230.322

spacings spacings spacings spacings spacings
0.0017 0.018 0.0124 0.0076 0.0277
0.0941 0.0325 0.0542 0.0703 0.0558
0.0335 0.0646 0.0457 0.0546 0.0491
0.0049 0.0191 0.0219 0.0017 0.0016

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1342 0.1342 0.1342 0.1342 0.1342
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Table 21.
lag n = 1022 + 1,
lag t = 1.370919909931995300000 1021.

n− lag n n− lag n n− lag n n− lag n n− lag n
re 7883 8054 8478 8550 8577
ri 7883 8055 8479 8551 8577
ri 7884 8055 8479 8551 8578
ri 7884 8056 8480 8552 8578
re 7885 8056 8480 8552 8579

t− lag t t− lag t t− lag t t− lag t t− lag t
re 9284.2562 9307.3325 9364.2183 9373.8782 9377.3664
ri 9284.2841 9307.3417 9364.2363 9373.896 9377.3796
ri 9284.3431 9307.4163 9364.2611 9373.9474 9377.4451
ri 9284.3841 9307.4398 9364.3396 9373.9992 9377.4735
re 9284.3903 9307.4666 9364.3525 9374.0123 9377.5006

spacings spacings spacings spacings spacings
0.028 0.0092 0.018 0.0179 0.0132
0.0589 0.0746 0.0248 0.0514 0.0655
0.0411 0.0234 0.0785 0.0518 0.0284
0.0062 0.0269 0.0128 0.0131 0.0271

totalspacings totalspacings totalspacings totalspacings totalspacings
0.1342 0.1342 0.1342 0.1342 0.1342
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Appendix G. Pari gp programs

Frame alternative approximative imaginary value’ positions.
on the critical line
{a = 11/8; for(k = 0, 30,
print(k” ”real(2*Pi*(k-a)/lambertw((k-a)/exp(1)))))}

Proximity to target 0 with alternative frame.
{print(”Set 2: Re(zeta(s)) = 0”);
a = 11/8; for(k = 1000, 1015,
print(k” ”real(zeta(1/2+I*2*Pi*(k-a)/lambertw((k-a)/exp(1))))))}
{print(”Set 3: Im(zeta(s)) = 0”);
a = 7/8; for(k = 1000, 1015,
print(k” ”imag(zeta(1/2+I*2*Pi*(k-a)/lambertw((k-a)/exp(1))))))}

Plotting curves.
{sigma1 = 0.5; sigma2 = -5; export(sigma1, sigma2);
parploth(t = 37500.7, 37502.9,
[(2.5*(tˆ(-1/2+ sigma1*(1-1.83806/log(t)))))*real(zeta(sigma1+I*t)),
(2.5*(tˆ(-1/2+ sigma2*(1-1.83806/log(t)))))*real(zeta(sigma2+I*t))])}

Plotting approximative first derivatives.
{epsil1 = 0.00001; epsil2 = 0.00001*I; delt = 0.05;
export(epsil1, epsil2, delt);
parploth(t = 0.2, 21,
[(zeta(0.5-delt+epsil1+I*t)-zeta(0.5-delt+I*t))/epsil1,
(zeta(0.5+delt+epsil2+I*t)-zeta(0.5+delt+I*t))/epsil2],
”Complex”)}

Plotting approximative second derivatives.
{epsil1 = 0.00001; epsil2 = 0.00001*I; delt = 0.05;
export(epsil1, epsil2, delt);
parploth(t = 0.9, 23.5,
[(zeta(0.5-delt+epsil1+I*t)-2*zeta(0.5-delt+I*t)+zeta(0.5-delt-
epsil1+I*t))/epsil1/epsil1,
(zeta(0.5+delt+epsil2+I*t)-2*zeta(0.5+delt+I*t)+zeta(0.5+delt-
epsil2+I*t))/epsil2/epsil2],
”Complex”)}

Note that the quotes have to be converted into straight quotes on the Pari
gp browser. The exponentiation signˆhas also to be corrected.
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[2] Luis Báez-Duarte. Fast proof of functional equation for ζ(s).
14 May 2003 (arXiv math/0305191).
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