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Number Theory / Théorie des nombres  
 

Are all integers Lychrel or Cheryl’s ? 
 

Hubert Schaetzel 
 
 

Abstract  When executing Wade VanLandingham's algorithm, palindromy, if it occurs, is not an invaluable 

achievement, but a mere youth event, a banal incident. The purpose of this article is to give a measure of the 

gap to palindromy and its evolution during the process in order to justify this cavalier assertion and at the 

same time show how similar all integers are when subjected to this algorithm. However, what initially seems 

to be an evidence in base 10 suddenly takes a different turn in base 2, risking to dispute the actual nature of 

integers in any base and leaving more questions than answers as summarized in the title of the article. 
 

  Les nombres entiers sont-ils tous de Lychrel ou de Cheryl ? 

 

Résumé  Lors de l’exécution de l’algorithme de Wade VanLandingham, la palindromie, si elle survient, n’est pas un 

aboutissement à valeur inestimable, mais un simple évènement de jeunesse, un incident banal. Le but de cet 

article est de donner une mesure de l’écart à la palindromie et son évolution au cours du processus afin de 

justifier cette affirmation cavalière et de montrer dans le même temps à quel point tous les nombres entiers 

se ressemblent lorsque soumis à cet algorithme. Cependant, ce qui semble d’abord être une évidence en base 

10 prend soudain un tour différent en base 2 risquant de remettre en cause la nature effective des nombres 

dans toutes les bases et laissant plus de questions que de réponses comme le résume le titre de l’article.  
 

Statut  Preprint.  

Date  V1 : 14/05/2021 

 

 

1.Introduction. 
 

The title of the article is a provocative banter. Its meaning, quite elastic, expands or contracts, as this reading progresses. 

 

Wade VanLandingham's algorithm consists of successive additions of a result with its symmetrical. If the operation does 

not result in a palindrome, the initial number is a Lychrel number. Few theoretical studies are available on this subject. 

Thus the main source and database used here are those of reference [1]. 

 

Years of continuous calculations have been carried out on certain numbers, including the presumed "first one" of them in 

order to confirm the absence of a palindrome. The research work thus seems to be mainly focused on the brute-force 

method of launching a program in the hope of setting a record, knowing that the only real record is infinity. Herein we 

propose to assess the gap with palindromy and gauge within a few tens of seconds the interest of conducting such an 

investigation. We will show that a massive and prolonged search is doomed to fail regardless of the initial number in the 

range of number sizes of current records (so for 196 also).  

 

Much greater challenges however hide behind Lychrel which are exposed in paragraph 6. 

 

2.Programming preliminaries. 
 

The palindromy gap assessment is based on a VBA-based computer program that can be executed with a simple 

spreadsheet. The 0-gap does not stop the program, this event being considered a simple step of calculation of no real 

importance. The choices of initial number and number of steps of the process are set up at the beginning of the program 

provided in appendix 1. 

 

The principle of calculation is explained below by an example. 

So let us choose the integer 196. We get the succession of numbers of the second column by adding the symmetrical and 

examine its nature in relation to palindromy.  

 

The term "thread" introduced by Jason Doucette corresponds to a sequence of numbers obtained by this process. 
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Steps 

n 
Thread 

Symmetric 

numbers 

Associated 

palindromes  

Gaps to 

palindrome 

Measures M  

= 

Quantities of 1 

within gap 

0 196 691    

1 887 788 787 100 1 

2 1675 5761 0575 1100 2 

3 7436 6347 6336 1100 2 

4 13783 38731 03773 10010 2 

5 52514 41525 41514 11000 2 

6 94039 93049 93039 01000 1 

7 187088 880781 087078 100010 2 

8 1067869 9687601 0967769 0100100 2 

9 10755470 07455701 00745470 10010000 2 

10 18211171 17111281 17111171 01100000 2 

11 35322452 25422353 25322352 10000100 2 

12 60744805 50844706 50744705 10000100 2 

 

The palindrome associated with a given number is first determined by identifying the centre of symmetry of the examined 

number. Having done so, we then look for the smallest of the two numbers on either side of this centre and retain the 

smallest of these two which then serves as a substitute in the associated palindrome. A specific treatment of the numbers 

1 and 9 is sometimes necessary and the reader will find it integrated into the algorithm attached in appendix 1.  

 

The reader will note that we are looking for a gap to the palindrome necessarily composed only of 0 or 1 and our algorithm 

is designed accordingly. 

 

We then get the following two graphs, the second being a close-up view near the chart origin of the first one. 

 

 

 
Graphic 1 

Gap measure M function of n 

 

 
Graphic 2 

Gap measure M 

 

 



p 3/20 

 

The number produced by the algorithm deviates from a palindrome by very few at steps 1, 6 and 16. It then departs 

following a cloud of points scattering around an average line y = a.x where a ≈ 0.102 (x = n, y = M). We call this middle 

line, the line of palindromic camber. 

 

Let us have M(n) the measure obtained at the iteration n. The graph below shows the evolution of positive or negative 

differences M(n)-M(n-1). We take samples formed by a set of 100 iterations. For each set {100n, 100(n+1)-1}, we get a 

(negative) minimum and a (positive) maximum. The graph below gives the result of the 500 points provided in this way 

for the minimums (the sign - is added to the Min() for comparison to the Max()) and 500 points also for the maximums. 

 

 
Graphic 3 

Measure M(n)-M(n-1)  

 

We will return to the concern of M(n)-M(n-1) gaps in paragraph 5 with more examples. 

 

3.The line of palindromic camber. 
 

Proposition  
 

The line of palindromic camber is an invariant (in base 10). It is common to all integers. 

 

Argument 
 

The proposal is based on a very small number of trials, almost all of which are given in this article. Our conviction is 

strong even if the argument that follows remains rudimentary. However, it is based on the admission that there are no 

exceptional numbers in base 10 (see paragraph 6) which is by no means a trivial supposition. The gap to palindromy is 

weakly linked (hence the invariance) to the number initially chosen, but depends largely on the carries (of 1) of each 10-

figure creating an ever-maintained chaos (hence the point cloud), the number of these carries being strongly linked to the 

length of the word (hence the average middle line) and the gap to palindromy is linked to the number of carries.  

Indeed, let us have L the length of the integer at step i. The algorithm acts on the digits 0 to 9 with have average of 4.5. 

For a large number of iterations, the addition would then increase the value of the number of a ratio 4.5/10 = 0.45. Full-

scale tests appear to indicate a slightly lower ratio of 0.41. The reader will find in appendix 2 a much more comprehensive 

study of the L/i ratio, as our argument is so far too simplistic. 

Let us then have C the number of carries at step i. The probability of carries on the entire length of a large number with 

another whose digits are taken at random, not forgetting to add the carries each time, is 50%. Doing addition with mirror 

integers does not change this point if the distribution between digits 0 to 9 is homogenous for the current integer and the 

probability is the same for this particular algorithm, hence an asymptotic ratio for C/L equal to 0.5. This is true regardless 

of the base used.  

Then let us look at the link between the number of carries and the number of deviations to the palindrome at step i. Let us 

take an example : 
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Initial integer  11692808688932019641372632460191398978072070 

Mirror integer 07027087989319106423627314691023988680829611 

Carries after addition 00100011111010011000000001100101111100110000 

Addition 18719896678251126064999947151215387658901681 

Palindrome 18619885678251115064999946051115287658891681 

Gap to palindrome 00100011000000011000000001100100100000010000 

 

A carry causes a deviation to the palindrome (highlight in red colour). This has a 1 to 1 effect in the absence of other 

effects. On the other hand, when carries are on either side of the number (highlight in blue colour), the two do not generate 

any effect. The relationship is 2 to 0. For the first type of event occurring twice as often as the second, the overall 

relationship is 2+2 versus 2+0, or 50%. There are of course other effects. For example, if all the digits are greater or equal 

to 5, the carries are systematic without destroying the palindromy. But this effect is transient and has no asymptotic 

consequences. Digital data show approximately a 50% equilibrium.  

That said, the overall balance sheet then boils down to the proposal Maverage ≈ (0.41).(0.5).(0.5).i ≈ 0.102i which is 

effectively observed. 

 

Note 
 

For very large numbers, the point cloud near the origin will obviously be shifted locally (with a positive ordinate at origin). 

But the asymptotic impact is totally negligible and the average middle line thus returns to its place when we take into 

account enough data. 

 

Illustration 
 

We chose the first ten integers : 01 to 010. The reader will distinguish those with the alternative choice of 1 to 10, very 

different, which would give several redundancies since 8, 4, 2 are twins to 1, as 6 to 3 and 10 to 5 in this specific algorithm 

framework. 
 

  
Graphic 4 

Gap measure M 

Graphic 5 

Gap measure M 

 

In addition (without any special precaution), we chose the ten numbers, with 18 digits, 456987689111798120 to 

456987689111798129. 

 

  
Graphic 6 

Gap measure M 

Graphic 7 

Gap measure M 
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All these numbers have in common the same line of palindromic camber, the data being shifted at the graph origin in the 

second series of tests as shown in chart 7. 

 

For 18 digits, there are statistically, according to Jason Doucette's website, 90.55% of Lychrel numbers. Here, the 

exception corresponding to this 10% is 45698768911798124 which has a 0-camber at step 21 (which here is only a happy 

coincidence). 

 

4.The smallest Lychrel number. 
 

Usually, the smallest presumed Lychrel’s number is cited as equal to 196. The reader is invited to open the territory to 

"097" which gives the same succession of numbers as "196", and is therefore his perfect smallest “twin”: 

 

Steps 

N 
Thread 

Symmetric 

numbers 

Associated 

palindromes  

Gaps to 

palindrome 

Measures M  

Quantities of 1  

0 097 790    

1 887 788 787 100 1 

2 1675 5761 0575 1100 2 

… … … … … … 

 

5.The atypical numbers. 
 

We name atypical those numbers whose particularity is to present a palindrome a little later than the others integers. The 

reader will be able to judge underneath by himself the extent of this deviation from the general pattern visible in the 

evolution of the point clouds subsequent to a 0-gap event. 

 

  
Graphic 8 

Gap measure M 

Graphic 9 

Gap measure M 

1005499526 Ian J. Peter (109 steps), 100120849299260 Jason Doucette (in 2000, 201 steps),  

10442000392399960 Jason Doucette, Benjamin Despres (in 2003, 236 steps), 1186060307891929990 et 

1999291987030606810 Jason Doucette, Benjamin Despres (in 2005, 261 steps), 13968441660506503386020 Anton 

Stefanov (in 2021, 289 steps) 
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Graphic 10 

Gap measure M  

12000700000025339936491 Rob van Nobelen (in 2019, 288 steps) 

13568441660506503386420 Anton Stefanov (in 2021, 289 steps) 

 

For these records, the evolution of M at respective steps 288 and 289 is on either side 36 ↘ 0 ↗ 38. Although remarkable 

near origin, these changes are minor for more advanced iterations and become commonplace as suggested by another 

example (that of the initial number "196") given by graph 3. For this case quite standard, the first occurrence of more than 

-36 is at iteration 1132 (132 ↘ 90 : -42). The occurrence greater than or equal to +38 occurs at iteration 1390 (128 ↗ 166 

: +38). Over 3000 iterations, positive or negative differences of more than 40 are common. 

For Anton Stefanov’s example, the first negative overtaking is at iteration 970 (126 ↘ 78: -48) and the first positive 

catching-up at step 971 (78 ↗ 120 : +42). 

 

The graph below, a close-up view of the previous one, shows the subtle kinship of Rob van Nobelen and Anton Stefanov's 

records. 

 

  
Graphic 11 

Gap measure M 

Graphic 12 

Gap measure M 

 

6.The exceptional numbers. 
 

So far we looked at integers for which the linear evolution in size, number of carries and gap to palindromy was subject 

to a clear additional random part. For these, it seems that they all share the same growth speeds of the so-called size, 

number of carries and gap to palindromy around expected averages.  

 

It turns out, however, that some numbers have totally predictable behaviours in relation to these three criteria (no random 

part). Panurge sheeps, they are totally different from their congeners, partially left to their misdirections. We do not know 

if they exist in base 10, but their presence is detected here in base 4 and 2. We call them Cheryl numbers or exceptional 

numbers. 
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Case 1 : 

Base 4. Initial number : 2211101 

 

Steps Thread Palindromes 
Gap to 

palindrome 

Sizes 

L 

# Carries 

C 

Measures  

M 

0 221112 211112 10000 6  1 

1 1032300 0032300 1000000 7 3 1 

2 1131201 1021201 110000 7 3 2 

3 2213112 2113112 100000 7 2 1 

4 10332300 00322300 10010000 8 4 2 

5 11322201 10222201 1100000 8 4 2 

6 22211112 21111112 1100000 8 4 2 

7 103323000 003222300 100100100 9 4 3 

8 110312301 103212301 1100000 9 4 2 

9 220131312 213131312 1000000 9 3 1 

10 1033323000 0032222300 1001100100 10 5 4 

11 1103222301 1032222301 11000000 10 5 2 

12 2202111312 2131111312 11000000 10 5 2 

13 10333230000 00322222300 10011001100 11 5 5 

14 11003123301 10332123301 11000000 11 5 2 

15 22001313312 21331313312 10000000 11 4 1 

16 103333230000 003222222300 100111001100 12 6 6 

17 110032223301 103322223301 110000000 12 6 2 

18 220021113312 213311113312 110000000 12 6 2 

19 1033332300000 0032222222300 1001110011100 13 6 7 

20 1100031233301 1033321233301 110000000 13 6 2 

 

Here the evolution of the initial integer follows a modulo 6 pattern. The values in brackets underneath correspond for the 

first bracket to the digit present in the studied number and for the latter bracket to the quantity of these identical in-a-row 

digits. For example, for i = 18, we have (2,2), (0,i/6-1), (2,1), (1,3), (3,i/6-1), (1,1), (2,1) which gives (2,2), (0,2), (2,1), 

(1,3), (3,2), (1,1), (2,1) and then (22), (00), (2), (111), (33), (1), (2) , or by putting things together 220021113312. 

 

Steps i Integers 

6 22211112 

12 2202111312 

18 220021113312 

i = 0 mod 6 (2,2),(0,i/6-1),(2,1),(1,3),(3,i/6-1),(1,1),(2,1) 
  

1 1032300 

7 103323000 

13 10333230000 

i = 1 mod 6 (1,1),(0,1),(3,(i-1)/6+1),(2,1),(3,1),(0,(i-1)/6+2) 
  

2 1131201 

8 110312301 

14 11003123301 

i = 2 mod 6 (1,2),(0,(i-2)/6),(3,1),(1,1),(2,1),(3,(i-2)/6),(0,1),(1,1) 
  

3 2213112 

9 220131312 

15 22001313312 

i = 3 mod 6 (2,2),(0,(i-3)/6),(1,1),(3,1),(1,1),(3,(i-3)/6),(1,1),(2,1) 
  

4 10332300 

10 1033323000 

16 103333230000 

i = 4 mod 6 (1,1),(0,1),(3,(i-4)/6+2),(2,1),(3,1),(0,(i-4)/6+2) 
  

5 11322201 

11 1103222301 

17 110032223301 

i = 5 mod 6 (1,2),(0,(i-5)/6),(3,1),(2,3),(3,(i-5)/6),(0,1),(1,1) 

 

So, we have for the three studied items : 
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L = 6+int((i+2)/3) ≈ i/3 (1) 

C = if(i = 3 mod 6, 1+int((i+5)/6), 3+int((i+2)/6)) ≈ i/6 (2) 

M = if(i = 1 mod 3, int((i+2)/3), if(i = 3 mod 6, 1, 2)) ≈ or(i/3, ≈0) (3) 

 

The remarkable point, apart from the entire predictability, is the round trip between a totally distorted palindrome and 

near-perfect palindrome, regardless of the size of the current number.  

 

If instead of starting from the "exceptional" number 221112,we start from the "ordinary" number  211112,we have the 

quite different : 

L ≈ 0,47.i (4) 

C ≈ 0,23.i (5) 

M ≈ 0,11.i (6) 

 

Case 2 : 

Base 2.  

 

It seems that this base is mainly home to exceptional numbers, namely, a reproducible phase usually begins after a finite 

number of steps. This phase responds to the following formulas : 

 

L = v1+int((i+v2)/2) ≈ i/2 (7) 

C = int((i+v3)/4)+if(i = 0 mod 4, v4, if(i = 1 mod 4, v5, if(i = 2 mod 4, v6, v7))) ≈ i/4 (8) 

M = int((i+v8)/4)+if(i = 0 mod 4, v9, if(i = 1 mod 4, v10, if(i = 2 mod 4, v11, v12))) ≈ i/4 (9) 

 

For example, the (fixed) settings are (i = 0 for the initial number), with the reproducible phase starting at the i value given 

in the "Reprod" column : 

 

Initial number Reprod. v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 

10 i ≥ 20 6 0 12 0 0 0 -1 4 0 -2 0 0 

100 i ≥ 8 5 0 12 -1 -2 0 0 4 -1 -1 0 -2 

1000 i ≥ 18 7 0 12 0 -1 1 1 4 0 0 1 -1 

10000 i ≥ 171 32 0 64 1 3 -1 -4 20 0 -6 -2 -2 

100000 i ≥ 18 9 0 12 1 0 2 2 4 1 1 2 0 

1000000 i ≥ 12 10 0 12 0 3 1 0 4 2 -1 1 2 

10000000 i ≥ 12 11 0 12 2 1 3 3 4 2 2 3 1 

100000000 i ≥ 38 13 0 12 3 2 4 4 4 3 3 4 2 

10000000000 i ≥ 22 15 0 12 4 3 5 5 4 4 4 5 3 

100000000000 i ≥ 60 20 0 36 0 -2 2 3 20 0 0 1 -1 

1000000000000 i ≥ 22  17 0 32 0 -1 1 1 12 0 0 1 -3 

10000000000000 i ≥ 22 18 0 36 -1 -3 1 2 20 -1 -1 0 -2 

100000000000000 i ≥ 22  19 0 32 1 0 2 2 12 1 1 2 -2 

1000000000000000 i ≥ 22 20 0 36 0 -2 2 3 20 0 0 1 -1 

10000000000000000 i ≥ 22  21 0 32 2 1 3 3 12 2 2 3 -1 

100000000000000000 i ≥ 24 22 0 36 1 -1 3 4 20 1 1 2 0 

1000000000000000000 i ≥ 26  23 0 32 3 2 4 4 12 3 3 4 0 

10000000000000000000 i ≥ 28 24 0 36 2 0 4 5 20 2 2 3 1 

 

Integers such as the reproducible phase manifests from the beginning (i ≥ 1) are in order of appearance : 

 

10000111, 10100011, 11000101, 11100001, 100010111, 100101100, 101010011, 101101000, 110010101, 111010001, 

1000000111, 1000001111, 1001000111, 1001011100, 1001101100, 1010000011, 1010001011, 1011000011, 

1011011000, 1011101000, 1100000101, 1100001101, 1101000101, 1110000001, 1110001001, 1111000001. 

 

This is the complete list of numbers of size 10 or less. These numbers converge on only two threads. Of the 26, the 

following 4 converge on the second thread : 

 

1000000111, 1010000011, 1100000101, 1110000001. 
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Among the ordinary numbers, more difficult to find (but not necessarily less dense in N), we have a priori (that is to say 

for sure as far as i = 10000) the following numbers :  

 

Initial number :  

100001111, 

100011011, 

100011100, 

… 

Initial number :  

1111010001001 

  
Graphic 13 

Gap measure M 

Graphic 14 

Gap measure M 

 

In the case of chart 13, the three initial numbers given here all evolve within the same thread. The second graph is a priori 

another thread (it is at least until step 10000). The growth parameters, on the other hand, are asymptotically identical.  

 

L ≈ 0,57.i (10) 

C ≈ 0,28.i (11) 

M ≈ 0,13.i (12) 

 

The standard deviations to the average middle line are much larger here than in the case of base 10. 

 

Of the first 1000 integers in base 2 (1 to 111110101000), there are only 41 "normal" numbers all listed below : 

 

100001111 101001100 110100101 1000101111 1010111000 1101010101 

100011011 101011000 110110001 1000111100 1011001100 1101100101 

100011100 101100011 111001001 1001010111 1011010011 1110011001 

100100111 101100100 111100001 1001100111 1011100011 1110101001 

100110011 101110000 1000000000 1001110100 1011110000 1111010001 

100110100 110001101 1000000001 1010011011 1100011101 1111100001 

101001011 110011001 1000011111 1010101011 1100101101  

 

All of these numbers converge on the same thread. 

 

7.Conclusion. 
 

It seems to us that the question of the existence of Lychrel numbers is a relatively minor point in the study of the addition 

of a number with its mirror number. 

 

Indeed, we can propose two standard questions, stemming from the end of this study, that replicate and whose character 

seems to us deeper and more fundamental : 

 

- What is the density of Cheryl’s integers (or exceptional numbers) in N in base 2? 

- Are all integers Cheryl’s integers in base 2? 

- What is the density of Cheryl’s integers in N in base 4? 

- Are all integers Cheryl’s integers in base 4? 

- What is the density of Cheryl’s integers in N in base 10? 

- Are all integers Cheryl’s integers in base 10? 

- What is the density of Cheryl’s integers in N in base X? 

- Are all integers Cheryl’s integers in base X? 
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Indeed, the large number of exceptional type integers in base 2 may suggest that during its growth, an ordinary number is 

likely to meet an exceptional number and thus changes its growth regime up to infinity. This would then mean the total 

absence of an ordinary number in this base. If this is indeed the case, this property is likely to be the rule in all bases, even 

if the accessible data seems to say so far quite the opposite ! 
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Appendix 1 : VBA programming. 
 

Programming for base 4 to 10 

 

Public lgw, iter0, v(5000), w(5000), LowBase 

 

Sub Count1() 

Base = 10  'base max = 10, base min = 4 

Wrdi = "456987689111798120" 

LowBase = Base - 1 

NumberIteration = 3000 

LenWord = Int(NumberIteration / 2) + 100  

For i = 0 To NumberIteration: v(i) = 0: w(i) = 0: Next i 

Range("B1") = "Base" & Base 

Range("B2") = "Len" 

Range("C2") = "#1" 

Range("D2") = "M" 

tot = 0 

For i = 0 To NumberIteration 

lgw = Len(Wrdi) 

Wrdn = StrReverse(Wrdi) 

r = 0 

Wrd1 = "" 

WrdInt1 = 0 

For j = lgw To 1 Step -1 

WrdInt1 = Val(Mid(Wrdi, j, 1)) + Val(Mid(Wrdn, j, 1)) + r 

If WrdInt1 >= Base Then WrdInt1 = WrdInt1 - Base: r = 1: tcarry = tcarry + 1 Else r = 0 

Wrd1 = WrdInt1 & Wrd1 

Next j 

If r = 1 Then Wrds = "1" & Wrd1: r = 0 Else Wrds = Wrd1 

 

For j = 1 To lgw 

v(j) = Val(Mid(Wrdi, j, 1)) 

w(j) = Val(Mid(Wrdi, j, 1)) 

Next j 

k = Int(lgw / 2) 

 

jj = 1 

For j = 1 To k 

If Abs(w(j) - w(lgw - j + 1)) > 1 Then If Abs(w(j) - w(lgw - j + 1)) <> LowBase Then jj = 2: GoTo Suit01 

If Abs(w(j + 1) - w(lgw - j + 1)) > 1 Then If Abs(w(j + 1) - w(lgw - j + 1)) <> LowBase Then jj = 1: GoTo Suit01 

Next j 

Suit01: 

 

k = Int((lgw + 1 + jj) / 2) 

Suit02: 

For j = k To lgw Step 1 

esp = w(j) - w(lgw - j + jj) 

If esp = LowBase Then iter0 = lgw - j + jj: w(iter0) = LowBase: Routine: GoTo Suit02 

Next j 

 

Suit04: 

For j = lgw To k Step -1 

esp = w(lgw - j + jj) - w(j) 

If esp = -LowBase Then iter0 = lgw - j + jj:  w(iter0) = LowBase: Routine:  GoTo Suit04 

Next j 

 

For j = lgw To k Step -1 

esp = w(lgw - j + jj) - w(j) 

If esp = 1 Then w(lgw - j + jj) = w(lgw - j + jj) - 1: GoTo Suit03 

If esp = -1 Then w(j) = w(j) - 1 

Suit03: 

Next j 
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Palind = "'" 

If jj = 2 Then w(1) = 0 

m = 0 

r = 0 

For j = lgw To 1 Step -1 

Palind = Palind & w(lgw - j + 1) 

tot = v(j) - w(j) - r 

If tot = -LowBase Then r = 1: m = m + 1: GoTo Suit3 

If tot = -Base Then r = 1:  GoTo Suit3 

If tot = 1 Then r = 0: m = m + 1: GoTo Suit3 

If tot = 0 Then r = 0: GoTo Suit3 

If tot < 0 Then If tot > -LowBase Then r = 1: GoTo Suit3 

If tot > 1 Then r = 0 

Suit3: 

Next j 

 

Range("H3").Offset(i, 0) = Palind 

Range("B3").Offset(i, 2) = m 

Range("B3").Offset(i + 1, -1) = "'" & Wrds 

Range("B3").Offset(i + 1, 0) = Len(Wrds) 

Range("B3").Offset(i + 1, 1) = tcarry: tcarry = 0 

Wrdi = Wrds 

Next i 

End Sub 

 

Sub Routine() 

For mm = 1 To lgw 

w(iter0 - mm) = w(iter0 - mm) - 1  

If w(iter0 - mm) = -1 Then w(iter0 - mm) = LowBase Else GoTo Fin 

Next mm 

Fin: 

End Sub 

 

 

Programming for base 2 

 

Sub Count2() 

Wrdi = "11" 

tot = 0 

For i = 0 To 100 

Wrdn = StrReverse(Wrdi) 

r = 0 

Wrd1 = "" 

For j = Len(Wrdi) To 1 Step -1 

WrdInt = Val(Mid(Wrdi, j, 1)) + Val(Mid(Wrdn, j, 1)) + r 

If WrdInt > 1 Then WrdInt = WrdInt - 2: r = 1: tot = tot + 1 Else r = 0 

Wrd1 = WrdInt & Wrd1 

Next j 

If r = 1 Then Wrds = "1" & Wrd1: r = 0 Else Wrds = Wrd1 

m1 = 0: k = Int((Len(Wrdi) + 1) / 2): lgw = Len(Wrdi) 

For j = k To 1 Step -1 

If Abs(Val(Mid(Wrdi, j, 1)) - Val(Mid(Wrdi, lgw - j + 1, 1))) = 1 Then m1 = m1 + 1 

Next j 

m2 = 1: k = Int((Len(Wrdi)) / 2): lgw = Len(Wrdi) 

For j = k To 1 Step -1 

If Abs(Val(Mid(Wrdi, j + 1, 1)) - Val(Mid(Wrdi, lgw - j + 1, 1))) = 1 Then m2 = m2 + 1 

Next j 

Range("B3").Offset(i + 1, -1) = "'" & Wrds 

Range("B3").Offset(i + 1, 0) = Len(Wrds) 

Range("B3").Offset(i + 1, 1) = tot: tot = 0 

If m2 < m1 Then Range("B3").Offset(i, 2) = m2 Else Range("B3").Offset(i, 2) = m1 

Wrdi = Wrds 
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Next i 

End Sub 

 

 

Programming for base 3 

 

Public lgw, iter0, v(5000), w(5000), t(5000), LowBase, ww 

 

Sub Count3() 

Base = 3 

Wrdi = "1" 

LowBase = Base - 1 

NumberIteration = 3000 

LenWord = Int(NumberIteration / 2) + 100 

For i = 0 To NumberIteration: v(i) = 0: w(i) = 0: Next i 

Range("B1") = "Base" & Base 

Range("B2") = "Len" 

Range("C2") = "#1" 

Range("D2") = "M" 

tot = 0 

For i = 0 To NumberIteration 

lgw = Len(Wrdi) 

Wrdn = StrReverse(Wrdi) 

r = 0 

Wrd1 = "" 

WrdInt1 = 0 

For j = lgw To 1 Step -1 

WrdInt1 = Val(Mid(Wrdi, j, 1)) + Val(Mid(Wrdn, j, 1)) + r 

If WrdInt1 >= Base Then WrdInt1 = WrdInt1 - Base: r = 1: tcarry = tcarry + 1 Else r = 0 

Wrd1 = WrdInt1 & Wrd1 

Next j 

If r = 1 Then Wrds = "1" & Wrd1: r = 0 Else Wrds = Wrd1 

 

For j = 1 To lgw 

v(j) = Val(Mid(Wrdi, j, 1)) 

w(j) = Val(Mid(Wrdi, j, 1)) 

Next j 

 

jj = 1 

k = Int((lgw + 1 + jj) / 2) 

Suit02: 

'MsgBox ("e") 

For j = k To lgw 

'MsgBox (j & " " & lgw) 

esp = w(j) - w(lgw - j + jj) 

If esp = LowBase Then iter0 = lgw - j + jj: w(iter0) = LowBase: Routine: If ww = 1 Then ww = 0: m1 = 1E+100: GoTo 

Suit04 Else GoTo Suit02 

Next j 

 

Suit04: 

For j = k To lgw 

esp = w(j) - w(lgw - j + jj) 

If esp = -LowBase Then iter0 = j: w(iter0) = LowBase: Routine: If ww = 1 Then ww = 0: m1 = 1E+100: GoTo Suit05 

Else GoTo Suit04 

Next j 

 

Suit05: 

For j = lgw To k Step -1 

esp = w(lgw - j + jj) - w(j) 

If esp = 1 Then w(lgw - j + jj) = w(lgw - j + jj) - 1: GoTo Suit03 

If esp = -1 Then w(j) = w(j) - 1 

Suit03: 

Next j 
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Palind1 = "'" 

m1 = 0 

r = 0 

For j = lgw To 1 Step -1 

Palind1 = Palind1 & w(lgw - j + 1) 

tot = v(j) - w(j) - r 

If tot = -LowBase Then r = 1: m1 = m1 + 1: GoTo Suit31 

If tot = -Base Then r = 1:  GoTo Suit31 

If tot = 1 Then r = 0: m1 = m1 + 1: GoTo Suit31 

If tot = 0 Then r = 0: GoTo Suit31 

If tot = -1 Then r = 1: GoTo Suit31 

'If tot = -1 Then r = 1: GoTo Suit31 

If tot > 1 Then r = 0  

Suit31: 

Next j 

 

For j = 1 To lgw 

t(j) = Val(Mid(Wrdi, j, 1)) 

Next j 

 

jj = 2 

k = Int((lgw + 1 + jj) / 2) 

Suit12: 

For j = k To lgw 

esp = t(j) - t(lgw - j + jj) 

If esp = LowBase Then iter0 = lgw - j + jj: t(iter0) = LowBase: Routine: If ww = 1 Then ww = 0: m2 = 1E+100: GoTo 

Suit14 Else GoTo Suit12 

Next j 

 

Suit14: 

For j = k To lgw 

esp = t(j) - t(lgw - j + jj) 

If esp = -LowBase Then iter0 = j: t(iter0) = LowBase: Routine: If ww = 1 Then ww = 0: m2 = 1E+100: GoTo Suit15 Else 

GoTo Suit14 

Next j 

 

Suit15: 

For j = lgw To k Step -1 

esp = t(lgw - j + jj) - t(j) 

If esp = 1 Then t(lgw - j + jj) = t(lgw - j + jj) - 1: GoTo Suit13 

If esp = -1 Then t(j) = t(j) - 1 

Suit13: 

Next j 

 

Palind2 = "'" 

t(1) = 0 

m2 = 0 

r = 0 

For j = lgw To 1 Step -1 

Palind2 = Palind2 & t(lgw - j + 1) 

tot = v(j) - t(j) - r 

If tot = -LowBase Then r = 1: m2 = m2 + 1: GoTo Suit32 

If tot = -Base Then r = 1:  GoTo Suit32 

If tot = 1 Then r = 0: m2 = m2 + 1: GoTo Suit32 

If tot = 0 Then r = 0: GoTo Suit32 

If tot = -1 Then r = 1: GoTo Suit32 

'If tot = -1 Then r = 1: GoTo Suit32 

If tot > 1 Then r = 0  

Suit32: 

Next j 

 

If m1 < m2 Then m = m1: Palind = Palind1 Else m = m2: Palind = Palind2 
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Range("H3").Offset(i, 0) = Palind 

Range("B3").Offset(i, 2) = m 

Range("B3").Offset(i + 1, -1) = "'" & Wrds 

Range("B3").Offset(i + 1, 0) = Len(Wrds) 

Range("B3").Offset(i + 1, 1) = tcarry: tcarry = 0 

Wrdi = Wrds 

Next i 

End Sub 

 

Sub Routine() 

ww = 0 

For mm = 1 To lgw 

If iter0 - mm < 0 Then ww = 1: GoTo Fin 

w(iter0 - mm) = w(iter0 - mm) - 1 

If w(iter0 - mm) = -1 Then w(iter0 - mm) = LowBase Else GoTo Fin 

Next mm 

Fin: 

End Sub 
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Appendix 2 : Speed of growth in the size of an integer. 
 

We evaluate the L/i ratio of the size L of an integer, i.e. the number of its digits, to the current iteration number i of the 

Wade VanLandingham algorithm. We assume a single asymptotic L/i growth rate for a given base. The data collected are 

thus those starting with integer “1” systematically and are presented below. 

 

The k range, on which the k-average is made, is that of the 1000 iterations between the iteration i = 1000.k and the iteration 

i = 1000.(k+1)-1 included. The same goes for the assessment of minimums and maximums. 

 
 mean1 mean2 mean3 mean4 mean5 mean6 mean7 

Base 2 0,504 0,502 0,502 0,501 0,501 0,501 0,501 

Base 3 0,600 0,599 0,599 0,598 0,598 0,598 0,598 

Base 4 0,468 0,469 0,468 0,466 0,463 0,461 0,464 

Base 5 0,448 0,446 0,447 0,448 0,449 0,450 0,452 

Base 6 0,420 0,421 0,421 0,420 0,421 0,422 0,423 

Base 7 0,409 0,407 0,407 0,406 0,407 0,406 0,406 

Base 8 0,391 0,392 0,391 0,391 0,390 0,389 0,389 

Base 9 0,374 0,371 0,370 0,371 0,370 0,369 0,369 

Base 10 0,419 0,418 0,410 0,410 0,412 0,412 0,411 
        

 min1 min2 min3 min4 min5 min6 min7 

Base 2 0,503 0,502 0,501 0,501 0,501 0,501 0,501 

Base 3 0,599 0,598 0,598 0,598 0,598 0,598 0,598 

Base 4 0,464 0,467 0,465 0,463 0,461 0,460 0,462 

Base 5 0,445 0,445 0,445 0,447 0,448 0,449 0,451 

Base 6 0,417 0,418 0,420 0,420 0,420 0,421 0,422 

Base 7 0,406 0,405 0,406 0,405 0,406 0,405 0,405 

Base 8 0,388 0,391 0,390 0,390 0,389 0,389 0,389 

Base 9 0,370 0,370 0,369 0,370 0,369 0,368 0,368 

Base 10 0,415 0,414 0,408 0,409 0,411 0,411 0,410 
        

 max1 max2 max3 max4 max5 max6 max7 

Base 2 0,505 0,503 0,502 0,501 0,501 0,501 0,501 

Base 3 0,601 0,600 0,599 0,599 0,598 0,598 0,598 

Base 4 0,473 0,471 0,470 0,469 0,465 0,463 0,465 

Base 5 0,453 0,447 0,448 0,449 0,450 0,451 0,452 

Base 6 0,422 0,423 0,422 0,421 0,422 0,422 0,423 

Base 7 0,411 0,408 0,408 0,407 0,407 0,407 0,407 

Base 8 0,394 0,394 0,393 0,392 0,392 0,390 0,390 

Base 9 0,379 0,372 0,371 0,371 0,371 0,370 0,369 

Base 10 0,421 0,422 0,414 0,411 0,413 0,413 0,412 
        

 (max1-

min1)/min1 

(max2-

min2)/min2 

(max3-

min3)/min3 

(max4-

min4)/min4 

(max5-

min5)/min5 

(max6-

min6)/min6 

(max7-

min7)/min7 

Base 2 0,60% 0,22% 0,12% 0,07% 0,05% 0,04% 0,03% 

Base 3 0,44% 0,28% 0,23% 0,15% 0,10% 0,10% 0,07% 

Base 4 1,77% 0,96% 1,06% 1,23% 0,93% 0,59% 0,51% 

Base 5 1,61% 0,48% 0,59% 0,40% 0,51% 0,36% 0,28% 

Base 6 1,15% 1,13% 0,55% 0,24% 0,38% 0,18% 0,36% 

Base 7 1,26% 0,89% 0,49% 0,43% 0,31% 0,43% 0,40% 

Base 8 1,68% 0,82% 0,75% 0,48% 0,76% 0,24% 0,25% 

Base 9 2,41% 0,72% 0,31% 0,43% 0,38% 0,44% 0,22% 

Base 10 1,57% 1,85% 1,58% 0,53% 0,50% 0,54% 0,50% 

 

Note here that 1 is an exceptional number in base 2. It is therefore not relevant to compare the data corresponding to the 

other evaluations. Therefore, they are not included in the graph below. 
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Graphic 15 

Moyenne de L/i 

 

The base comparison is interesting if its understanding makes it possible to find the exact asymptotic value of the L/i ratio. 

However, the data only reinforce here confusion as a result of the mysterious reversal of the ratio between base 9 and 10. 

 

Another approach is to examine the growth mechanism in more detail. This is largely related to the value of the extreme 

digits of the series of integers obtained by symmetrical addition. 

 

So, in base 10, it is interesting to examine the distribution of digits 0, 1, 2, ... 9 to the right and 1, 2, ..., 9 to the left of the 

current integer. Several tests based on different initial numbers (here 193 to 197) show that these distributions do not 

(presumably) depend on the said initial number (for "normal" numbers), what is expected. 

 

Left side 0 1 2 3 4 5 6 7 8 9 

193 / 46,87% 4,10% 4,93% 5,92% 5,93% 3,51% 5,52% 10,09% 13,13% 

194 / 46,29% 4,07% 5,11% 6,32% 5,68% 4,09% 5,72% 10,40% 12,32% 

195 / 46,53% 4,10% 5,01% 6,22% 5,84% 3,89% 5,60% 10,25% 12,56% 

196 / 46,51% 3,89% 4,76% 6,28% 5,34% 3,80% 5,79% 10,80% 12,83% 

197 / 47,09% 4,33% 5,11% 5,76% 6,13% 3,77% 5,32% 10,00% 12,49% 

Average to 

the left 
/ 46,66% 4,10% 4,98% 6,10% 5,78% 3,81% 5,59% 10,31% 12,67% 

 

Right side 0 1 2 3 4 5 6 7 8 9 

193 5,93% 6,92% 8,92% 7,71% 9,12% 8,73% 12,21% 16,53% 18,14% 5,79% 

194 5,68% 6,86% 9,23% 8,06% 9,25% 9,11% 12,71% 16,64% 17,51% 4,95% 

195 5,84% 6,92% 9,25% 7,82% 9,22% 9,03% 12,45% 16,78% 17,67% 5,02% 

196 5,34% 6,42% 8,75% 8,01% 9,29% 8,82% 13,02% 17,02% 18,23% 5,10% 

197 6,13% 7,18% 9,56% 7,61% 9,32% 8,61% 12,27% 16,07% 17,48% 5,77% 

Average to 

the right 
5,78% 6,86% 9,14% 7,84% 9,24% 8,86% 12,53% 16,61% 17,81% 5,33% 

 

The evolution of the population of each digit-class (0 to 9) is somewhat linear as shown in the graphs below. This is 

expected. 

On the other hand, the expected existence, except for 1 on the left which must logically be the majorant in terms of quantity, 

of an equiprobable distribution between the different digits is not the effective case. Digits 8 and 9 are more common 

(except 1) on the left, while 7 and 8 are more common on the right.  
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Graphic 16 

Initial number : 193 

10000 iterations 

Left side digits : #i at iteration i 

Graphic 17 

Initial number : 193 

10000 iterations 

Right side digits : #i at iteration i 

  
Graphic 18 

Initial number : 194 

10000 iterations 

Left side digits : #i at iteration i 

Graphic 19 

Initial number : 194 

10000 iterations 

Right side digits : #i at iteration i 

  
Graphic 20 

Initial number : 195 

10000 iterations 

Left side digits : #i at iteration i 

Graphic 21 

Initial number : 195 

10000 iterations 

Right side digits : #i at iteration i 
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Graphic 22 

Initial number : 196 

10000 iterations 

Left side digits : #i at iteration i 

Graphic 23 

Initial number : 196 

10000 iterations 

Right side digits : #i at iteration i 

  
Graphic 24 

Initial number : 197 

10000 iterations 

Left side digits : #i at iteration i  

Graphic 25 

Initial number : 197 

10000 iterations 

Right side digits : #i at iteration i 

 

By crossing the percentages of the distributions of the digits 1 to 9 on the left with those 0 to 9 on the right, an approximate 

value of the length growth factor L is obtained by summing up the percentages for which the sum of the two digits on the 

left and right is greater than or equal to 10. The table below highlights the terms to add :  

 
 Left digits 1 2 3 4 5 6 7 8 9 

Right 

digits 

Left mean 

Right mean 
46,66% 4,10% 4,98% 6,10% 5,78% 3,81% 5,59% 10,31% 12,67% 

0 5,78% 2,70% 0,24% 0,29% 0,35% 0,33% 0,22% 0,32% 0,60% 0,73% 

1 6,86% 3,20% 0,28% 0,34% 0,42% 0,40% 0,26% 0,38% 0,71% 0,87% 

2 9,14% 4,27% 0,37% 0,46% 0,56% 0,53% 0,35% 0,51% 0,94% 1,16% 

3 7,84% 3,66% 0,32% 0,39% 0,48% 0,45% 0,30% 0,44% 0,81% 0,99% 

4 9,24% 4,31% 0,38% 0,46% 0,56% 0,53% 0,35% 0,52% 0,95% 1,17% 

5 8,86% 4,13% 0,36% 0,44% 0,54% 0,51% 0,34% 0,50% 0,91% 1,12% 

6 12,53% 5,85% 0,51% 0,62% 0,76% 0,72% 0,48% 0,70% 1,29% 1,59% 

7 16,61% 7,75% 0,68% 0,83% 1,01% 0,96% 0,63% 0,93% 1,71% 2,10% 

8 17,81% 8,31% 0,73% 0,89% 1,09% 1,03% 0,68% 1,00% 1,84% 2,26% 

9 5,33% 2,49% 0,22% 0,27% 0,32% 0,31% 0,20% 0,30% 0,55% 0,67% 

 

The double-framed total is 100% while the highlighted percentages add up to 40.13%, thus a ratio of 0.401 to be compared 

to 0.413 the average of the values obtained above (page 16). The difference is due to the contribution of second ranked 

carries. This contribution is in the order of magnitude of 1%. 

 

When the base is smaller, the alignment of values is more delicate.  

For example, in base 4, we have the following distributions : 

 



p 20/20 

Left side 0 1 2 3 

#1 / 64,4% 28,7% 6,92% 

 

Right side 0 1 2 3 

#1 28,7% 31,4% 24,8% 15,0% 

 

  
Graphic 26 

Initial number : 1 

5000 iterations 

Left side digits : #i at iteration i 

Graphic 27 

Initial number : 1 

5000 iterations 

Right side digits : #i at iteration i 

 

The crossboard gives : 

 
 Left digits 1 2 3 

Right 

digits 

Left mean 

Right mean 
64,4% 28,7% 6,92% 

0 28,7% 18,5% 8,2% 2,0% 

1 31,4% 20,2% 9,0% 2,2% 

2 24,8% 16,0% 7,1% 1,7% 

3 15,0% 9,7% 4,3% 1,0% 

 

The double-framed total is 100% while the highlighted percentages add up now to 26.1%, thus a ratio of 0,261 to be 

compared to 0.465, the average of the values obtained above (page 16). The difference can be explained by the contribution 

of the second ranked carries, which is absolutely no longer negligible here. 

 


